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ABSTRACT

We show that, just like the gravitational fieldetklectric field too slows down the internal medbeamof a clock,
entering into interaction with the field. This appch explains substantially, the retardation of deeay of the
muon, bound to a nucleus.
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INTRODUCTION

This work is issued from a much broader angle than the omveligecifically consider herein
[1]. Thus, it was the author’s idea that, owing to the lAwamservation of energy, the overall
internal energy of a bound particle should be weakened as much lEiadhmg energy coming
into play, whether it is question of the atomic world or theestedl world. All internal
mechanisms the particle of concern may embody, shall beedfaccordingly, provided that the
particle’s inner articulations are not degenerated vidithding process.

Here, for simplicity, though without any loss of generalitye assume that the particle in
guestion, is very small as compared to the object binding ihasave only have to worry about
the changes this particle would undergo [2]; in other words, theobgect binding the particle

in consideration, will remain practically untouched throughbiiheing process.

Let us explain this, a bit further. Suppose an observer on Eartfremtsom his elevated right

hand, a stone to a free fall, and afterward, he catchethithis lowered left hand. The overall
energy of the closed system (CS) made of the stone in questioraghddnd just the two, i.e.

neglecting, the air in between), must stay constantaigathe free fall of the stone. The law of
linear momentum conservation law, on the other hand, required#tause Earth is infinitely

more massive than the stone, in regards to a distant steemdins in place. Therefore
throughout, it is only the stone, which gains kinetic energy. @meeobserver interferes and
catches the stone, with his lowered left hand, he retrieeoas the CS, an amount of energy
equal to the kinetic energy, the stone would have acquired on themahis energy evidently

is retrieved from the stone alone, once this is stopped.

Conversely as the observer highers the stone, he will come toppda extra amount of energy
equal to the energy he has to furnish to it (to elevatetite given altitude).

! Once the observer catches the stone, basicaiyhand will be heated up. We may very well suppbsé the
related heat is released to the outer space adfraned radiation. Thus indeed, the system madeaoth and the
falling stone, looses energy, right after the obsecatches the stone. The observer remains paiigtibe same
observer, following the cooling down process.



Let us simplify things. Suppose one highers, just one atom of hydroge

Then, what would it mean that, via highering the hydrogen atompibe® up in it, an extra
amount of energy equal to the energy he would have furnish&d to

First of all, this means that owing to the relativistic eqi@nee of mass & energy, the rest mass
of the hydrogen atom will get increased as nfu€hus, wherever this mass intervenes, we will
observe a related change.

We can further analyze the situation in the following way.

Any entity must display an internal dynamics, based on an internghamiesm. This is an
intrinsic periodic phenomenon. Already de Broglie has considerdédesphenomenon in regards
to a given particle at rest, were this totally transfatnmto electromagnetic radiation [3].

We can be more specific than that: A diatomic molecule foam#, vibrates. The motion in
question delineates a particular internal dynamics of the mieled diatomic molecule can as
well rotate. The related motion delineates another intelyreamics, of the molecule. One can
associate a total energy with every specific internal dycgngsioming into play, if the internal
phenomena in question can be envisaged to be independent fromhesach o

Thus, we can conceive any entity to embody an “internal dynanfiagiven entity may embody
many internal mechanisms, working simultaneously. To make tisingsle, let us assume that
there is only one internal mechanism of concern.

Any such mechanism will consist in a “clock labor”, taking plat a given “clock space”, and
achieved by a “clock mass”, displaying a “unit period of tin¥die internal dynamics is founded
on a “total energy” framing the clock’s mass motion.

Based on the Bohr Atom Model, the internal mechanism turns outttebetational motion of

the electron around the proton. The clock mass is the reduced ahdise electron and the
proton. The unit period of time is the period of time the electates to rotate around the
proton. In more modern terms, the internal dynamics in question cehabbacterized with the

(probabilistically predictable, otherwise unpredictable, yel) stieasurable momentum of the
electron, to be considered along with the usual quantum meeh#otal energy.

Based on a non-relativistic approach, the total endtgy of the hydrogen atom, at the nth
principal level, in empty space, is (in CGS unit systemysasl, given by

_2p’e'm, |

E¥n = n2h2

(1)

2 Note that within the frame of the general thedryetativity, a mass imbededed in a gravitationeld dilates, and
a mass carried away from a gravitaitonal field,tcaxts. But then, the relativisitic equivalencewssn mass &
energy is broken. The present approach does netrigi@ to such annoyances.



here e is the charge intensity of the electrorhat of the protom,, is the reduced mass of the
electron and the proton in empty space, and h esRlanck Constant; recall that, is
practically equal to the electron’s rest masg , in empty space.

A transition between an upper level n, to a lowerelem, in empty space, delineates an
electromagnetic radiation of frequenny,, . So that

hn = —2p2e4m’¥
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n
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When bound to a celestial body, the reduced mgsf the hydrogen atom (just like any mass
taking place within the frame of this atom), is @&sed as much as the gravitational binding
energyE, coming into play, to become, 3

Eg =(my - ”B)CZ : 3)
Here c, is the velocity of light, in empty space.
The gravitational binding enerdy;, to a first approximation, can be expressed as

E, =G MFTO ; (4)

G is the universal gravitational constaMitthe mass of the hosting celestial object, and fRas
elevation at which the atom is bound.

Eq. (3) and (4) furnisim ,(R):
m(R)=m,[1- a(R)] , (5)
wherea(R) is given by

GM
Rc?

a(R) = (6)

In short we will call this quantitya .

® The proton’s massn,, is decreased as much as the binding energy; 8w islectron’s massn,, . Thus the
reduced massn, =mg,,m,, /(m, +m, ) is also decreased as much.



Note that, to be rigorous one should consider trgiguous change on the masgr), through
the binding process [1]. One should then recondtdgs: (3) and (4):

dE, =-c®dmy(r) , (7)
de, =- MM 4 )
R
Thus
my(R) =m, e ™ . 9)

In our approach, both the electron charge and lwecR Constant, are universal constants, and
they remain untouched in either a gravitationdtfier an electric field, or seemingly any other
field. Note that they are as well Lorentz invarigoantities.

Thus a change i, of Eq.(1), and accordingly a changerip,,,, of EQ.(2), must be based on
a corresponding change, the reduced mass of thedsml atom undergoes:

efbm| 1 1o [Dm
2 ¥n®m 1

h|Dn¥n®m| = hz mz n m)¥

(10)

here the chang®n, in the reduced mass,, of the hydrogen atom, in empty space, is given by
[cf. Eq. (9)]

Dm, =my(R)- my, =-m,, (1- 7). (11)

The negative sign that appears over here, pointhdofact that, the hydrogen mass in the
gravitational field, decreases.

Eq.(3), along with Eq.(10), makes that

E.(R)
Dn =n B . 12
| ¥n®m| ¥n®m rTL¥C2 ( )

Note that, along with Eq.(11), the binding eneiy(R) of the bound particle at R, becomes
E,(R)=[my - m(R)|c? =m,, c?@- e?), (13)
which for a smalla , and via Eq.(6), yields

Mn,
R 1

E.(R) @G (14)

which well turns out to be Eq.(4).



The frequencyn  .(R), the hydrogen atom would produce at the altitudé¢hRaugh a n to m
transition, becomes

Es(R)
nn®m(R) =Nyrom - n¥n®mB—2 = Nynem 1-

myC myC

(15)

It is weakened as much as E,(R)/(m,c?).

De Broglie, in his doctorate thesis, considered elextromagnetic energy amounting to the
entire mass of the particle, even long before th@halation of the electron with a positron was
discovered. Thus, he would write

hn,, =mgc®, (16)

for a particle of mass,, in empty spacen,, is the frequency of the electromagnetic radiation,
were the massn,, somehow annihilated.

If the particle is embedded in a gravitationaldieteated by the host celestial body of mdsat
the altitude R, then the electromagnetic enegy, will becomehn,(R), which can be, via

Eq.(9) written as
hn,(R) = m,,c’e*® =hn,e*® . (17)
This equation, via Eq.(13), but written for the sas,, , can be written as

Es(R)

myc®

hn,(R) = hngy, 1-

(18)

where E;(R), now becomes the binding energy of the particleasicern at R.

Eq.(18) tells us that, when bound, the overallrimaéenergy of the entity in hand, is weakened
as muchl- E,(R)/(m,c?).

By definition

_wavelength

=29 =wavelengthfrequency (19)
periodof time

In other words, the frequency and the associatatbgeof time associated with a given
electromagnetic radiation are inversely proportidoaach other.



Thus letT,, be the period associated with the frequengy. When the particle is embedded in
the gravitational field in consideration, its imal energy weakend,, stretches just as much,
to becomeT,(R), i.e.
T
T,(R)=—2%—— . (20)
° E:(R)
m,, C°

The same occurs in relation to any package of graniging a given internal dynamics, within
the particle in hand.

Let us for instance consider the ground rotatigesiod of timeT,, of the electron of mass,
around the proton, in empty space, within the frafnBohr Atom Model.

T, turns out to be
h3

" 4p?(@)’m, )

Téé

When the hydrogen atom is embedded in the grawatifield in considerationm,, will get

decreased in accordance with Eq.(B), stretches as much, to becoMgR), at the altitude R,
so that

h? T
T.(R)= =T,et®=%__ 22
( ) 4p2(e2)2me¥e—a(R) e¥ 1 EB(R) ( )
m,, C

This means that the related internal dynamics lm®ses much as the an amount of internal
energy lost, amounting to the binding energy .

Any information coming from the atom, such as aecgbmagnetic radiation, based on the
energy difference between two states, must aswedken as much [cf. EqQ.(15)]; thus the red
shift.

Conversely, as we elevate the hydrogen atom, iragitgtional field, owing to the relativistic
equivalence between mass & energy, we come to dserats clock mass. This in return
strengthens just as much, the total energy of thi,awhich concurrently shortens as much the
clock unit period of time.

We have elaborated on this interesting idea toigredl of the measurable end results of the
general theory of relativity, without though anyther assumption than the energy conservation
law. It is of evidently striking to obtain the samesults as those of the general theory of
relativity, through a completely different set igan that of this theory, up a second order Taylor
Expansion [4, 5].



Since one does not have to assume the “principleqoivalence” of the general theory of
relativity, he comes to discover a whole new harizo

Generally speaking, the bound patrticle in constitemamay just not be a mass (such as a stone)
gravitationally bound to a celestial body; but nadso be a charged particle electrically bound to
a charged body. The particle of concern, may ewea huclear entity such as neutron, bound to
a nuclear field, provided that, the binding procedsgs not destroy the inner articulational
characteristics of the original entity in hand.

At the first strike, our claim (that the internalezgy of the bound particle must be decreased as
much as the binding energy coming into play), megns trivial, since it is nothing else but the
energy conservation law. Yet, not only that ourrapph was overlooked for gravitationally
bound obijects, but also, even the “internal eneafyd charged patrticle, such as that an electron,
was not given a particular consideration, for $hg,electron was always considered as a point-
like particle; thereby an eventual change of sutinternal energy was not considered at all.

Sure, according to our approach the concept d,flghs to be revised, and we are to clarify our
stand point.

To start with, the concept of force is the fundatakooncept, to be experimentally relied on; the
concept of field, though useful, is only an extehdencept. It cannot be measured; only force
can be measured. Two interacting masses exert e@om other a gravitational force, just like

two interacting charges exert upon each otherectret force.

What we basically do, is to consider the internadaimics of the entity in hand.

The internal dynamics of the given entity doesardy weaken when gravitationally bound to a
celestial body, but also, say in the case of agdthparticle, such as an electron or a muon,
electrically bound to a charged object, such asciens.

Then, the internal dynamics of an electron bound tproton, must weaken as much as the
binding energy coming into play.

Well, what is the internal dynamics of an electr®& do not know. So far, no one knows. But
the electron must have an internal dynamics. Theten cannot be reduced to just a point. It
has a mass and a charge. These cannot be redumedrtaginary point.

We may not know what the internal dynamics of acbn consists in. Nonetheless, we can
well consider a muon, instead. This particle istaiple. It sure has a certain internal dynamics.

Thus, what we claim is that, when bound, due to éhergy conservation law, the internal
dynamics of a muon must weaken, as much as thengirehergy coming into play. Such a
weakening must concurrently cause the retardafiomuon’s decay.

Just like any other internal dynamics, the muonteral dynamics too, constitutes a clock; let
us call it a “muon clock”. It can be sensed viatmgon’s decay rate.

According to our approach, muon’s decay rate migst sown in an electric field, just like it is
expected to slow down in a gravitational field.



That is the heart of the present approach.

Thus, we can already assert the following occueenge have pinned down, though mostly in
relation to simple cases.

Theorem 1: The energy conservation law requires that, agbarat rest, when embedded in a
field, it interacts with, must discharge an amoohtnergy equal to the binding
energy coming into play. Likewise, as the boundigiaris carried out of the field
in consideration, it will pile up, an amount of egye equal to its binding energy,
which is in fact, the energy one has to furnisth® particle, in order to remove it
out of the field.

Theorem 2: The energy conservation law, in the broader sedsmyn by the relativistic
equivalence between mass & energy, requires tleatrédst mass of a particle”,
when embedded in a field, the particle interacthwiecreases as much as the
binding energy coming into play.

Theorem 3: Any internal dynamics the particle may embody, glevith a given massn,, ,
which we call “clock mass”, must accordingly, slalewn. Thus, the frequency
associated with a given internal phenomenon is sbdted as much as
1- E, /(m,c?), where E, is the binding energy coming into play. This ressil
the same as the red shift predicted by the genleealry of relativity, were the
particle embedded in a gravitational field, thougls obtained through a totally
different set up than that of thelatter theory. Tleresponding period of time is,
accordingly, stretched as much B/%l Eg /(mo¥cz)J. This result is the same as

that related to the clock retardation predictedli® general theory of relativity,
were the particle, still embedded in a gravitatidiedd.

The foregoing theorems are derived based on pteights and practical checks, although they
are not general and rigorous. We will improve gopraach by providing soon a mathematically
sound and general quantum mechanical theorem.

But before this, it is worth to review the way wenceive the notion of “field”.

We should stress that, the “energy” delineatednay rhasses or two electric charges, according
to our approach, is not way materialized by theaurding space, but only by the “internal
dynamics” of the charges of concern.

What is essential is the “Coulomb Force reigningétween two static charges”, or the “Newton
Force reigning in between two static masses”, gthang as such.

Let us elaborate on this. Let us first considerGoelomb Force.

The frame of Coulomb Force is essential in two wdyshe electric charges are Lorentz
invariant, and ii) the 1/distantéependency of the Coulomb Force between two sthticges, is
imposed by the special theory of relativity. Thusu©mb Force, as it is, but reigning between
only two static electric charges, is thoroughly patible with the special theory of relativity [6].
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The same holds for gravitational masses, with tfferdnce that, here the masses are obviously
not Lorentz invariant, but the product [(univergahvitational constant) x (mass one) x (mass
two)] appearing on the denominator of the Newtdaise expression, is well Lorentz invariant.
Here again, the 1/distarfcdependency of the Newton’s Force between two statisses, is
imposed by the special theory of relativity. Thuswtion’s Force, as it is, but reigning between
only two static masses, is thoroughly compatiblénhe special theory of relativity [7].

It seems that any other force law, must be builsiamilar characteristics.
To simplify the presentation, let us continue om Itlasis of Coulomb’s Law.

What is believed so far is that Coulomb’s forcedsolif the source charge is static, regardless
whether the test charge is at rest or in motionwvéi@r, we discover that, this is not so; if the

test charge is in motion, then Coulomb’s forcedsrdased by the factqﬁ— vi/cs [6].

This occurrence drives us to consider the eledtontrary to what has been so far done) not in a
simplistic way; we sympathize by the fact that, #hectron is generally considered as a “point-
like particle”. It must be obvious though, as tawyit may be, the electron cannot be reduced to a
point, given that a “point” cannot be a “materiaiig”. Thus it is pointless to consider the
electron as a point-like particle. The electron rambody an “internal dynamics”, just like any
other particle. Perhaps its “mass” is simply thetéinal energy” of the “electric property”,
which we call “electric charge”. This internal eggris thus to be associated with (how ever it
may be), the internal dynamics delineated by thetet charge.

When the electron is bound, say, to a proton,nitsrnal dynamics is then (as a requirement of
the energy conservation law), slown down, as mwlha binding energy coming into play,
assuming for simplicity that the proton (being muure massive than the electron), is not
affected by the process of binding.

Our claim regarding the weakening of the internghadnics of the bound electron can be
checked right away through the reverse process tfjesway we proceeded with the hydrogen
atom vis-a-vis a gravitational field).

Suppose then we propose to bring back to infititg, bound electron. Accordingly, we have to
furnish to it, an amount of energy equal to itsdibig energy (still supposing that, moving away
the electron, would not disturb, the proton). T tparticles, forming a “closed system”;

furnishing energy to the electron, owing to therggeonservation law, will increase the internal
energy, thus the rest mass of the latter.

In other words, when entirely detached from theerattion domain, with the proton; the
electron’s rest mass would then get increased a$ s the energy we would have furnished to
it, i.e. by an amount equal to its original bindirgergy.

Hence, the free electron is not anymore the previmund electron, or vice versa, the bound
electron is not anymore the same as the free etedtris indeed hard to accept that it would be,
given that one cannot make an omelet, and keepdte as they are, prior to cooking!



The bound muon decay rate retardation, that weowikider herein seems to be an experimental
proof of our assertion.

One still would question, “How the interaction beem the proton and the electron occurs, if
their respective energy is not spread in the suading space”; we have worked that out
elsewhere [6].

GENERAL QUANTUM MECHANICAL THEOREM

Let us now give a rigorous prove of the above tbem we have drawn above, based on rather
simple considerations.

In order to do that, we demonstrate the followireme&ral quantum mechanical theorem, in e
Appendix A

For a “real” atomistic or molecular wave-like oldjece. a wave-like object existing in nature,

we have shown elsewhere [8] the following theordinst, on the basis of the Schrodinger

Equation, as complex as this may be, then on this lod the Dirac Equation, whichever may be
appropriate, in relation to the object in hand.ra&!” atomistic and molecular wave-like object,

involves a potential energy, whose appearancepssed by the special theory of relativity, just
like a “Coulomb Potential energy” or, a “Newton &atial energy”, or anything as such. Thence,
even a relativistic Dirac description embodyingguiial energies made of potential energies
other than the mentioned potential energies, mayamesent a “real” description, for such an
object.

Theorem 4:Consider a relativistic or non-relativistic quantamechanical description of a given
object, depending on whichever may be appropriéke description excludes
“artificial potential energies” (which may otherwise lead to ampatibilities with
the special theory of relativity)lt is supposed to be based on J particles,
altogether. If then massesom = 1, ..., J, involved by this description, areeoadl
multiplied by thearbitrary number g, the following two general results are

conjointly obtained:

a) Thetotal energyE, associated with thgiven clock’s motiorof the object, is
increased as much, or the same,gaeod Ty, of the motion associated with
this energy, is decreased as much.

b) And thecharacteristic lengthor thesizeR, to be associated with the given
clock’s motion of concern, contracts as much.

In mathematical words fisis

, , T R
[(Mo.j=1,.... )® (¢mp,j=1,.... )] UE® ¢E,) [T, ® EO],(R0® EO)]' (23)
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What this theorem fundamentally says, is that,nifodject ever experiences, for instance an
overall mass decrease, then its total energy waakemuch, yielding a stretching of the period
of its internal motion framed by the total energyquestion, which should be considered quite
understandable.

Next we define a quantity called the “clock massg, M is a compound mass carrying the
internal dynamics of the object; it is manufactubesed on different masses embodied by the
object in hand; thus multiplying these masses,lalters M just as much.

Eqg.(1) immediately yields the invariance of the mfityg E,M RZ. This is remarkable, since this

guantity, is as well, Lorentz invariant (were thiejext brought into a uniform translational
motion).

We further show that, the quantig,M R? is necessarily “strapped” to the square of the¢Ka

Constant, h (being proportional to it, through a rather compledimensionless, and
relativistically invariant quantity, which is sombeat a characteristic of the bond structure of the
wave-like object in hand).

We call this occurrence, the UMA (liversal Matter_Architecture) Cast, disclosing already many
structural properties, otherwise left obscure ssweeral decades [9,10,11].

Note that primarily what we do is not a “dimensimmalysis”; E,M ,RZ would anyway not be

invariant in regards to a mass change, if the wikeeebject in question were not “real”, though
of course, dimension-wise there would still be nabpem.

Our finding further holds for nuclear wave-like ebjs embodying a potential term made of “real
potentials” [8].

Anyhow it ought to, since as we just pointed ohg guantityE,M RZ happens to be Lorentz

invariant, which makes that the special theoryetditivity, stringently imposes an interrelation in
betweenE,, M, and R, (and this, already at rest), which is precisely groportionality of

E,MRZ, to a Lorentz invariant universal constant, hé.

The mass increase we introduced above, may verynotbe all the way arbitrary, and this is
indeed what one experiences for instance, whewaek ¢ removed out of a gravitational field;
its rest mass, following our claim, as requiredthy special theory of relativity [12], should be
increased as much as the binding energy the oblisplays vis-a-vis the host celestial body of
concern (just like the mass of the hydrogen atomdeeased, as the electron is removed away
from its orbit around the proton). The unit timsplayed by the internal dynamics of the object
in hand, were this a wave-like clock, accordingotos Theorem 1, should then be altered as
much. This is exactly what happens in the scopgbefieneral theory of relativity [5].

According to our approach, the same phenomenondmoctur, in exactly the same way, for
ionized wave-like clocks in an electric field, @rfwave-like clocks bearing an electric dipole,
still in an electric field, or for wave-like clocksearing a magnetic dipole in a magnetic field
[13].
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Similarly, if a muon is bound to a proton, its héfé should quantum mechanically stretch, as
much as its binding energy. This happens, to oomkedge, something totally overlooked.

CALCULATION OF THE MUON DISINTEGRATION HALF LIFE

Keeping temporarily aside the relativistic effectedto (had we assumed so) the motion of the
bound muon around the nucleus, and assuming tleataumuon preserves its original identity
(besides, its internal dynamics’ frequency weakefus)the bound muon, based on Theorem 1,
we can write

T="-—"7—: (2)
1. Fe
m,c’

in this relationshipl, and T represent the decay half lives of respelstithe free muon and that
of the bound muon; &is the binding energy of the muon to the nucl€usoacern.

Herem, , should be the mass of the free muon, suppoBatgthe negative electric charge of the

muon is distributed uniformly to its entire massddhat the muon internal dynamics is altered
accordingly, when bound to a nucleus.

However this may not be true. Indeed what is bownthe positively charged nucleus, should
most likely be the “muon’s electron”, and not thmuon” as a whole. This muonic electron
should then pull, the neutrino and the antineutringether with itself, to the binding state.

Hence,m, should be considered as the highly energetic elestmass inside the muon.

Note that there seems to be six different chanofetlecay of the muon [14]. So the constituents
of the muon (supposing that these, acquire themtitdes inside the muon, at least, prior to the
decay), should really depend on these channelsombewe just considered, is the main decay
channel.

We do not know beforehand how, the energy subtiaftten the muon’s electron (through the
binding process), shall ultimately be accounteddnyous constituents of the muon.

However, if we were allowed to reason based ondbeay data regarding the main decay
channel; the mass of the electron in the free moan,be guessed to be [0.5 x the mass of the
free muon] [8].

It should be this electron’s mass alone (and netrttuon as a whole), which exhibits a mass
deficiency through the binding process of the fragn, to the nucleus in consideration. In other
words, we come to expect that the electron’s masgle the bound muon will decrease as much
as the muon’s binding energy.

One may check this guess by comparing the bindweggy of the muon to the nucleus, with the
measured energy shift of the electron thrown framkiound muon, as referenced to the energy
of the electron thrown from the free muon [8]. Thatch is indeed very satisfactory, chiefly for
heavy nuclei.
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Thus we can conclude that, basically the weakenyadrdics of the electron inside the muon,
slows down the disintegration of the muon in acaamt with Eq.(2).

Now, we can expressgHthe binding energy of the muofor the ground state, based on the
Bohr-Sommerfeld, or here the same, the generatiadel, with the familiar notation;

2p’my, Z5e* 1 ,_, _m,c’Z%’
E, @ T~ 1+3a%Z) @ 3)

m,, is the muon’s rest massy Zhe atomic number of the nucleus of the hydrogesn-I

muoatom, binding the muon, e the electron’s charges the fine structure constant; it is
supposed that the atom is in its ground state.

Note that Eq.(3) is obtained by expending the nger result in power ofZ?a®, but the
difference in question remains negligible for thegion 1£ Z <85, within which the
experimental data is collected.

The electron’s mass in the free muon can be expiess [anmcz], f following our claim, being
0.5. (Thus 0.5n,, is the effective mass of the electron, respoesibthe binding of the muon.)

ais
2
a=2 -1 (4)
ch 137
The denominatoc, of Eq.(2), thus becomes
E 1 1
=1- B__=1- —a’z? 1+=-a’z; , f=05. 5
g fm,, 2 2f R R ®)

Next, we have to take into account the time dilatinie to the rotation of the muon around the
nucleus (had we presumed so); this is

b=— 2t @ 1 : (6)

2 2524
\/1' Vz \/1' P 2de
c h°c

here v the rotational speed of the muon in conatder; it is evaluated through the Bohr-
Sommerfeld approximation, which should be expettete quite satisfactory for light nuclei;
for heavy nuclei, quantum effects must be expetdarbme into play, and it is pointed out that,
Eq. (6) is generally an approximatith.

Anyway, the overall decay half life T of the boumdion, through Egs. (2), (3), (4) and (5), quite
satisfactorily, becomes
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T

0
21f a’z? (1+‘11aZZ§) J1- a?z?

(for the muon bound to the ground state)

(7)
1-

It is interesting to note that this expression doatsdepend on the muon’s mass.

Thus, if the electron bears any internal mechaniemabove expression would well tell us how
this mechanism would slow down, when the electsomia bound state. (f, though in this case,
should be taken as unity.)

CHECK AGAINST EXPERIMENTAL AND PREVIOUS THEORETICAL RESULTS

We were totally uninformed, in regards to preerigtexperimental results, and we are more than
happy to discover that our prediction about thenobonuon decay, matches quite well with the
experimental results§,9]. Moreover our prediction at a first strike,paprs to be much better
than previous predictions made so far, no matter $mphisticated, also inevitably cumbersome
these may be.

The predictions in question, handle the retardatiothe decay process through i) a semiclassical
approach, which embodies the “phase space effeatis(sting in the reduction of the volume of
phase space of the muon decay products, becatse binding), the classical “relativistic time
dilation effect”, and “the electron Coulomb effe¢tonsisting in the attraction exerted by the
binding nucleus, on the muonic electron) , andaphisticated quantum mechanical approaches.

It would be interesting to compare quickly our pe#dn (aunor) [Cf. EQ.(5)], with the
semiclassicalsc) results, exempt of time dilation effect:

11

Osc @L- Ea?Zg (for light @), (8)
gsc @0581- a’Z2)"*  (for heavy 3), (9)
gAuthor @‘_ aZZé (for all Z) (10)

Other predictions are so complicated that, they heaasy series expansions.

In Figure 1 we present the experimental data, beddsults of previous calculations (decay rate
normalized to the decay rate of the free muon,ugethe atomic number), achieved to clarify
these data. Curve A is a semiclassical calculatioluding the time dilation effect. Curve B is
the same for a Gaussian muon wave function. Curisea&Csemiclassical calculation of the time
dilation effect alone. Curve D is an interpolatitoom an anterior calculation achieved by
Gilinsky and Mathew£® Curve E is interpolated from the calculations aebdl by Huff The
experimental results are achieved by Yovanovitchrrddt, Holmstrom, Keufel, Lederman and
Weinrich [17,18,19].
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In Figure 2 we present our prediction, as the denator of the RHS of Eq.(7), versus the
atomic number, together with the corresponding dataand. We also sketch separatalypf

Eq. (5), versus the atomic number, since this domss the basis of our claim.
The match of our prediction with data, indeed sesutsessful.

Analyzing the validity of various proposed conttibns, up against that we developed herein,
though, constitutes the topic of a subsequentl@rtic

CONCLUSION

On the whole, clearly our prediction’s match withtal is much better than that of other
predictions, and constitutes a fundamental expiam&b bound muon decay rate retardation.

Our approach however embodies a totally differenilogophy than that of others. It is
surprisingly simple, whereas other predictionscarige complex.

It is also amazing to note that we came to pretietretardation of the decay of bound muons,
through our Theorem 1, which as well yields the eslilts of the general theory of relativity
(and this, without having to assume the authemtimtiple of equivalence”) [6,7].

Thus excitingly enough we come to state that jist‘imass”, “electric charge” too, slows down
clocks, interacting with the electric field in qties.

This fact induces the metric change nearby a naclgist like the metric change nearby a
gravitational source.

Note that the data embody a peak near iron. Ouoaph did not predict it. Yet neither could the
previous attempts. It is suspected that this maylee to the large background of low energy
gamma rays associated with accompanying inelastanngapture events.

It is worth to emphasize the following interestipgece of information. It is that the bound
muon’s mass is reduced (as much as the muon’sngratiergy), as compared to the free muon’s
mass. The mass-energy equivalence drawn by théakpleeory of relativity, or the same, the
energy conservation law in the broader sense, tholeposes such an occurrence [cf. Eq.(2)].

This means that just likewise, the bound electramass should be smaller than the free
electron’s mass, and this as much as binding eneogging into play.

This seems quite trivial, but very much against gemeral wisdom, since neither Dirac nor

anyone else after him, dared to alter the massie@fobbund electron. Taking it into account,
strikingly induces the change of the metric neahgynucleug?
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APPENDIX A
PROOF OF THE THEOREM 4 OF THE TEXT
Herein we will prove the Theorem 4 of the text.

Theorem 4: Consider a relativisitc or non-relativisitic quamtumechanical description of a
given object, depending on whichever may be appatgr The description
excludes “artificial potential energies” (which may otherwise lead to
incompatibilities with the special theory of relativityt).is supposed to be based
on J particles, altogether. If then massgg im= 1, ..., J, involved by this
description, are overall multiplied by tlbitrary numberg, the following two

general results are conjointly obtained:

a) Thetotal energyE, associated with thgiven clock’s motiorof the object, is
increased as much, or the same,gheod Ty, of the motion associated with
this energy, is decreased as much.

¢) And thecharacteristic lengthor thesizeR, to be associated with the given
clock’s motion of concern, contracts as much.

In mathematical words fisis

[(Mo, j =1,.... N® (emp, j =1,.... )] [(E,® gEy), [T, ® T—;], (R,® R—go)]-
(23)

Let us accentuate that, if the object is, saptam,then | is (no matter how this is definett)e
radius of it; if the object is a diatomic molecule,, is theinternuclear distancegtc; , in fact,

may be justiny lengthone may pick, within the framework of the objatthand, and Theorem
1, as can be shown, shall still be valid.

Proof of The First Part of Theorem 1
For our purpose, we consider tfiene independentpchrodinger Equation, i.e. with the familiar

notation, written for an atomistic or a moleculdjext composed of J nuclei, of respective
masses m j = 1,..., J, and | electror{altogether),of (the samejnass m, i = 1,..., I:

2 2 2 2 2
- L E " oge. ZC o, &, Zefne® ()
2 i 2 i o\lo
j 8p"my, i 8p my, i Tijo i lio g Tjo
=gy o(ro) -

(1)
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Eo is the eigenvalue, and ,(r,) the related eigenfunction;jds the atomic number of thd'
nucleus; f is the distance between tifeand the] particles.

Thus multiply all, thgsame)electron masses;gr(i = 1,..., I), and the nuclei masseg ¢n=1,...,
J), in Eq.(1), byg; the eigenfunction and the related eigenvalueawdlordingly be altered:

B T L LI
i 8p2gnj0 boo8pfgm, g lijo
:Ey new([O) .

This is the same as

oM Rl Rl Z®
i 8p2mj0 b 8p’my, i Tio
g
=CEY ren(ro) -
Let now
h®r=gr, ,
together with
Y)Y newllo)-
Since

Ty () _ Ty (r) Tu .
Tu, u Tu,

u0 = XO’yO’ZO; u

2 Z.Z..e°
+ e_ + & y new([O)
it fio i Tio
(2
2 Z.Z..€
e_ + R y new([O)
i o g o
g g
3
4)
5)
= X,V,z; (6)
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we have

Ty (r) _ Ty ()
u, =g W (7)

Eq.(3) thus becomes

2 2 2 2 7. 2
R g 2, &, Zefe® g
j 8p Mjo i 8p My, i I‘LO i o ruio
g 9 g
= Ey(r). 8
Dividing by ¢g*, and using Eq. (4), this yields
h? > h? o, Z e e’ ZpZ0€"
- N R 2+ By
i 8p2mj0 i 8p m;, i rij it L N} rjj'
E
=—y(r).
g

9)

In comparison with Eq.(1), we can deduce at onate th

—=E, E=cE, (c.q.fd.).
(10)

Thus, we achieved the demonstration offifet part of Theorem 1.

Proof of The Second Part of Theorem 1

Next we focus on a size of interesg (i.e. as we just pointed out, tfgze of an atom”,anyway
we would like to define it, or th&nternuclear distance”in a diatomic molecule of concern, or
whatever), to be associated with the wave like alije hand.  shall be determined based on
the solution of Eq.(1). Following the mass perttidbra o becomes onew and this latter shall
be found based on the solution of Eq.(2). Accordm@q.(4), onewiS transformed into , so
that =¢ ... (Note that according to this equation, any distarsayr, we would consider,

becomingr,,, due to the mass change, is transformed into rthabr =gr Thus the

derivation presented herein, in fact holds for aistance, thence also for a given specific
distance owe would pick up.)

onew *
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is to be determined as the solution of Eq.(9k ®nce this equation is identical with Eq.(1)
[along with Eq.(10)], the solution of Eq.(9) in Beds to , is the“original size” of interest, i.e.
0-

Hence
= (11)

g Onew 0’

or the same

Onew —

(c.q.f.d.) . (12)

@ lo

This ends the demonstration of Theorem 1.

Though this proof is rigorous, we still happeneattbact conservative reactions. For this reason,
below, we present a cross check of the latter detration. To simplify an otherwise heavy
notation, for the present purpose, we shall comsjdst the hydrogen atom’s Schrodinger
description, thus in spherical symmetry, yet withany loss of generality regarding the validity
of our cross check exercise.

. THE CLOCK MASS

The “clock mass”is a concept we would like to introduce, to repreaghe“compound mass”
doing the“clock labor” of a complex object. One may define differefick massesor the
same object in regards to different motions thépldiys.

The clock mass regarding the rotation of the edecround the nucleus, within the frame of the
Bohr Atom Modeljs just m, theelectron massThis is thereduced massf the proton and the
electron within the frame of tHeydrogen atom’s Schroédinger description.

The clock masgsurns out to be theeduced mass o, of the atoms regarding thetational
motion of a diatomic moleculén this context the&lock massis the mass one comes out with,
when he can reduce the Schrodinger description aiaay-body system, to a one-particle
system. In the case of thébrational motion of a diatomic moleculthis is more peculiar; the
clock mass of the vibrational motion thus can benidated as m( o/ me)l’2 (based on the
electron mass g etc? On the other hand, theock masgo be associated with the electronic
motion of a diatomic molecule, with fixed nuclengdl be just, a factor x gfthe electron mass).

Below we shall denote thdock masdy Mo.

Note that since théclock mass”, is a massmanufactured out of different masses the object
involves, themass transformatiomve considered as the basis of Theore(wé stated above),
implies that, theclock massM, (anyway we choose to define i)ndergoes the same
transformation, i.e. M® ¢ Mo.

The clock masss not an obvious mass, unless the motion of coniseof extreme simplicity. It
is, as mentioned, rather implied through the elation of the quantum mechanical description
of the object.
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4. THE INVARIANCE OF THE QUANTITY {(TOTAL ENERGY) x (CLOCK MASS) x
(S ZE)¥ IN REGARDS TO THE CHANGE IN MASS

Via Theorem 1 through the transformatiofM, ® ¢M,], the quantity E,M, 2, becomes
[9E,I[gM, ][ /], hence remainsvariant.

Therefore, we establiskt once,our next theorem.

Theorem 2: The injection of the arbitrary transformatioM,® ¢M ], into a quantum

mechanical description, leaves the prodighM, ( invariant.

This theorem would not hold, #rtificial potential energiesare used in our original description,
i.e. Eq.(2).

Actually, under the overall mass transformation lveee considered, we have to note that the
quantum mechanical invarianagf (total energy x mass x lengjtholds not only forM, and

o, but also for any massgmtogether with any piece of length one may pick within the
framework of the object in consideration.

Furthermore it is interesting to note that, thertjity (total energy x mass x lengjhhappens to
be not only a quantum mechanical invaria(@egarding an arbitrary mass changdjut also an
invariance delineated by trspecial theory of relativity (were the object brought to a uniform
translational motion),as well as an invariance delineated by ¢emeral theory of relativity
(were the object planted into gravitational field).

Anyway, amongst all the possibE, m,rZ’s we can compose, based different massesy and

different pieces of length the object depicts, obviouslg,M, ¢ too exhibits the invariances
in question.

This seems to bear a profound meaning, given trabfgst all possibl&€, m,rZ’s) E;M, ¢

constitutes a particular composition.

Fundamentally, it is theelativistic invarianceof E;M, Z which, at the very beginning,
constituted the seed of our entire work. Thus,asiginal idea was as follows.

In order to insure harmony with the occurrencedtdeih “special theory of relativity”,also
with the“general theory of relativity”; “mass” (clock mass), “spacei.e. size)and“time” (i.e.

period of time),or “energy” (total energy),to be associated witthe internal dynamicef any
entity, must be structured in justgiven way”, 2"3%%j e. the frame displayed by tievariance
stated in Theorem ZOr vice versa, because matter is built in just a given wagksl brought
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into a uniform translational motion, or planted in a gravitational fieldard while their masses
are altered as much, just as expected.)

It is precisely that the speciabmbinationE,M, 2, must be strapped to a Lorentz invariant

universal constar{and this already at rest).

The fact that any quantity [energy x mass x lefigtanufactured out of angivenmass,any
ordinarywall clockof givenenergy,and anystick metemput togethefwhen brought to a uniform
translational motion),relativistically remaingnvariant, does not of course induce agien
interrelationregarding thehreetotally independengiuantities in question.

But the relativistic invariance oE,M, ? is somewhat different, since the three quantities

coming into play, are alreadguantum mechanicallyinterrelated; recall indeed that the

quantity E,;M, Z, already emerges gslainly rooted to theuniversal (Lorentz invariant)

constanth’ (encompassed by the descriptido), all simple quantum mechanical entities.

Therefore, the quantitfE M, 2 in general,ought to be rooted to’lfbeing proportional to it,

through a rather complex, dimensionless, and relativistically iawdriquantity, which is
somewhat a characteristic of the complex structure of the quantuhaniea! object in hand).

Not to complicate much the grasping of the linepuesue over here, we will elaborate on this
point, in our subsequent article.
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