Nobel Schrödinger's Dumb Equation

Derived from $F = m \gamma = 0$

By professor Joe Nahhas 1979

joenahhas1958@yahoo.com

Abstract: Main stream Dummies Physicists physics writings literature brags about the erroneous notion that Newton's - Kepler's particle mechanics is a limit case of quantum wave - mechanics. I am going to prove the direct opposite of their claim that quantum wave - mechanics is not a mechanics but a silly exercise in Newton's - Kepler's particle mechanics. In this article we will Consider Newton's - Kepler's mechanics: $F = m \gamma = 0$ to derive Schrödinger's equation:

$$(-\hbar/\i) \frac{\partial \psi(r, t)}{\partial t} = (-\hbar^2/2m) \frac{\partial^2 \psi(r, t)}{\partial r^2} + U(r, t) \psi(r, t)$$

Real time Universal mechanics solution.
Dumb Nobel Prize winner physics and Physicists think because this physicist is from a different nationality then a different physics has to be used to solve the same problem.

All there is in the Universe is objects of mass \(m \) moving in space \((x, y, z)\) at a location \(\mathbf{r} = r (x, y, z) \). The state of any object in the Universe can be expressed as the product \(\mathbf{S} = m \mathbf{r} \); State = mass \(\times \) location:

\[
P = \frac{d}{dt} \mathbf{S} = m \left(\frac{d\mathbf{r}}{dt} \right) + \left(\frac{dm}{dt} \right) \mathbf{r} \]

= change of location + change of mass
= \(m \mathbf{v} + m' \mathbf{r} \); \(\mathbf{v} \) = speed = \(d \mathbf{r} / dt \); \(m' \) = mass change rate

\[
\mathbf{F} = \frac{d}{dt} P = \frac{d^2 \mathbf{S}}{dt^2} = \text{Total force}
\]

= \(m \left(\frac{d^2 \mathbf{r}}{dt^2} \right) + 2 \left(\frac{dm}{dt} \right) \left(\frac{d\mathbf{r}}{dt} \right) + \left(\frac{d^2 m}{dt^2} \right) \mathbf{r} \)

= \(m \mathbf{\gamma} + 2m' \mathbf{v} + m'' \mathbf{r} \); \(\mathbf{\gamma} \) = acceleration; \(m'' \) = mass acceleration rate

In polar coordinates system

\[
\mathbf{r} = r \mathbf{r} (1); \mathbf{v} = \mathbf{r}' \mathbf{r} (1) + r \theta' \mathbf{\theta} (1); \mathbf{\gamma} = (r'' - r\theta'^2) \mathbf{r} (1) + \left(2r\theta' + r \theta'' \right) \mathbf{\theta} (1)
\]

\(\mathbf{r} \) = location; \(\mathbf{v} \) = velocity; \(\mathbf{\gamma} \) = acceleration

\[
\mathbf{F} = m \mathbf{\gamma} + 2m' \mathbf{v} + m'' \mathbf{r}
\]

\[
\mathbf{F} = m \left(\frac{d^2 \mathbf{r}}{dt^2} - \left(\frac{d \theta}{dt} \right)^2 \right) \mathbf{r} (1) + \left(\frac{2r\theta' + r \theta''}{mr} \right) \mathbf{\theta} (1) = \left[-\frac{GmM}{r^2} \right] \mathbf{r} (1) \quad \text{------------------------------------- Newton's Gravitational Law}
\]

Proof:
First \(\mathbf{r} = r \left[\cos \theta \mathbf{\hat{i}} + \sin \theta \mathbf{\hat{j}} \right] = r \mathbf{r} (1) \)
Define \(\mathbf{r} (1) = \cos \theta \mathbf{\hat{i}} + \sin \theta \mathbf{\hat{j}} \)
Define \(\mathbf{v} = \frac{d}{dt} \mathbf{r} = \mathbf{r}' \mathbf{r} (1) + r \frac{d[r]}{dt} \frac{d\theta}{dt} = r' \mathbf{r} (1) + r \theta' \left[-\sin \theta \mathbf{\hat{i}} + \cos \theta \mathbf{\hat{j}} \right] \)
Define \(\mathbf{\theta} (1) = -\sin \theta \mathbf{\hat{i}} + \cos \theta \mathbf{\hat{j}} \)
And with \(\mathbf{r} (1) = \cos \theta \mathbf{\hat{i}} + \sin \theta \mathbf{\hat{j}} \)

Then \(\frac{d}{dt} \left[\mathbf{\theta} (1) \right] = \theta' \left[-\cos \theta \mathbf{\hat{i}} - \sin \theta \mathbf{\hat{j}} \right] = -\theta' \mathbf{r} (1) \)
And \(\frac{d}{dt} \left[\mathbf{r} (1) \right] = \theta' \left[-\sin \theta \mathbf{\hat{i}} + \cos \theta \mathbf{\hat{j}} \right] = \theta' \mathbf{\theta} (1) \)

Define \(\mathbf{\gamma} = \frac{d}{dt} \left[\mathbf{r}' \mathbf{r} (1) + r \theta' \mathbf{\theta} (1) \right] / dt \)
\[
= r'' \mathbf{r} (1) + r' \mathbf{r} \left[\frac{d[r]}{dt} \mathbf{r} (1) \right] + r \theta'' \mathbf{r} (1) + r \theta' \mathbf{r} \left[\frac{d[r]}{dt} \mathbf{\theta} (1) \right] + \theta'' \mathbf{\theta} (1)
\]

Define \(\mathbf{\theta} = \mathbf{\gamma} = \left[(r'' - r\theta'^2) \mathbf{r} (1) \right] + \left(2r\theta' + r \theta'' \right) \mathbf{\theta} (1) \)

With \(\frac{d^2 (m \mathbf{r})}{dt^2} - (m \mathbf{r}) \theta'^2 = -GmM/r^2 \) Newton's Gravitational Equation \quad (1)
And \(\frac{d}{dt} (m^2 \theta'^2)/dt = 0 \) Central force law \quad (2)
If \(m \) = constant
(2): \(d (r^2 \theta')/dt = 0 \)
Then \(r^2 \theta' = h = \text{constant} \)
Differentiate with respect to time
Then 2 \(r \ r' + r^2 \theta'' = 0 \)
Divide by \(r^2 \theta' \)
Then \(2(r'/r) + \theta''/\theta' = 0 \)
And \(2(r'/r) = -2[\lambda (r) + i \omega (r)] \)
And \(\theta''/\theta' = 2 [\lambda (r) + i \omega (r)] \)

Also, \(r = r (\theta, 0) r (0, t) = \rho (\theta, 0) e^{-[\lambda (r) + i \omega (r)] t} \)

With \(r (0, t) = e^{-[\lambda (r) + i \omega (r)] t} \)

Then \(\theta' (\theta, t) = \frac{h}{r^2 (\theta, 0)} e^{2 i [\lambda (r) + \omega (r)] t} \)

And \(\theta' (\theta, t) = \theta' (\theta, 0) e^{2 i [\lambda (r) + \omega (r)] t} \)

And \(\theta'' (0, t) = e^{2 i [\lambda (r) + \omega (r)] t} \)

Also \(\theta' (0, 0) = h/ \rho^2 (0, 0) \)
And \(\theta'' (0, 0) = h/ r^2 (0, 0) \)

With (1): \(d^2 r/dt^2 - r \theta'^2 = 0 \)
Or \(d^2 r/d \theta^2 - r = 0 \)
Then \(r = r (0, 0) \cos \theta e^{-[\lambda (r) + i \omega (r)] t} \)

With
\(E = T + U \)
And \(\psi (\theta, t) = \cos \theta e^{-[\lambda (r) + i \omega (r)] t} \)

With \(\theta = k \ r \)
Then \(\psi (r, t) = \cos k r e^{-[\lambda (r) + i \omega (r)] t} \)
And \(\partial \psi (r, t)/ \partial t = -i \omega (r) \psi (r, t) \)
And \(\partial \psi (r, t)/ \partial r = -k \sin k r e^{-[\lambda (r) + i \omega (r)] t} \)
And \([\partial^2 \psi (r, t)/ \partial r^2] = -k^2 \psi (r, t) \)
Then \(E \psi (r, t) = T \psi (r, t) + U \psi (r, t) \)

And \((-\hbar/i) [-i E/h] \psi (r, t) = (-h^2/2m) [P/h]^2 \psi (r, t) + U \psi (r, t) \)
With \(E/ h = \omega \) and \(\lambda = h'= m c = h/p; k = p/ h; T = p^2/2m \)

Or \((-\hbar/i) [- i \omega] \psi (r, t) = (-h^2/2m) [i P/h]^2 [\partial^2 \psi (\theta, t)/ \partial r^2] + U \psi (\theta, t) \)

And \((-\hbar/i) \partial \psi (r, t)/ \partial t = (-h^2/2m) [\partial^2 \psi (r, t)/ \partial r^2] + U \psi (r, t) \)

This is Schrödinger equation

(joenahhas1958@yahoo.com) all rights reserved