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At PIRT 2006, a speculative concept of a photon-like solution to Maxwell’s

classical equations was presented [1] in which helically rotating solutions appeared to

have properties that are typically associated with photons. Since that time, our

understanding of these solutions has increased and the previous work has to be

modified. This paper will present a digest of the latest results that enables us to clarify

past work and review new experimental evidence for the theory.

There is already sufficient experimental evidence to show that single photons

can have a measurable group velocity [2], measurable phase velocity [3] and can be

localised [4]. Various Maxwellian models that provide a confined packet of classical

energy have been discussed theoretically by several researchers [5,6] but these

packets all rely on specific field profiles.  Here the task is to find a packet that applies

to all classical modes, is invariant to Lorentz transformations, and has a property that

is recognisable as spin that increments in energy in appropriate units. At present the

work is confined to beams in free space.

As a starting point,  general solutions of Maxwell’s equations are conveniently

labelled as TE (Transverse Electric fields) or TM (Transverse Magnetic fields)

solutions (Figure 1). Here E, B  and the direction of propagation form a right handed

set of vectors [7].  TE and TM modes have a group velocity vg < c  with a phase

velocity  = c
2
/vg > c.  It is therefore always possible to travel in a frame of reference

moving with the group velocity of these electromagnetic waves. In such a frame of

reference, and using light cone coordinates [8] , there are wave vectors kf and k
r

(associated with light on the forward and reverse branches of the light cone) which are

equal and opposite : kf  = − k
r
 as is found in most resonators.

With these concepts it is found possible to invent a Lorentz invariant wave-

packet with a definite frequency, definite duration, definite phase velocity vp> c and

definite group velocity vg< c:

Fz  = Ez + i cBz = Fzo exp[i(kο z − ωοt)] cos[(ωο/c)(z − vgt) δ].

Here δ is an arbitrary Lorentz invariant number that defines the phase-length of the

packet and also defines the relative spread of the frequencies composing the wave-

packet. This packet produces a Lorentz invariant envelope for the axial fields but fails

to envelope properly the transverse fields FT  = ET + i cBT . 

Different mechanisms are used to ensure that the transverse fields are

localised. These mechanisms are called here distributed spin-rotations. They are

localised rotations of the transverse fields of any mode and can be observed

mathematically only in the vector formulation of Maxwell’s equations. They provide

helical modulation moving at the group velocity and form an enveloping packet for

the transverse fields. Spin-rotations should not be confused with the helical phase

fronts observed by other workers [9]. In principle distributed spin-rotations can have

arbitrary frequencies. However to ensure that the packet enveloping the transverse

fields has the same duration as the packet enveloping the axial fields, two fields with

equal and oppposite spin rotations are required with magnitudes that are quantised to

be proportional to (2N+1)(ωο/c) where N is integer. Figure 1 shows the idea

schematically (N = 1). The lateral extent of the packet can be controlled, not just by

the classical field profile, but by additional imaginary distributed spin rotations. Thus
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distributed spin rotations in principle allow for a flexible range of packets that might

either emerge from confined sources or be detected by compact detectors. The

duration of this photon-like packet is also flexible (determined by the value 1/δ) but,

when this duration is taken into account, the helical distributed spin rotations appear

to contribute to a classical energy proportionally to (2N+1) (ω/c) H  where N is

some Lorentz invariant integer. At present the theory is unable to evaluate H.

The paper will end with a brief review of experiments that could support this

theory as a model for a photon.
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Figure 2. Lorentz Invariant

Envelopes
Every modal field with axial fields

Fz = Ez + icBz  and transverse fields FT =

ET + icBT can be enveloped about a central

frequency ωο with a Lorentz invariant

parameter δ controlling the phase duration of

the envelope. The transverse fields are

enveloped by counter rotating spins.

M=2N+1 is always an odd integer to ensure

the axial and transverse fields to have the

same duration of packet. The classical

energy added by this spin is proportional to

M (ω/c) H where H is some Lorentz

invariant number.

Figure 1. TE and TM waves
TE waves are ‘driven’ by cBz

TM waves are ‘driven’ by cEz

Phase velocity = ω/k = vp > c

Group velocity vg = c
2
/vp < c

Can therefore always find a real frame

of reference moving with the velocity

of the electromagnetic waves.


