Relativity theory coffin nail # 10 SW Canis Majoris
Binary stars apsidal motion puzzles solution
By Professor Joe Nahhas
joenahhas1958@yahoo.com

Here is me in year 2009 showing my 1979 thermo book with my picture stapled next to most notable Physicists of past 350 years whispering; it is not only Einstein is wrong but physics is wrong for past 350 years. It is time for change; regime change. It is time to end the western Royals Imperials and Corporate Physicists monopoly on physics taught and learned in past 350 years is at least 51 % wrong and Modern Physics is at least 88.88 % silly and because there is better physics and better physics is real time physics.
The elimination of relativity theory and annexation of quantum mechanics to classical mechanics is a matter of time and not a matter of science because time is a scale and not a dimension. A measurement is an event taken in present time of an event that happened in the past. We measure what is happening live in present time of what had already happened in past time.

Present time = present time
Present time = past time + [present time - past time]
Present time = past time + the difference between past time and present time
Measurement time = event time + time delays
Experiment = theory + corrections
Real time physics = event time physics + delay time physics

Applied to Planetary motion or star-star motion

An event: \( r(\theta, 0) = \left[ a \frac{1-\varepsilon^2}{1+\varepsilon \cos \theta} \right] \) Planet motion Event

Time factor \( \{ e^{i \lambda(r) + i \omega(r) t} \} \)

Physics live: \( r(0, t) = \left[ a \frac{1-\varepsilon^2}{1+\varepsilon \cos \theta} \right] \{ e^{i \lambda(r) + i \omega(r) t} \} \)

Perihelion advance corrections:

\[
W''(\text{obs}) = (-720 \times 36526 x 3600/T) \left\{ \left[ \sqrt{1-\varepsilon^2} / (1-\varepsilon)^2 \right] \left[ \frac{(v^* + v^o)}{c} \right]^2 \right\}
\]

= 43.11” of an arc per century for mercury

"The silly notion of time as a dimension can be sent back to sender"

Abstract: This is the solution to the "quarter of a century" binary stars apsidal motion solution that is not solvable by space-time physics or any said or published physics. Binary stars apsidal motion or rate of orbital axial rotation is visual effects along the line of sight of moving objects applied to the angular velocity at Apses. From billions of stars there are few thousands of close by stars that astronomers looked at and documented their dimensions and motions and picked few dozens of the binary stars as a test of General relativity and General relativity failed every one of them. This rate of "apparent" axial rotation is given by this new equation

\[
W^\circ (\text{cal}) = (-720 \times 36526/T) \left\{ \left[ \sqrt{1-\varepsilon^2} / (1-\varepsilon)^2 \right] \left[ \frac{(v^o + v^*)}{c} \right]^2 \right\} \text{ degrees/100 years}
\]

\( T = \text{period} = 10.09 \text{ days}; \varepsilon = \text{eccentricity} = 0.3179 \)
And \( v^o = \text{spin velocity effect} = v^o(p) + v^o(s) = 57 \text{ km/sec} \)
And \( v^* = \text{orbital velocity effect} = v^*(p) + v^*(s) = 80.5 + 87.8 = 168.3 \text{ km/sec} \)
For SW CMajoris: \( v^* + v^o = 225.3 \text{ km/sec} \)

\( W^\circ (\text{observed}) = 2.99565967^\circ/\text{century} = 0.0299565967^\circ \)
\( U = 360/0.0299565967 = 12017 \text{ years} \)
\( U (\text{observed}) = 12,000 \text{ years} \)

Einstein and space-timers 14,000 years

Real time universal mechanics solution
All there is in the Universe is objects of mass m moving in space (x, y, z) at a location
\( r = r(x, y, z) \). The state of any object in the Universe can be expressed as the product \( S = m r \); State = mass x location:

\[
P = \frac{dS}{dt} = m \left( \frac{dr}{dt} \right) + \left( \frac{dm}{dt} \right) r = \text{Total moment}
\]
change of location + change of mass
\[
= m v + m' r; v = \text{velocity} = \frac{dr}{dt}; m' = \text{mass change rate}
\]

\[
F = \frac{dP}{dt} = d^2S/dt^2 = \text{Total force}
\]
change of location + change of mass
\[
= m \gamma + 2m' v + m'' r; \gamma = \text{acceleration}; m'' = \text{mass acceleration rate}
\]

In polar coordinates system

We have
\[
r = r(\theta) \frac{d}{d\theta} \theta (\theta) \]
\[
v = \frac{d}{d\theta} r(\theta) + r \frac{d}{d\theta} \theta (\theta) \]
\[
F = m \gamma + 2m' v + m'' r
\]

\[
F = m \left( \frac{d^2 (m r)}{dt^2} - (m r) \frac{\theta'}{r^2} \right) - \frac{GmM}{r^2} \quad \text{Newton's Gravitational Law}
\]

Proof:

First \( r = r \frac{d}{d\theta} \theta (\theta) + r \theta' \frac{d}{d\theta} \theta (\theta) \]
Define \( r(\theta) = \cos \theta \hat{i} + \sin \theta \hat{j} \)
Define \( v = \frac{dr}{dt} = r' \frac{d}{d\theta} \theta (\theta) + r \frac{d}{d\theta} \theta (\theta) \]
And with \( r(\theta) = \cos \theta \hat{i} + \sin \theta \hat{j} \)

Then \( \frac{d}{d\theta} \theta (\theta) = \theta' \frac{d}{d\theta} \theta (\theta) - \hat{j} \]
And \( \frac{d}{dt} r(\theta) = \theta' \frac{d}{d\theta} \theta (\theta) + \cos \theta \hat{i} - \sin \theta \hat{j} \)

Define \( \gamma = \frac{d}{d\theta} \frac{d}{d\theta} \theta (\theta) + r \theta' \frac{d}{d\theta} \theta (\theta) \] / d t
t
\[
= r'' r(\theta) + r \frac{d}{d\theta} \theta (\theta) + r \theta'' r(\theta) + r \theta' \theta (\theta) - (2r' \theta' + r \theta'') \theta (\theta)
\]
With \( \frac{d^2 (m r)}{dt^2} - m r \theta'^2 = -GmM/r^2 \quad \text{Newton's Gravitational Equation} \quad \text{(1)}
\]
And \( \frac{d}{dt} (m r^2 \theta')/d t = 0 \quad \text{Central force law} \quad \text{(2)}
\]

(2): \( \frac{d}{dt} (m r^2 \theta')/d t = 0 \)

Then \( m r^2 \theta' = \text{constant} \)
\[
= H(0, 0)
\]
\[
= m^2 (0, 0) h(0, 0); h(0, 0) = r^2 (0, 0) \theta'(0, 0)
\]
\[
= m^2 (0, 0) r^2 (0, 0) \theta'(0, 0); h(\theta, 0) = [r^2 (\theta, 0)] [\theta'(\theta, 0)]
\]
\[
= [m^2 (\theta, 0)] h(\theta, 0); h(\theta, 0) = [r^2 (\theta, 0)] [\theta'(\theta, 0)]
\]
\[
= [m^2 (\theta, 0)] [r^2 (\theta, 0)] [\theta'(\theta, 0)]
\]
\[
= [m^2 (\theta, t)] [r^2 (\theta, t)] [\theta'(\theta, t)]
\]
\[
\begin{align*}
[m^2(\theta, 0) m^2(0, t)] & [r^2(\theta, 0) r^2(0, t)] [\theta'(\theta, t)] \\
= [m^2(\theta, 0) m^2(0, t)] & [r^2(\theta, 0) r^2(0, t)] [\theta'(\theta, 0) \theta'(0, t)]
\end{align*}
\]

With \(m^2r^2\theta' = \text{constant}\)
Differentiate with respect to time
Then \(2mm' r^2 \theta' + 2m^2rr' \theta' + m^2r^2 \theta'' = 0\)
Divide by \(m^2r^2\theta'\)
Then \(2 (m'/m) + 2(r'/r) + \theta''/\theta' = 0\)
This equation will have a solution \(2 (m'/m) = 2[\lambda (m) + i \omega (m)]\)
And \(2(r'/r) = 2[\lambda (r) + i \omega (r)]\)
And \(\theta''/\theta' = -2[\lambda (m) + \lambda (r) + i [\omega (m) + \omega (r)]]\)

Then \(m'/m = [\lambda (m) + i \omega (m)]\)
Or \(dm/m \ d t = [\lambda (m) + i \omega (m)] \ d t\)
Then \(m = m(0) e^{[\lambda (m) + i \omega (m)] t}\)
With initial spatial condition that can be taken at \(t = 0\) anywhere then \(m(0) = m(\theta, 0)\)
And \(m = m(\theta, 0) m(0, t) = m(\theta, 0) e^{[\lambda (m) + i \omega (m)] t}\)
And \(m(0, t) = e^{[\lambda (m) + i \omega (m)] t}\)

Similarly we can get
Also, \(r = r(\theta, 0) r(0, t) = r(\theta, 0) e^{[\lambda (r) + i \omega (r)] t}\)
With \(r(0, t) = e^{[\lambda (r) + i \omega (r)] t}\)
Then \(\theta'(\theta, t) = \{H(0, 0)/[m^2(\theta, 0) r(\theta, 0)]\} e^{-2[\lambda (m) + \lambda (r) + i [\omega (m) + \omega (r)]]} t \) -----I
And \(\theta'(\theta, t) = \theta'(\theta, 0) e^{-2[\lambda (m) + \lambda (r) + i [\omega (m) + \omega (r)]]} t \) ------------------------I
And, \(\theta'(\theta, 0) = \theta'(\theta, 0)\)
And \(\theta'(0, t) = \{H(0, 0)/[m^2 (0, 0) r(0, 0)] \)
And \(\theta'(0, 0) = \{H(0, 0)/[m^2 (0, 0) r(0, 0)] \}

With (I): \(d^2 (m r)/dt^2 - (m r) \theta''^2 = -GmM/r^2 = -Gm^3 M/m^2 r^2\)
And \(d^2 (m r)/dt^2 - (m r) \theta''^2 = -Gm^3 (\theta, 0) m^3 (0, t) M/ (m^2 r^2)\)
Let \(m r = 1/u\)
Then \(d (m r)/d t = -u'/u^2 = - (1/u^2) (\theta') d u/d \theta = (- \theta'/u^2) d u/d \theta = -H d u/d \theta\)
And \(d^2 (m r)/dt^2 = -H\theta' d^2 u/d \theta^2 = - Hu^2 [d^2 u/d \theta^2]\)

\(-Hu^2 [d^2 u/d \theta^2] - (1/u) (Hu^2)^2 = -Gm^3 (\theta, 0) m^3 (0, t) Mu^2\)
\([d^2 u/d \theta^2] + u = Gm^3 (\theta, 0) m^3 (0, t) M/H^2\)

\(t = 0; m^3 (0, 0) = 1\)
\(u = Gm^3 (\theta, 0) M/H^2 + A \cos \theta = Gm (\theta, 0) M (\theta, 0)/ h^2 (\theta, 0)\)

And \(m r = 1/u = 1/[Gm (\theta, 0) M (\theta, 0)/ h (\theta, 0) + A \cos \theta]\)
\[
\frac{[h^2/Gm(\theta, 0) M(\theta, 0)]}{1 + \left[\frac{Ah^2}{Gm(\theta, 0) M(\theta, 0)}\cos \theta\right]} = \frac{[h^2/Gm(\theta, 0) M(\theta, 0)]}{(1 + \varepsilon \cos \theta)}
\]

Then \(m(\theta, 0) r(\theta, 0) = \left[a\left(1-\varepsilon^2\right)/\left(1+\varepsilon \cos \theta\right)\right] m(\theta, 0)\)

Dividing by \(m(\theta, 0)\)

Then \(r(\theta, 0) = \left[a\left(1-\varepsilon^2\right)/\left(1+\varepsilon \cos \theta\right)\right]\)

This is Newton's Classical Equation solution of two body problem which is the equation of an ellipse of semi-major axis of length \(a\) and semi minor axis \(b = a \sqrt{1 - \varepsilon^2}\) and focus length \(c = \varepsilon a\)

And \(m r = m(\theta, t) r(\theta, t) = m(\theta, 0) m(0, t) r(\theta, 0) r(0, t)\)

Then, \(r(\theta, t) = \left[a\left(1-\varepsilon^2\right)/\left(1+\varepsilon \cos \theta\right)\right] e^{i \lambda(r) + i \omega(r) t}\)

This is Newton's time dependent equation that is missed for 350 years

If \(\lambda(m) \approx 0\) fixed mass and \(\lambda(r) \approx 0\) fixed orbit; then

Then \(r(\theta, t) = r(\theta, 0) r(0, t) = \left[a\left(1-\varepsilon^2\right)/\left(1+\varepsilon \cos \theta\right)\right] e^{i \omega(r) t}\)

And \(m = m(\theta, 0) e^{i \omega(m) t}\)

\(\Delta \theta'(0, t) = \text{Real} \Delta \theta'(0, t) + \text{Imaginary} \Delta \theta(0, t)\)

Real \(\Delta \theta(0, t) = \theta'(0, 0) \left\{1 - 2 \sin^2 \left[\omega(m) t + \omega(r) t\right]\right\}

\(-2i \theta'(0, 0) \sin \left[\omega(m) t + \omega(r) t\right] \cos \left[\omega(m) t + \omega(r) t\right] t\)

Let \(W(\text{cal}) = \Delta \theta'(0, t) (\text{observed}) = \text{Real} \Delta \theta(0, t) - \theta'(0, 0) \left\{1 - 2 \sin^2 \left[\omega(m) t + \omega(r) t\right]\right\}

\(-2i \theta'(0, 0) \sin \left[\omega(m) t + \omega(r) t\right] \cos \left[\omega(m) t + \omega(r) t\right] t\)

If this apsidal motion is to be found as visual effects, then

With, \(v^o = \text{spin velocity}; v^* = \text{orbital velocity}; v^o/c = \tan \omega(m) T^o; v^* / c = \tan \omega(r) T^*\)

Where \(T^o = \text{spin period}; T^* = \text{orbital period}\)

And \(\omega(m) T^o = \text{Inverse tan} \ v^o/c; \omega(r) T^* = \text{Inverse tan} \ v^*/c\)

\(W(\text{ob}) = -4 \pi \left[\sqrt{(1 - \varepsilon^2)} / T \left(1 - \varepsilon^2\right)\right] \sin^2 \left[\text{Inverse tan} \ v^o/c + \text{Inverse tan} \ v^*/c\right] \text{ radians}

\(\text{Multiplication by} \ 180/\pi\)
\[ W(\text{ob}) = \frac{(-720)}{T} \left\{ \frac{\sqrt{1-\varepsilon^2}}{(1-\varepsilon)^2} \right\} \sin^2 \left\{ \text{Inverse tan} \left( \frac{v^o/c + v^*/c}{1 - v^o v^*/c^2} \right) \right\} \]

degrees and multiplication by 1 century = 36526 days and using T in days

\[ W^o(\text{ob}) = \frac{(-720 \times 36526)}{T \text{days}} \left\{ \frac{\sqrt{1-\varepsilon^2}}{(1-\varepsilon)^2} \right\} \times \sin^2 \left\{ \text{Inverse tan} \left( \frac{v^o/c + v^*/c}{1 - v^o v^*/c^2} \right) \right\} \text{ degrees/100 years} \]

**Approximations I**

With \( v^o \ll c \) and \( v^* \ll c \), then \( v^o v^* \ll c^2 \) and \( 1 - v^o v^*/c^2 \approx 1 \)

Then \( W^o(\text{ob}) = \frac{(-720 \times 36526 \times 3600)}{T \text{days}} \left\{ \frac{\sqrt{1-\varepsilon^2}}{(1-\varepsilon)^2} \right\} \times \sin^2 \left\{ \text{Inverse tan} \left( \frac{v^o/c + v^*/c}{1 - v^o v^*/c^2} \right) \right\} \text{ degrees/100 years} \)

**Approximations II**

With \( v^o \ll c \) and \( v^* \ll c \), then \( \sin \text{Inverse tan} \left( \frac{v^o/c + v^*/c}{1 - v^o v^*/c^2} \right) \approx \frac{(v^o + v^*)}{c} \)

\[ W^o(\text{ob}) = \frac{(-720 \times 36526 \times 3600)}{T \text{days}} \left\{ \frac{\sqrt{1-\varepsilon^2}}{(1-\varepsilon)^2} \right\} \times \left( \frac{(v^o + v^*)}{c} \right)^2 \text{ degrees/100 years} \]

This is the equation that gives the correct apsidal motion rates ------------------------III

The circumference of an ellipse: \( 2\pi a \left( 1 - \frac{\varepsilon^2}{4} + \frac{3}{16}(\varepsilon^2)^2 - \ldots \right) \approx 2\pi a \left( 1 - \frac{\varepsilon^2}{4} \right); \ R = a \left( 1 - \frac{\varepsilon^2}{4} \right) \)

Where \( v^o = \sqrt{\frac{GM^2}{(m + M) a \left( 1 - \frac{\varepsilon^2}{4} \right)} } \)

And \( v^M = \sqrt{\frac{Gm^2}{(m + M) a \left( 1 - \frac{\varepsilon^2}{4} \right)} } \)

Looking from top or bottom at two stars they either spin in clockwise (↑) wise or counter clockwise (↓)

Looking from top or bottom at two stars they either approach each other coming from the top (↑) or from the bottom (↓)

Knowing this we can construct a table and see how these two stars are formed. There are many combinations of velocity additions and subtractions and one combination will give the right answer.

1- Advance of Perihelion of mercury. [No spin factor] Because data are given with no spin factor

\( G=6.673 \times 10^{-11}; \ M=2 \times 10^{20} \text{kg}; \ m=3.2 \times 10^{24} \text{kg}; \ \varepsilon = 0.206; \ T=88 \text{days} \)

And \( c = 299792.458 \text{km/sec}; \ a = 58.2 \text{km/sec}; \ 1-\varepsilon^2/4 = 0.989391 \)

With \( v^o = 2 \text{meters/sec} \)

And \( v^* = \sqrt{\frac{GM}{a \left( 1 - \frac{\varepsilon^2}{4} \right)} } = 48.14 \text{ km/sec} \)

Calculations yields: \( v = v^* + v^o = 48.14 \text{km/sec} \) (mercury)

And \( \left[ \sqrt{1-\varepsilon^2} \right] (1-\varepsilon)^2 = 1.552 \)

\[ W''(\text{ob}) = \frac{(-720 \times 36526 \times 3600)}{T} \left\{ \frac{\sqrt{1-\varepsilon^2}}{(1-\varepsilon)^2} \right\} (v/c)^2 \]

\[ W''(\text{ob}) = \frac{(-720 \times 36526 \times 3600/88)}{1.552} \times 48.14/299792)^2 = 43.0''/\text{century} \]

This is the rate of for the advance of perihelion of planet mercury explained as "apparent" without the use of fictional forces or fictional universe of space-time confusions of physics of relativity.

**Venus Advance of perihelion solution:**
\[ W'' \text{ (ob)} = \frac{-720 \times 36526 \times 3600}{T} \left\{ \frac{\sqrt{1-\varepsilon^2}}{(1-\varepsilon)^2} \right\} \left\{ \frac{v^o + v^*}{c} \right\}^2 \text{ seconds/100 years} \]

Data: \( T = 244.7 \text{ days} \) \( v^o = v^o(p) = 6.52 \text{ km/sec} \) \( \varepsilon = 0.0068 \) \( v^*(p) = 35.12 \)
Calculations

\[ 1-\varepsilon = 0.0068; (1-\varepsilon^2/4) = 0.99993; \frac{\sqrt{1-\varepsilon^2}}{(1-\varepsilon)^2} = 1.00761 \]
\[ G = 6.673 \times 10^{-11}; M_0 = 1.98892 \times 10^{30} \text{ kg}; R = 108.2 \times 10^9 \text{ m} \]

\[ V^* (p) = \sqrt{\frac{GM^2}{(m + M) a (1-\varepsilon^2/4)}} = 41.64 \text{ km/sec} \]
Advance of perihelion of Venus motion is given by this formula:

\[ W'' \text{ (ob)} = \frac{-720 \times 36526 \times 3600}{T} \left\{ \frac{\sqrt{1-\varepsilon^2}}{(1-\varepsilon)^2} \right\} \left\{ \frac{v^o + v^*}{c} \right\}^2 \text{ seconds/100 years} \]

\[ W'' \text{ (ob)} = \frac{-720 \times 36526 \times 3600}{T} \left\{ \frac{\sqrt{1-\varepsilon^2}}{(1-\varepsilon)^2} \right\} \left\{ \frac{v^o + v^*}{c} \right\}^2 \text{ sine}^2 \left[ \text{Inverse tan} \frac{41.64}{300,000} \right] \]
\[ = \frac{-720 \times 36526 \times 3600}{224.7} \times (1.00762) \times \left( \frac{41.64}{300,000} \right)^2 \]

\[ W'' \text{ (observed)} = 8.2''/100 \text{ years}; \text{ observed} 8.4''/100 \text{years} \]

Looking from top or bottom at two stars they either spin in clock (↑) wise or counter clockwise (↓)

Looking from top or bottom at two stars they either approach each other coming from the top (↑) or from the bottom (↓)
Knowing this we can construct a table and see how these two stars are formed. There are many combinations of velocity additions and subtractions and one combination will give the right answer.

SW Canis Majoris Binary stars.
In general $v^* = 2v^*(cm) = m\ v^*(p) + M\ v^*(s)/m + m$  
And $v^° = +/- v^°(p) +/- v^°(s)$  
From Newton's laws for a circular orbit: $m\ v^²/r (cm) = GmM/r²; r (cm) = [M/m + M]\ r$  
Then $v^² = [GM²/(m + M)\ a (1-\epsilon²/4)]$  
And $v^* = v (m) = √[GM²/(m + M)\ a (1-\epsilon²/4)]$  
Next the same equation will be used to find the advance of Periastron or "apparent" apsidal motion of SM CMa binary stars system  
Table of orbit and spin velocities additions and subtractions.  

<table>
<thead>
<tr>
<th>Examples</th>
<th>SW Canis Majoris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spin results</td>
<td>$v^°(p) + v^°(s)$</td>
</tr>
<tr>
<td>Orbit results</td>
<td>$v^<em>(p) + v^</em>(s)$</td>
</tr>
<tr>
<td>Examples</td>
<td>Sw Canis Majoris</td>
</tr>
<tr>
<td>Spin results</td>
<td>$v^°(p) + v^°(s)$</td>
</tr>
<tr>
<td>Orbit results</td>
<td>$v^<em>(p) + v^</em>(s)$</td>
</tr>
</tbody>
</table>

In general $v^* = 2\ v^*(cm) = m\ v^*(p) + M\ v^*(s)/m + m$  
And $v^° = +/- v^°(p) +/- v^°(s)$  
From Newton's laws for a circular orbit: $m\ v^²/r (cm) = GmM/r²; r (cm) = [M/m + M]\ r$  
Then $v^² = [GM²/(m + M)\ a (1-\epsilon²/4)]$  
And $v^* = v (m) = √[GM²/(m + M)\ a (1-\epsilon²/4)]$  
Next the same equation will be used to find the advance of Periastron or "apparent" apsidal motion of SM CMa binary stars system  
Table of orbit and spin velocities additions and subtractions.  

| SW CMa apsidal motion solution: |
| Data: T=10.09 days; r (m) = 0.0942; m = 2.22 M (0); R (m) = 3.01R (0); ε = 0.3179  
And r (M) = N/A  
And [v^°(m), v^°(M)] = [30+/−2, 27+/−3]  
K (1) = 80.5; K (2) = 87.8  
Calculations  
Then a = [R (m) / r (m)] = 22.23949045 x 10^9 m  
V^* (p) = √[GM²/(m + M) a (1-ε²/4)] = 77.26298km/sec |
\[ V^*(s) = \sqrt{\frac{Gm^2}{(m + M) a (1-\varepsilon^2/4)}} = 84.4944913\text{km/sec} \]

And \( v^* = v^*(p) + v^*(s) = 161.7574713\text{ km/sec} \)
With \( v^\circ = v^\circ(p) + v^\circ(s) = 30 + 27 = 57\text{ km/sec} \)

Hence, \( v^* + v^\circ = 218.7574713\text{km/sec} \)

Apsidal motion is given by this formula:

\[ W^\circ (ob) = (-720 \times 36526/T) \left(\frac{\sqrt{1-\varepsilon^2}}{(1-\varepsilon)^2}\right) \frac{((v^\circ + v^*)/c)^2}{\text{degrees}/\text{100 years}} \]

\[ W^\circ (ob) = (-720 \times 36526/T) \left(\frac{\sqrt{1-\varepsilon^2}}{(1-\varepsilon)^2}\right) \sin^2 \left[\arctan \left(\frac{218.7574713}{300,000}\right)\right] \]
\[ = (-720 \times 36526/10.09) (2.037835646) (218.7574713/300,000)^2 \]
\[ = 2.8242^\circ/\text{century} = 0.026242/\text{yr} \]
\[ U = 360/0.026242 = 13647\text{ years Nahhas} \]

\[ U = 12747\text{ years Nahhas} \]

Taking: \( v^* + v^\circ = 80.5 + 87.8 + 57 = 225.3\text{ km/sec} \)

\[ W^\circ (ob) = (-720 \times 36526/T) \left(\frac{\sqrt{1-\varepsilon^2}}{(1-\varepsilon)^2}\right) \sin^2 \left[\arctan \left(\frac{225.3}{300,000}\right)\right] \]
\[ = (-720 \times 36526/10.09) (2.037835646) (218.7574713/300,000)^2 \]
\[ = 2.995659677^\circ/\text{century} = 0.0299565967^\circ/\text{yr} \]
\[ U = 360/0.0299565967 = 12017\text{ years Nahhas} \]

\[ U (observed) = 12,000\text{ years} \]

References: Go to Smithsonian/NASA website SAO/NASA and type:

1- Lacy Apsidal motion Canis Majoris 1997

joenahhas1958@yahoo.com all rights reserved