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ABSTRACT

In our previous article we arrived at an essential relationship for T, the classical vibration period of the diatomic molecule in hand, at the total electronic energy E, i.e. T = 
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 is the reduced mass of the nuclei; me is the mass of the electron; r is the internuclear distance; g is a dimensionless and relativistically invariant coefficient, roughly around unity; n1 and n2 are the principal quantum numbers of electrons making up the bond(s) of the diatomic molecule.

It is that the cast of this relationship, i.e. [period of time] ~ [mass] x [size of space of concern]2, is essentially imposed by the special theory of relativity; this is how we originally arrived to it, although we have derived it, quantum mechanically, in Part I of this work.

The above relationship holds generally. It essentially yields T~r2, for the classical vibrational period, versus the square of the internuclear distance at different electronic states of a given molecule, which happens to be an approximate relationship known since 1925, but not disclosed so far. 
In this article, chiefly, we determine 
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 to be r /r0, for electronic states configured similarly, r being the internuclear distance at the given electronic state, and r0 the internuclear distance at the ground state. 

Note that, not much is reported about the quantum numbers of complex systems, in the literature.
In our previous article [
] we derived the following essential relationship regarding the  electronic states of a diatomic molecule:
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[Eq.(15-a) of Part I] ,

 
    (1)

along the definitions given below.

T is the classical period of time (at the given electronic state); r  is the average internuclear distance (at this state); 
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 is the reduced mass; me is the electron mass; g is a Lorentz invariant, dimensionless constant depending only on the electronic structure of the molecule, somewhat characterizing how tight the bond is; 
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and 
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 are the principal quantum numbers of the bond(s)’ electrons; h is the Planck Constant.
Herein we will elaborate on the quantum numbers n1 and n2, mainly based on Eq.(9-1) of   Part I.

Note that not much is reported about the quantum numbers to be associated with the electronic excited states of a complex system [
,
].  Seemingly in any case, nothing similar is reported along the line we present herein.
Below, first we develop our frame regarding the determination of quantum numbers. Then, we work these out for electronic states configured similarly, as well as for electronic states, not configured similarly. Our approach will consequently lead to the proof of an empirical relationship known since 1925, but not unveiled up to now. We provide, an application on the basis of the spectroscopic data of 
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 molecule.

1. FRAMEWORK
The presence of quantum numbers in the Eq.(1), above, is right away induced by the identification of the RHS of Eq.(2) of Part I, as 
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 This equation is further transformed into Eq.(9-2) of Part I, written for the mere electronic description of the molecule [cf. Eq.(4) of Part I], i.e.
En me
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 ~  h2    [Eq.(9-2) of Part I ] , 


   
    (2)
along the definitions given below.
En is the magnitude of the electronic energy at the nth electronic state; rn is internuclear distance at the nth electronic state; 
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 is a Lorentz invariant, dimensionless constant (defined in the Appendix 1 of Part I).
Thus, the description of the excited electronic eigenstates of the molecule, based on Eq.(2), must as usual, involve quantum numbers;
 this equation immediately suggests that, the principal quantum numbers that shall come into play, should take place, right next to 
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. 
Thus a composite quantum number N  (i.e. the product of the two principal quantum numbers n1 and n2 to be associated with the bond electrons, in the case of a diatomic molecule), should come to multiply h2, in Eq.(2), regarding an excited electronic eigenstate, in just the same way the square of an integer quantum number related to an excited state of a simple wave-like object (such as, the hydrogen atom), comes as usual, to multiply h2. 
This simple piece of information makes that, if N  is somehow known, one can introduce it, right next to h2, within the framework of the ground level wave-like description (i.e. the Hamiltonian) of the entity in hand, and based on the Theorem 1 stated in Part I, as we will detail soon, determine the eigenvalue, and the characteristic length delineated by the resulting formulation. 
Though, there is a peculiarity.

Eq.(2), in the simplest case one can think of, i.e. that of the hydrogen atom, shall (with the usual notation) be written as 
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=1  (written for the hydrogen atom) ;   
 (3-a)
here En is the magnitude of the total energy of the nth electronic state of the hydrogen atom, rn is the corresponding characteristic size, i.e. the average atomic radius, and n the principal quantum number.

Thus in this case, 
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 is unity, regardless n. In other words, for the hydrogen atom:
    i) 
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 assumes the value of unity, not only at the ground state, but also 
   ii)  at all electronic levels, for which then, it remains all the same.

Neither property holds for systems of higher complexities, although as we have shown, an equation similar to Eq.(1) can well be written for any diatomic molecule, or further, any wave-like entity (cf. Theorem 2 of Part I).  

Nonetheless [following Eqs. (iii) and (iv) of Appendix 1 of Part I ], we propose an equality induced by Eq.(2), for a diatomic molecule as framed by Eq.(3-a): 
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  (written for a diatomic molecule) .
 (3-b)
Since 
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, appears to be purely related to the electronic structure of the entity in hand, we expect it to remain the same, for alike electronic configurations, thus for excited electronic states configured similarly.
However, as one jumps from the ground state of a complex system, such as that of a diatomic molecule, to an excited state of this entity, it is not obvious that the electronic configuration shall stay the same; in fact, generally it will not.
Take for instance the hydrogen molecule. Its excited electronic states a priori, will not bear the same electronic configuration as that of the ground state, unless the two electrons are excited in a complete symmetry. Even then, the shielding effects may not be the same.
This is the peculiarity we wanted to clarify; thus, as the molecule jumps from its ground state to an excited state, in general, it is not only that, h2 should be multiplied within the framework of the wave-like description, by the appropriate composite quantum number; but we should further represent the change that takes place in the electronic structure. 
This can, as it appears, be taken care of, by a corresponding change in the coefficient 
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 of Eq.(3-2). 

Thereby, we can conceive an excited electronic state as achieved in two steps: 
1) 
We first switch hypothetically, the ground state’s electronic configuration of the molecule, into a new ground state’s electronic configuration, bearing the same configuration as that of the excited state we aim at, by altering
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. 
2) 
Then, we can bring the molecule from this perturbed ground electronic state’s configuration to the excited state in question, bearing an alike configuration. 

2. 
WORKING OUT THE PRODUCT OF QUANTUM NUMBERS FOR ELECTRONIC STATES CONFIGURED SIMILARLY
For electronic excited states configured like the ground state, we expect that 
[image: image27.wmf]IN

g

 will remain the same. 
Such an excited state should obey Eq.(3-b) stated above, incorporated with the composite quantum number, i.e. 
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, made of the product of the principal quantum numbers of the bond electrons, to be introduced next to 
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This immediately yields the content of the following Theorem, related to the formulation of excited electronic states.
Theorem 1: 
If the atomic or molecular object in hand, at a given electronic state, assumes the composite quantum number N , then the eigenvalue and the characteristic length associated with this state, becomes the output of the formulation one obtains by multiplying h2 with N , in the framework of the ground state description, provided that the two states are configured similarly.

Thus, the introduction of appropriate quantum numbers in Eq.(3-b), next to 
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 (within the framework of the wave-like description), in order to describe the excited electronic eigenstates of the molecule as complex as these may be, appears to be as standard as this procedure remains, for simplest wave-like objects, such as the hydrogen atom [cf. Eq.(3-a)], provided that the two states are configured similarly.

We can thereby predict the solution of the new set up, through Theorem 1 of Part I; this can indeed be obtained based on a reformulation of this Theorem, given that, multiplying 
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 by a given number, and dividing the masses involved by the Hamiltonian, are mathematically identical operations. 
Thus we establish our next Theorem related to the solution of the description of an excited electronic level of the wave-like object in hand.
Theorem 2:   In a wave-like description, such as that of the ground description of a diatomic molecule, if in the aim of expressing an excited eigenstate, 
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 is multiplied by the composite quantum number N , then concurrently, 
                        a)  the magnitude of the total ground energy E0 associated with the ground state in consideration, is decreased as much, to become E, the new eigenvalue, and 
b) the corresponding ground state size 
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 stretches as much, to become r, the new size, 
provided that the two states are configured similarly.

In mathematical words this is    
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Note that Theorem 2 holds for any excited eigenstate (rotational, vibrational, electronic, or else).

This Theorem, for excited states of the molecule, configured like the ground state, yields at once
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 (5-a)                  (composite quantum number of the excited eigenstates,
 were this configured like the ground state)
This, interestingly holds no matter how complex the molecule may be. 

Accordingly we establish our next Theorem.

Theorem 3: 
The composite quantum number to be associated with an excited eigenstate, is the mere ratio of the size the object displays at this excited state, to the size the object displays at the ground state, provided that the two states are configured similarly.

Theorem 3 can be right away checked for the electronic states of hydrogen atom. It is amazing that it holds for any object, and for any excited eigenstate the object may involve (provided that the eigenstate of concern, is configured like the ground state).
One can as well retrieve the following expected relationship, from Eq.(4):
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This yields the following Theorem.
Theorem 4: 
The composite quantum number is the inverse of the eigenvalue related to this eigenstate, were the ground state energy normalized to unity.
3. 
WORKING OUT THE QUANTUM NUMBERS FOR EXCITED STATES NOT CONFIGURED LIKE THE GROUND STATE
What if, the electronic structure of the excited state is not the same as that of the ground state?

The answer is promisingly not complicated. 
Indeed, since the coefficient 
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 in Eq.(2), comes to multiply the mass of the electron, which happens to be the only mass taking place in the description of the electronic motion of the diatomic molecule, any change in 
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, evidently can be represented by a corresponding hypothetical change in the mass of the electron. If further, we are concomitantly to consider the change due to the introduction of a composite quantum number N  related to the excited eigenstate in question (configured in a different way than the ground state), then based on Eq.(3-2), this state can well be described by merely altering 
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 in the framework of the ground state of the molecule, by the coefficient N
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, where the subscripts “initial” and “final” refer respectively to the ground state and the excited electronic state in consideration.
The ultimate output, can be right away established via Theorems 1 and 2 stated in Part I, as framed in the following Theorem.
Theorem 5: 
The ratio of the size a diatomic molecule displays at an excited state, to the size it displays at the ground state, is equal to N
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, i.e. the composite quantum number to be associated with the excited state, times a coefficient, the inverse of which quantifies how much the ground state electronic configuration is overall altered. 

4.
THE  DISCLOSURE  OF  THE  AGED EMPIRICAL  RELATIONSHIP                   r
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 = Constant, AND THE COMPLETE SET OF H2 ELECTRONIC VIBRATIONAL DATA

Recall that the following approximate empirical relationship, evoking very much Eq.(1), had been established for a given diatomic molecule, back in 1925, yet not unveiled so far [2,
,
,
,
]:  


[image: image46.wmf]v
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                            (6) 

(approximate relationship written in 1925

    
      for the electronic states of a given molecule)

here, 
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 is the classical vibration frequency, related to a given electronic state of the molecule, and 
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 the corresponding internuclear distance. 

The “Empirical Constant” is then to be determined separately, for each diatomic molecule. 

Eq.(6) bears the same cast as that of Eq.(1), as far as the dependency of the vibrational period on the internuclear distance, is concerned; yet it does not include the quantum numbers. 
Eq.(1), together with Theorem 3, suggests that we should consider the relationship 
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 (relationship written for the classical vibrational period 

               
  of excited electronic states of a given molecule)

where 
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 is the internuclear distance at the very ground state, and T the inverse of , as usual. 
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 taking place in the above relationship, following Theorem 3, is the composite quantum number to be associated with the electronic state taken in consideration. Yet in order to better display the structure of the interrelation between T, M0 and r, we will not incorporate 
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 with 
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, and keep Eq.(7) as it is, wherever this is more explanatory. 

Eq.(7) makes that based on any molecule, regarding the electronic states bearing similar configurations, for which g remains about the same, 
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 versus 
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 should at any rate display a straight line. 

The approximate empirical constant of Eq.(6), can now be evaluated from Eq.(7), as 

Empirical Approximate Constant 
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recall that N  is the composite quantum number, i.e. 
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 (staying indeed roughly the same, were r is not far from r0), making up that the “constant” in question is indeed only approximately constant, supposing that the electronic states in question, are configured similarly, so that g stays practically constant, throughout.
This entirely discloses the mechanism behind the approximate empirical relationship [Eq.(8)], established back in 1925. 

Thus, Eq.(8) makes that, it is not really the quantity 
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 which is a constant for electronic states of a given molecule, configured similarly; but based on Eq.(7), more likely it is the quantity
Constant = 
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(written by the author, for electronic states 
 of a given molecule configured similarly)

this new constant then is











      Constant 
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(written by the author, for electronic states 
 of a given molecule configured similarly)

recall that 
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 dominates the internuclear distance, at the ground state.

Although 
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 is also a constant for the given molecule, we still choose to keep it at the RHS of Eq.(9), to let the dimension of the new constant the same as that of the classical empirical constant 
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 to allow a comparison between these two quantities [cf. the RHS of Eq.(8)].

As an example, 
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 for H2 molecule, is sketched in Figure 1. Thus some 23 states out of 29, for which data is available, are neatly aligned. Herein, we included the data related to 
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, which too seems to display the same g as that of H2 ground state; we find g
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0.8. The remaining 6 electronic excited states of H2 seem to be configured differently. We call these, “ambiguous states” (the previous “unambiguous” 23 states, being seemingly all configured more or less, like the molecule’s ground state). 

To analyze the remaining 6 data (out of 29), we note, out of Eq.(1) that, switching the nuclei reduced mass M0 of alkali molecules or alkali hydrides into that of the hydrogen molecule, should virtually transpose the corresponding vibrational period, into the vibrational period of 
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 electronic state of the same electronic character; recall that switching the nuclei mass does not practically affect the electronic structure of the molecule, and accordingly we should expect that, amongst H2 electronic states there are states, configured like the ground electronic states of alkali molecules and alkali hydrides.  

Therefore we anticipate that the 6 ambiguous electronic states of H2 should be configured just like the respective ground electronic states of alkali molecules and alkali hydrides, and vice versa [
]. 
5. CONCLUSION

Herein we discovered that the product 
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 of the principal quantum numbers of the electrons making up the bond of a diatomic molecule, can be expressed as the ratio of the internuclear distance at the excited electronic state in question, to the internuclear distance of the ground state, provided that the two states are configured similarly [cf. Eq.(5-1)].

We were further able to generalize our approach to the case of excited states not configured similarly, with no difficulty. 
This allowed us to tune the relationship we discovered previously, between the classical vibrational period of time T, and internuclear distance r, to finally prove the empirical relationship 
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 [cf. Eqs. (8), (9) and (10)] known since 1925, but not unveiled so far.

We will use the foregoing findings to draw in the following Part III, a complete systematization of diatomic molecules.
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