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ABSTRACT 
 

Via Newton’s law of gravitation between two static masses exculsively, and the 
energy conservation law, in the broader sense of the concept of energy embodying the 
relativistic mass & energy equivalence, on the one side, and quantum mechanics, on the 
other, one is able to derive the end results aimed by the General Theory of Relativity. 
The energy conservation law, in the broader sense of the concept of “energy” 
embodying the relativistic mass & energy equivalence, is anyway a common practice, 
chiefly nuclear scientists make use of. Yet amazingly, besides it is not applied to 
gravitational binding, it also seems to be overlooked for atomic and molecular 
descriptions. Thus herein, next to the reestablishment of celestial mechanics, we 
propose to reformulate the relativistic quantum mechanics on the basis of Coulomb 
Force, but assumed to be valid only for “static electric charges”; when bound though, 
the rest mass of an electric charge, must be decreased as much as the “binding energy” 
it delineates.  

Along the same line, one can remarkably derive the de Broglie relationship, for both 
electrically and gravitationally interacting objects. Our results, furthermore, seem 
capable to clarify the results of an experiment achieved long time ago, at the General 
Physics Institute of the Russian Academy of Sciences, but left unveiled up to now.  

The frame we draw amazingly describes in an extreme simplicity, both the atomic 
scale, and the celestial scale, on the basis of respectively, Coulomb Force (written for 
static electric charges, exclusively), and Newton Force (written for static masses, 
exclusively), in exactly the same manner. Our approach yields precisely the same 
metric change and quantization, at both scales, in question.  

For simplicity, the presentation is made based on just two particles, one very 
massive, the other one very light, at both scales, without though any loss of generality.   

Our predictions, perfectly agree with all available experimental results.    
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1. Introduction 

 
This article is prepared based on the presentation the authors made at the PIRT 

(Physical Interpretations of the Theory of Relativity), held in the Summer of 2005 in 
Moscow [1]. The main idea consists in the “decrease of the mass” of the bound particle, 
owing to the energy conservation law. A unique matter architecture cast yeld by both 
“quantum mechanics”, and the “Special Theory of Relativity”, independently from each 
other, as we will soon unveil, tells how the metric is accordingly altered. The fact that, 
“quantum mechanics” and the “Special Theory of Relativity” frame, independently 
from each other, the same matter architecture, thus the same metric change, based on 
the mass decrease we undertake in this article, tacitly delineates the organic 
interrelation between the two disciplines. Three other articles presented by the first 
author to the mentioned PIRT Conference, along with the first one, draw a complete 
picture, covering both the micro atomistic world, and the macro celestial world, in 
utterly similar terms [2,3,4]. The bound particle in consideration may be bound to any 
field it interacts with. This allows us to treat all fields in the same manner (and not 
restrict us to consider the gravitational field as a privileged field, a pitfall necessarily 
induced by the General Theory of Relativity).  

Below we first tackle with the “gravitational field” (Section 2), then with the 
“electric field” (Section 3). This constitutes the content of Part I, condensed into a 
partial conclusion (Section 4). In both of the cases in question, “quantization” follows 
immediately and in exactly the same way; this constitutes the content of Part II 
(Sections 5 and 6). Next a general conclusion is drawn (Section 7).  
 

2. Mass Decrease of a Gravitationally Bound Particle: The End  

Results of the General Theory of Relativity, via Just Newton’s Law 

of Gravitation, Energy Conservation and Quantum Mechanics  

 
In a previous work [5], a whole new approach to the derivation of the Newton’s 

Equation of Motion was achieved; this, well led to the end results of the General 
Theory of Relativity, were the velocity of the object at hand, not considered negligible 
as compared to the velocity of light. Thus, one starts with the following postulate, in 
fact nothing else, but the law of conservation of energy, though in the broader 
relativistic sense of the concept of “energy”.  

Postulate: The rest mass of an object bound to a celestial body amounts to less than 
its rest mass measured in empty space, the difference being, as much as 
its binding energy vis-à-vis the gravitational field of concern.  

 
A mass deficiency conversely, via quantum mechanics (whose basis, i.e. the wave 

equation, together with, in a way the de Broglie relationship, is already fully consistent 
with the Special Theory of Relativity), yields the “stretching of the size” of the object at 
hand, as well as the “weakening” of its internal energy, via quantum mechanical 
theorems proven elsewhere [6,7,8,9]. We summarize them herein. 
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Theorem 1: In a “real wave-like description” (thus, not embodying artificial 
potential   energies), if the masses mi0, i = 1, ..., I of different 
constituents involved by the object, are all over multiplied by the 
arbitrary number χ , then concurrently, a) the total energy E0 
associated with the given clock’s internal motion of the object, is 
increased as much, or the same, the period T0 of the motion 
associated with this energy, is decreased as much, and b) the 
characteristic length or the size 0R  to be associated with the given 

clock’s motion [10] of the object, contracts as much; in mathematical 
words,‡         

     [[[[(mi0, i = 1, ..., I) →  (χmi0, i = 1, ..., I)]]]] ⇒ {{{{ [[[[ 00 EE χ→ ]]]], [ 
χ

T
T 0
0 → ], [[[[ 0R χ

→ 0R ]]]] }}}}  

This, together with the above postulate, yields at once the next two theorems. 
Theorem 2: A wave-like clock in a gravitational field, retards via quantum 

mechanics, due to the mass deficiency it develops in there, and this, 
as much as the binding energy it displays in the gravitational field; at 
the same time and for the same reason, the space size in which it is 
installed, stretches as much. 

Theorem 3: A wave-like clock interacting with any field, electric, nuclear, 
gravitational, or else (without loosing its “identity”), retards as much 
as its binding energy, developed in this field; at the same time and 
for the same reason, the space size in which it is installed, stretches 
as much. 

This can further be grasped rather easily, as follows. The mass deficiency the wave-
like object displays in the gravitational field (or in fact, any field with which it 
interacts), weakens its internal dynamics as much, which makes it slow down. Thence, 
one arrives at the principal results, stated above. In order to calculate the binding 
energy of concern, we make use of the classical Newtonian gravitational attraction law, 
yet with the restriction that, it can only be considered for “static masses”. Luckily we 
are able to derive the 1/r2 dependency of the “classical gravitational force” between 
“two static masses”, here again, based on just the Special Theory of Relativity [5]. This 
can be achieved easily by noting that the quantity [force] x [mass] x [distance]3 is 
Lorentz invariant.§ (In fact, dimensionally speaking, it amounts to the square of the 
Planck Constant, which in return is Lorentz invariant.) On the other hand, it is known 
that the electric charges are Lorentz invariant. (If not, say in excited atoms, energetic 
electrons would exhibit electric charge intensities different than the electric charge 
intensity of the electrons at the ground level, which is not the case.)  

                                                
‡  Note that as the “overall mass” of the object increases by the arbitrary factor χ , and this already at 

rest, its internal dynamics speeds up as much; or the same, its de Broglie wave-like frequency is 
increased as much [2]. One can show that, only if such a characteristic is drawn, the internal dynamics 
slows down as much, in the case where the object is brought to a uniform translational motion, χ  then 

becoming the usual Lorentz dilation factor.  
§  The dimension of “force”, is as usual, [mass] x [length] x [period of time]-2. 
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Now suppose we have a “dipole” of a given mass at rest, bearing a given length r at 
rest. Coulomb Force reigns between the electric charges. Suppose we assume that 
Coulomb Force is, as usual, expressed as proportional to the electric charges coming 
into consideration, also to 1/rn, where though we do not know, a priori the exponent n. 
Suppose then we bring the dipole to a uniform translational motion, along the direction 
delineated by the line connecting the electric charges making it. Since then, [mass] x 
[length] remains invariant, it becomes evident that the Lorentz invariance of [force] x 
[mass] x [distance]3 shall hold, only if Coulomb Force, dimensionally  behaves as 
[ ] n2 r/charge , n being exclusively 2, given that charges are Lorentz invariant.  

Note that the same holds, if “charges”, in question, are gravitational charges; in this 
case however, the product of charges should be considered together with the universal 
gravitational constant. 

Thus, the framework in consideration is fundamentally based on the Special Theory 
of Relativity. 

The related metric (just like the one used by the General Theory of Relativity) is 
altered by the gravitational field (in fact, by any field the “measurement unit” in hand 
interacts with); though in the present approach, this occurs via quantum mechanics 
(anyway nailed to the Planck Constant, a universal Lorentz invariant constant).  

Henceforth, one does not require the “principle of equivalence” assumed by the 
General Theory of Relativity, as a precept, in order to predict the end results of this 
theory.  

Let then ∞0m  be the mass of the object in consideration, at infinity. When it is 

bound at rest, to a celestial body of mass M , assumed for simplicity infinitely large as 
compared to ∞0m ; this latter will be diminished as much as the binding energy coming 

into play, to become m(r) [r being the distance of ∞0m  to the center of M ], so that [5]

   (r)
0 emm(r) α−
∞=  ,                            (1-a) 

where )r(α  is  

   
2
0rc

G
)r(

M
=α  ;                                            (1-b) 

G is the “universal gravitational constant”; r is the distance of m(r) to the center of M , 
as assessed by the distant observer.  

Note that m(r) becomes the “gravitational mass”, if the object remains at rest. 
Otherwise, classically speaking, it is neither the “gravitational mass”, nor the “inertial 
mass”; it is the” rest mass” of the gravitationally bound object (at rest). This will be 
clarified at the level of Theorem 4, stated below. 

An explanation regarding the reason, for which energy should be retrieved from the 
mass of the tiny bound object, and not from the infinitely more massive celestial body 
hosting it, is provided in Appendix A.  

We would like to recall that G is not Lorentz invariant, though classified as a 
universal constant. [One can immediately see this, as follows: Dimensionally speaking 

)(rGMm  is equivalent to (electric charge)2; but the electric charge intensity is Lorentz 

invariant;  thus so must be the quantity )(rGMm ; mass is not a Lorentz invariant 

quantity; hence neither G can be, though the product )(rGMm is].   
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Via differentiating Eq.(1-a), along with Eq.(1-b), it can be checked that we are 
indeed dealing with nothing else, but an “energy conservation  equation”, i.e.   

   dr
r

m(r)
Gcdm(r)

2

2
0

M
=   ;                                            (2) 

in other words, the RHS of this equation is the “energy”, one would have to furnish to 
m(r) at r, in order to carry it away from M , as much as dr, and the LHS is the “energy, 
equivalent of the mass increase” dm(r), the mass m(r) delineates throughout, as 
imposed by the Special Theory of Relativity; “energy conservation” imposes that the 
two quantities of energy [the two sides of Eq.(2)], are equal to each other (c.q.f.d.). 
 Now suppose that the object of concern is in a given motion around M ; the motion 
in question, thus can be conceived as made of two steps:  

i) Bring  the object “quasistatically”, from infinity to a given location r, on its  
orbit,  but keep it still at rest.  

ii) Deliver to the object at the given location, its motion on the given orbit. 
 
The first step yields a decrease in the mass of ∞0m  as delineated by Eq.(10). The 

second step yields the Lorentz dilation of the rest mass m(r) at r, so that the overall 
mass )r(mγ , or the same the total relativistic energy of the object in orbit becomes 

 

2
0

2
0

α(r)
2
00

2
0

2
0

2
02

0γ

c

v
1

e
cm

c

v
1

m(r)c
(r)cm

−

=

−

=
−

∞  ;                                   (3) 

0v  is the “local tangential velocity” of the object at r. 

The total energy of the object in orbit [i.e. 2
0c)r(m γ ] must remain constant 

[11,12,13], so that for the motion of the  object in a given orbit, one finally has** 

                                                
** Amazingly the General Theory of Relativity predicts (as furnished by Reference 7) 

           
,Lifshitz and Landauby presented hip(relations )Constant

c

v
1

21
cm(r)cm

2
0

2
0

2
00

2
0γ =

−

α−
= ∞

                  (i) 

   which coincides, up to the second order of the corresponding Taylor expansion, with Eq.(4); yet there 
does not seem any easy way to interpret the numerator, of Eq.(i), whereas, not only that it is possible to 
ascertain what the numerator of Eq.(4) is all about, but also, the set up of this latter equation is evident. 
Eq.(4), on the other hand, is fully consistent with what Yilmaz would have written, in the same way as 
that presented by Landau and Lifshitz, leading to Eq.(i), with the exponential correction (References 7, 
and 8) that Yilmaz proposed to Einstein’s metric, i.e.   

          
;Constant

c

v
1

e
cmc)r(m

2
0

2
0

2
00

2
0 =

−

=
α−

∞γ

                                  (ii) 

(relationship that would have been written by Yilmaz, had he  

  followed  the same way as that presented by Landau and Lifshitz,  

 together with  the correction he proposed to Einstein’s metric) 
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  ;Constant

c

v
1

e
cm(r)cm

2
0

2
0

2
00

2
0 =

−

=
α−

∞γ
                       (4) 

(basis of the equation of gravitational motion) 

0v  (the relative velocity of 0m  in regards to M ), and 0c , in our approach, if written in 

terms of lengths and periods of time picked up along the trajectories in consideration, 
remain the same for both the local observer and the distant observer, similarly to what 
is framed by the Special Theory of Relativity. 

The differentiation of the above equation leads to      

.dvvdr
c

v
1

r

G
002

0

2
0

2
=








−−

M
                       (5) 

 
This equation can be put into the form 

2
0

0

2
0

0

0
2
0

2
0

0
2
0 dt

)t(rd

r

r

c

v
1

1

e

r

G 0

=







−









α+
−

α−M
 ,                              (6-a) 

 
written in terms of the “proper quantities”, via the relationship      

   0ererr 00
αα ≅= ,                      (6-b) 

 
as induced by Theorem 2; 0r  is the vector bearing the magnitude 0r , and directed 

outward.  
Eq.(5) is the classical Newton’s Equation of Motion, were 0v  negligible as 

compared to 0c .  

Multiplying Eq.(6-a) by the “constant overall mass” )r(mγ  at both sides, one for, 

10 <<α , can state that (cf. Appendix B for the elucidation of a false contradiction 

between the present approach and the classical approach) 

 )(x)()()( onAcceleratiMassOverallForcenalGravitatioStatic =−α− α−
2
0

2
0

0
c

v
1e1 0 .     (7) 

 
Thence, Newton’s equation of gravitational motion, i.e. [Gravitational Force           

= Mass of the Planet x Acceleration], is broken, since an extra term, i.e. 
2
0

2
0 c/v1e −α− comes to multiply the “gravitational force”, in its classical form. 

Formally, this equation can be restored, if instead, one chooses to alter the 
“Newtonian gravitational force”; but then the “gravitational mass” and the “inertial 
mass”, as classically defined, shall not be identical.  

Thus one can establish the following theorem. (A rigorous proof of it is provided in 
Reference 5.) 
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Theorem 4:  The gravitational mass nalgravitatiom , and the inertial mass inertialm , as 

classically defined, are not the same; the theory summarized herein, 
to formally save Newton’s equation of gravitational motion, predicts  

                       
2
0

2
0

0nalgravitatio
c

v
1α)exp(mm −−= ∞

 ,                                    (8)                      

        given that  

                        

2
0

2
0

0
inertial

c

v
1

α)exp(m
m

−

−
= ∞ ;                                             (9) 

 though undetectable for most cases routinely considered, nalgravitatiom  

and inertialm  differ. 

 
Thence one arrives at  

     
2inertialnalgravitatio

1
mm

γ
=  ;                     (10) 

          (relationship predicted by the author) 

this result is amazingly the same as that predicted by Mie back in 1912, as a result of 
his “inverse problem set up” [14,15,16]. 

Nordström  too predicted it, though through still a totally different way [17,18]. 
 It is further interesting to recall the parallelism de Haas has drawn between de 

Broglie’s clock-wise frequency and wave-like frequency, on the one hand, and Mie’s 
gravitational mass and inertial mass, on the other [19]. 

Theorem 4 in short, tells us that the “Newton’s second law of motion” along with 
“Newton’s law of gravitation” can still be used, provided that the “gravitational mass” 
to be input to the “Newton’s law of gravitation” is taken as the one given by Eq.(8), and 
the “inertial mass” to be input to the “Newton’s second law of motion” is taken as the 
one given by Eq.(9).  

Eqs. (8), (9), and (10) are interesting, for they suggest that a moving particle in a 
gravitational field would weigh less than the same particle at rest, in the same location 
in that field. V. Andreev effectively reported at the mentioned PIRT Conference that, a 
pendant load irradiated at the General Physics Institute of the Russian Academy of 
Sciences, by high energy electrons, comes to weigh less than its untouched twin 
counterpart [20].  

The first author of this article, right after Andreev’s presentation, suggested that, the 
effect must be due to energizing the unpaired electrons of the atoms of the load in 
consideration (which happened to be duraliminium); these electrons, based on Eq.(8), 
become practically weightless. A quick calculation indeed proves this point of view, 
which shall be elaborated on, in a subsequent article. 

Let us go back to Eq.(9). Taking into account the quantum mechanical stretching of 
lengths in the gravitational field [i.e. Eq.(6-b)], Eq.(4) can be transformed into an 
equation written in terms of the proper lengths [3,21], i.e.  
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,Constant

c

v
1

)eα(exp

2
0

2
0

α
0 =

−

− −

                      (11)  

where 0α , i.e.†† 

 
2
00

0
cr

GM
=α  ,                          (12-a) 

 
is now expressed in terms of the proper distance 0r ; note that the constant, appearing in 

the RHS of Eq.(11) is different than the constant appearing in the RHS of Eq.(1-b); the 
relationship between 0α  and α  [via Eqs. (1-b) and (6-b)] is 

    α
0eαα −=   .                              (12-b) 

 
The use of Eq.(11) [instead of Eq.(4)], will lead to the replacement of )exp( α− , at 

the Right Hand Sides of Eqs. (8) and (9), by the exponential function )eexp( 0
α−α− .  

It should be recalled that, though consisting in a totally different set up, than that of 
the General Theory of Relativity, Eq.(11) amazingly yields results identical to those of 
this theory, within the frame of the second order of corresponding Taylor expansions. 

 
3. Mass Decrease of an Electrically Bound Particle: Application of the 

Approach to the Hydrogen Atom 

 
Based on the foregoing discussion, henceforth, we should take into account the 

proper mass decrease of the bound electron, as implied by the Special Theory of 
Relativity. 

More specifically we can think that, the hydrogen atom is made in two steps:  
1) We bring the electron from infinity to a given distance from the nucleus 

(supposing for simplicity, yet without any loss of generality, that the proton is 
fixed); owing to the equivalence between mass and energy, this process reduces 
the electron’s proper mass as much as much as the magnitude of its (in the 
classical sense) potential energy, at this location. 

 2) Next, we deliver to the electron its orbital kinetic energy (however, the orbit 
may be conceived); this process, in the familiar relativistic way, increases the 
already decreased proper mass, by the usual Lorentz factor.   

Thus Dirac, just like Sommerfeld had considered the second process, but not the 
first one.  

                                                
††   The transformation between the “proper distance” r0 , of a given location P to the center of M , as 

assessed by the observer situated at this location, and the same distance r, but as assessed by the 
distant observer, in effect, becomes (Reference 11) 

0ererr 00
αα ≅=  .                               (i) 
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Recall that, Dirac’s theory does not cover thoroughly the experimental results 
[22,23,24,25]; the measured doublets due to spin-orbit interaction remained narrower 
than predicted.  

Our approach yields a shift of energy levels, upward (whereas the “relativistic 
quantum mechanics”, just like “Sommerfeld’s approach”, predicts a shift of the Bohr 
energy levels, downward).  

The upward shift in question depends on, just the principal quantum number, thus 
effects in exactly the same way, the shift of the 2/1S2  level, and shift of the 2/1P2 level, 

which makes that, it is not in any extent, responsible of the electrodynamical splitting 
of these levels (i.e. the Lamb shift). Yet it should account for the discrepancy between 
the theoretical prediction of the Lamb shift and the measured value of this.  

We are going to base our approach on just hydrogen-like atoms. Further, for 
simplicity (though without any loss of generality), we shall neglect the mass deficiency 
undergone by the proton in the hydrogen atom, as compared to that displayed by the 
electron; along the same line, we can consider that, the reduced mass of the electron 
and the proton, is the mass of the electron, straight.    

We thus make the following definitions. 

0r      :  distance of the electron to the nucleus  

∞0m     :  the electron’s rest mass at infinity 

)r(m 00 :  the electron’s rest mass at a distance 0r  from the nucleus  

)r(m 0   :  the electron’s overall mass (which is its mass at infinity, decreased as 

much  as its  potential energy, and increased based on the Special Theory 
of Relativity, due to its “translational” motion), on a given orbit, at the 
location 0r  

0v        : the tangential velocity of the electron on the orbit (however the motion or  

the orbit may be conceived), at the location 0r   

 e    : the charge intensity of the electron or that of the proton 
 Z    : the number of protons of the nucleus of the hydrogen – like atom   

Our idea is simple; on a given orbit the total energy of the electron, i.e. 2
00 c)r(m , 

must remain constant. If the orbit is not circular, throughout the electron’s journey on 

the orbit, however this may be, both 0r  and 0v  shall vary; but 2
00 c)r(m , thus )r(m 0  

must stay constant. Accordingly the overall mass, )r(m 0 , or the total energy, 2
00 c)r(m  

of the electron, which we will call TotalE , at a distance 0r  from the nucleus bearing Z 

protons, shall be written as [26,27] 

OrbitanonConsant==

−

−

=

−

= ∞
∞ Total

2
0

2
0

2
000

2

2
00

2
0

2
0

2
000

2
00 E

c

v
1

cmr

Ze
1

cm

c

v
1

1
)c(rm)cm(r ;       (13)                   

       (overall relativistic energy of the electron, in a hydrogen-like atom,  
         the setting  of which to a constant, determines the given orbit’s equation) 
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here, )/( 2
000

2 cmrZe1 ∞−  is the decrease factor of the proper mass ∞0m  of the electron, 

when bound, at rest, to the nucleus of concern; thus 0
2 r/Ze  as usual, is the magnitude 

of the  potential energy, or the same, the binding energy at rest of the electron to this 

nucleus, at a distance 0r  from it, which makes that )/( 2
000

2 cmrZe ∞  is the ratio of the 

potential energy to the original proper energy. Our approach interestingly generates, the 
improved Weber’s Potential [28,29, 30,31,32]. ‡‡  

According to our approach, it is in fact the decreased mass at rest, )r(m 00  at 0r , 

which is increased by the Lorentz factor 1/ 2
0

2
0 c/v1− , due to the electron’s motion 

around the nucleus (and not the proper mass ∞0m , measured in empty space, free of 

any field).    
Dirac’s theory, just like Sommerfeld’s approach, misses the decrease factor 

)/( 2
000

2 cmrZe1 ∞−  we introduced in Eq.(1). This factor, as will soon become clear, is 

very small for small Z’s, but may become quite important at big Z’s; anyway (as we 
shall elaborate below) the inverse of it, is amazingly equal to the square of the Lorentz 
factor meaning that the overall mass (contrary to the actual wisdom and related 
mathematical formulation), is always smaller than ∞0m .  

 

                                                
‡‡  The differentiation of Eq.(13) yields the following noteworthy, general orbit equation, for the motion 

of the electron around the nucleus: 

                        

0

0
0

2
000

2

2
0

2
0

2
00

2

dr

dv
v

cmr

Ze
1

c

v
1

rm

Ze
=

−

−
−

∞

∞

     .                                                                                (i)                 

                              (differential expression of the energy conservation law,  

                               for the electron on the orbit) 

      
      One can transform this equation into a vector equation, with not much pain, and show that the RHS is 

accordingly transformed into the acceleration (vector) of the electron on the orbit. 
 

      Thus recalling that the LHS of Eq.(13), i.e. 
2
00)cm(r , is constant, one can write 

 

    ;
dt

(t)vd
)m(r

r

r

c

v
1

r

Ze 0
0

0

0
2
0

2
0

2
0

2

=−                                                                                  (ii) 

(equation of motion written by the author, via just the energy   

conservation law, extended to cover the mass – energy equivalence) 

 

       here, 0r  is the radial vector of magnitude 0r , and 0v  is the velocity vector of the electron. 

   
       The orbit would be as customary elliptical, for a small Z, thus a small v; otherwise it is open; in other 

words, the perihelion of it, shall precess throughout the motion. 
 

This is anyway the same relationship as that proposed by Bohr, except that the electrostatic force 

intensity is now decreased by the factor 2
0

2
0 c/v1− . 
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On can, based on Eq.(13), frame in a straightforward way, a corresponding quantum 
mechanical formulation. This is what we undertake next. 

 

4. Conclusion of Part I 

 
Herein we have shown (based on just the energy conservation law) that, both the 

atomistic and the celestial motions can be described along with similar concepts, 
provided that the mass deficiency of the bound particles is taken into account. This 
amazingly leads us, to all of the observed occurrences, though in a much simpler way 
than that classically followed. 

Thereby the Coulomb Force, or the Newton Force, holds only for, respectively, 
static charges, and static masses.  

Thus, we have shown that these force laws, are not any more valid if the test charge 
moves around the source charge, or similarly, the test mass moves around a given 
source mass.  

In the next part, we are going to develop a full quantum mechanical deployment 
based on the findings, we have presented herein.  

The cited references, are presented, altogether, at the end of Part II. 
 

 

Appendix A 

Why Mass Should be Retrieved From the Tiny Object  

Bound to an Infinitely More Massive Celestial Body? 

 

Suppose indeed we set the very tiny object of mass 
∞m  and the very massive object 

(MO) (originally assumed at rest), simultaneously free, in the reference system of the 
distant observer. Because of the attraction force, they will get accelerated toward each 
other, and at a given distance from each other, they will come to acquire the velocities  
v and 

MOv  (supposed far below that of the speed of light), thus the kinetic energies 

2/v 2
MOM  and 2/vm 2

∞
. Because of the conservation of the linear momentum, we have  

       vmv MO ∞=M .                  (A-1) 

This makes that the fraction of the kinetic energy of 
∞m  out of the total kinetic 

energy coming into play, turns out to be  

        1
m 

 

2

vm

2

v 
2

vm

22
MO

2

≅
+

=
+ ∞∞

∞

M

M

M
           ;                      (A-2) 

likewise the fraction of the kinetic energy of M  out of the total kinetic energy in 
question, becomes    
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    0
m

m
≈

+ ∞

∞

M
   (c.q.f.d.).                                              (A-3) 

The same philosophy well applies if there are more than two particles getting 
bound, since in this case, it appears sufficient to handle the problem in the frame of the 
center of mass of the system (at rest throughout). At a first glance, in effect it may seem 
that our result depends on the history of the recombining particles; this is not correct, in 
the frame of the reference of the center of mass. 

Otherwise, through say the recombination of a proton and an electron (of initially 
random kinetic energies), yielding a hydrogen atom, the extra energy the system would 
acquire, in the laboratory frame of reference, exhibits itself, as the translational energy 
of the center of mass, or a rotational energy around the center of mass, or else. It is the 
mass deficit, different elements of the system displays, after the system as a whole 
comes to a rest, that we must account for, and the resulting picture is well free of the 
history of the recombining particles.  

The essential idea is anyway that the overall mass of the bound particles, is less 
than the total mass of these particles when weighed at infinity, and this is less than the 
former, as much as the total binding energy coming into play.   

One other issue has to be elaborated on, though. Suppose, around the gravitational 
attractor location of a galactic cloud, hydrogen atoms start to get closer and closer to 
make a star. In order to model this occurrence through a linearized approach, we should 
start up with just two atoms. Then, exactly half of the gravitational binding energy that 
will come into play, is to be subtracted (as the mass deficit), from the mass of each 
atom. Suppose we continue to manufacture the gedanken star, by bringing one by one 
hydrogen atoms, from infinity to the immediate neighborhood of the star’s original 
seed. Based on the foregoing discussion; when the star is close to be built entirely, then, 
an hydrogen atom that we bring from infinity, to merge with it, i) will experience a 
much too greater binding energy as compared to that displayed by the very first uniting 
atoms (since the atom in question is now getting bound to practically the whole star, 
and not just a couple of hydrogen atoms making the very beginning of it), ii) the atom 
we visualize will further experience a mass deficit, practically the same as the entire 
binding energy, since (according to the foregoing discussion), in this latter case we 
ought to retrieve the equivalent of the binding energy coming into play, from just the 
single atom, and not the huge star.  

The conclusion we land at is that, items gravitationally bound to each other, should 
exhibit different mass deficits. But at the same time, it seems legitimate to expect some 
sort of an energy exchange to take place, between these items (given that they can lend 
or gain the amount of energies that would have come into play, while getting bound or 
getting dissociated). Such an energy exchange process should be expected to insure a 
thermodynamic equilibrium, which should lead to a full (Maxwellian type of) spectrum 
of a gravitational red shift, and not just one classical red shift, to be associated with the 
star. And this is strikingly what is observed (References 3 and 4).    
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Appendix B 

Elucidation of a False Contradiction Arising Between  

the Present Approach and the Classical Approach 

 

Classically (cf. Reference 7); defining as usual, the momentum p  and the force F   

(as vector quantities), for an object of mass 
∞0m , moving with the instantaneous velocity 

v , under the influence of the force of strength F, as  

   v

c

v
1

m
p

2
0

2
0

0

−

= ∞   ,                                             (B-1) 

      
dt

pd
F =  ;          (B-2)       

one can write 

    v
dt

dv

c

v

c

v
1

m

dt

vd

c

v
1

m
F

dt

pd
2
0

2/3

2
0

2
0

0

2
0

2
0

0









−

+

−

== ∞∞     .                               (B-3) 

For a circular motion, v is constant; thus   

    .
dt

vd

c

v
1

m
F

dt

pd

2
0

2
0

0

−

== ∞                (B-4)    

 For a free fall, v  and dt/vd , are in the same direction; thus 

    .
dt

vd

c

v
1

m
F

dt

pd
2/3

2
0

2
0

0









−

== ∞                         (B-5)    

At the first strike, this outcome seems to be contradictory in comparison with 
Eq.(7), if the gravitational force is considered to be 

    
2

0

r

m
GF ∞=
M

 ,                     (B-6)  

where M  is the mass of the celestial body, acting on the bound particle of original mass 

∞0m . 
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However the foregoing derivation ignores the fact that the rest mass is altered due 
to binding; this means that 

∞0m  cannot be kept constant throughout the differentiation 

operations we have achieved. The momentum should thus be written as 

  v

c

v
1

α)(expm
p

2
0

2
0

0

−

−
= ∞   ,                                                          (B-7)                         

instead of Eq.(B-1); this makes that, based on Eq.(3) of the text, the term multiplying v  
is constant, and we have straight 

                       .
dt

vd

c

v
1

α)exp(m

dt

pd

2
0

2
0

0

−

−
= ∞                            (B-8)          

Henceforth, contrary to what is formulated in Eq.(B-3) we have no terms in v . Our 
force strength on the other hand, clearly, is not given by this classical expression; 
Eq.(B-6), based on our approach, is only valid for static masses, further assuming that 
they are not perturbed due to binding with each other. The static gravitational force 

paF  

acting on 
∞0m , as framed by the present approach [cf. Eq.(7) of the text], is 

                   
2

0
pa

r

α)exp(m
GF

−
= ∞M    .                                           (B-9)                                  

  (static gravitational force as framed by the present approach)           
       

  In other terms Eq.(7) of the text, can explicitly be written as  

       ;
c

v
1F

r

r

r

c

v
1α)exp(m

G
dt

vd

c

v
1

α)exp(m

dt

pd
2
0

2
0

pa2

2
0

2
0

0

2
0

2
0

0 −=

−−

=

−

−
=

∞

∞

M
             (B-10)  

here r is the inward looking vector, of length r. 

Once again Eq.(B-3), as well as Eqs. (B-5) and (B-6) are invalid; the correct 
expression for the “change of the momentum with respect time” (i.e. “force”), is  
Eq.(B-10). 
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The Mass Deficiency Correction to Classical and Quantum 

Mechanical Descriptions: Alike Metric Change and 

Quantization Nearby an Electric Charge,  

and a Celestial Body 

Part II: Quantum Mechanical Deployment for Both 

Gravitationally, and Electrically Bound Particles 
 

Tolga Yarman,§§ Vladislav B. Rozanov*** 
 

ABSTRACT 

 

Herein a full quantum mechanical deployment is provided on the basis of the frame 
drawn in the previous Part I. Thus it is striking to find out that occurrences taking place 
at both atomic and celestial scales, can be described based on similar tools.  

Accordingly, the gravitational field, is quantized just like the electric field. The 
tools in question in return are, as we have shown, founded on solely the energy 
conservation law. 

The relativistic quantum mechanical equation we land at for the hydrogen atom, is 
equivalent to the corresponding Dirac’s relativistic quantum mechanical set up, but is 
obtained in an incomparably easier way. Following the same path, a gravitational atom 
can be formulated, in a space of Planck size, with particles bearing Planck masses.    

For simplicity, we will enumerate the sections, as well as the equations, in 
continuity with the corresponding sections and equations drawn in the previous Part I.     

 

Keywords:  Mass Deficiency, Gravitation, Quantization, Electric Charge, Metric 
Change, Planck Size, Planck Mass, High Energy Cosmic Rays, 
Gravitational Waves   

 

5. Full Quantum Mechanical Deployment of Our Approach 

 
Here again we will consider for simplicity the hydrogen atom, where to begin, we 

assume the proton at rest, without however any loss of generality. We will also neglect 
the spin-orbit interaction, still without any loss of generality. 

Let us then evaluate the difference D  based on the usual relativistic definition of 
the momentum )r(p 0  of the electron on the orbit, i.e. 

)r(v)r(m)r(p 0000 = ;                                  (14) 

recall that here )r(m 0  is the overall mass, defined along our Eq.(13). 

Thus 

                                                
§§   Department of Engineering , Okan University  Istanbul, Turkey & Savronik, Eskisehir, Turkey 

(tyarman@gmail.com)   
***  Laser Plasma Physics Theory Department, Lebedev Institute, Moscow, Federation of  Russia   
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
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


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−
−
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∞

∞
∞D .      (15) 

Recall on the other hand that 2
00 c)r(m  is nothing else, but (in the relativistic sense) 

the total energy TotalE .  

Then  
2

2
000

2
4
0

2
0

2
Total

2
00

2

cmr

Ze
1cmEc)(rp 








−−=

∞
∞   ,                                         (16) 

or 

2
Total

2

2
000

2
4
0

2
0

2
00

2 E
cmr

Ze
1cmc)(rp =








−+

∞
∞  .                               (17) 

We can compose the correct relativistic quantum mechanical equation for a 
stationary case, to replace the classical Klein-Gordon Equation, via the usual quantum 
mechanical symbolisms of the momentum, and the energy, i.e. 

∇−= hirp 0 )( ,                                  (18) 

  
2
0

2
22

Total
t

E
∂
∂

−= h   .                                           (19) 

Thus  

          
2
0

00
2

2
00

2

2
000

2
4
0

2
0

2
000

22

t

)t,r(
)t,r(

cmr

Ze
1cmc)t,(r

∂

Φ∂
−=Φ








−+Φ∇−

∞
∞ hh  ,      (20) 

       (correct relativistic equation written out of the “overall mass”   
  expression, embodying the mass deficiency of the bound  electron, 

   instead of the classical Klein-Gordon Equation) 

where ),( 00 trΦ  denotes the space and time dependent wave function; note that by 

“correct relativistic equation”, we mean, “equation taking into account the mass 
deficiency of the bound electron, next to the mass dilation of it, due to its motion”. 

Eq.(17), for a stationary case should be written as   

                     )ψ(rE)ψ(r
cmr

Ze
1cmc)ψ(r 0

2
Total0

2

2
000

2
4
0

2
0

2
00

22 =







−+∇−

∞
∞h  ,                (21)          

                      (correct relativistic eigenvalue-eigenfunction equation)  
 
where )r( 0ψ , in short 0ψ , is the eigenfunction of the relativistic description of the 

stationary case in consideration; TotalE  then becomes the corresponding eigenvalue. We 

will see below that Eq.(21) well reduces to an equation involving TotalE  instead of 
2
TotalE , so that at the level of this equation, one does not have to question the classical 

meaning of the wave function )ψ(r0 . 
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5.1.Derivation of the Schrodinger Equation from Our Approach 
Schrodinger most likely did not think to take into account the mass decrease of the 

bound electron [33,34,35,36], i.e. the term between brackets, multiplying 4
0

2
0 cm ∞ , at the 

LHS of Eq.(21), nor seemingly did anyone after him. 
We can easily derive the Schrodinger Equation, based on Eq.(21). Thus, note first 

that the eigenvalue SchrE  yeld by the Schrodinger Equation is less than TotalE  as much 

as 2
00 cm ∞ , the energy equivalent of the rest mass of the electron, i.e. 

2
00TotalSchr cmEE ∞−=   .                                 (22) 

(definition we make in conformity  

 with the eigenvalue of the Schrödinger Equation)    
Recall that TotalE  is, by definition [cf. Eq.(13)] a positive quantity. Therefore SchrE  

is a negative quantity, and as a first approach, should expected to be, as usual       

2

22
2
00

2
00

22

2

2
00Schr

n2

Z
cmcm)αZ

n2

1
1(cmE

α
−=−−≅ ∞∞∞    (for small Z’s) ,         (23-a)  

n being the usual principal quantum number, and the fine structure constant fsα  

137

1

hc

e2

0

2

fs ≅
π

=α  .               (23-b)  

Eq.(22) thus can be rewritten as 

        







+=

∞
∞ 2

00

Schr2
00Total

cm

E
1cmE  .                                                     (24)  

Via Eq.(22), Eq.(21) will be written as  

0

2

2
00

Schr4
0

2
00

2

2
000

2
4
0

2
0

2
00

22

cm

E
1cm

cmr

Ze
1cmc ψ








+=ψ








−+ψ∇−

∞
∞

∞
∞h  .                  (25) 

(correct relativistic quantum mechanical equation written based on his 

overall mass expression, to be set to a constant, on a given energy level)  

 
Note that this equation is rigorous; thus so, at this stage, is SchrE . 

Now, let us arrange the brackets at both sides of this equation, noting that both 

)crm/(Ze 2
000

2
∞  and )cm/(E 2

00Schr ∞  are generally very small as compared to unity. 

Thus:  

   0Schr0

0

2

0
22

0

E
r

Ze

m2

1
ψ=ψ−ψ∇−

∞

h   ,                                       (26-a) 

or the same 

0Schr000
22

0

E)r(V
m2

1
ψ=ψ+ψ∇−

∞

h      (c.q.f.d.) ,                         (26-b) 

            [classical Schrodinger Equation derived from the correct  

        relativistic equation, with the approximation that )crm/(Ze 2
000

2
∞   

       and )cm/(E 2
00Schr ∞  are very small as compared to unity]   

where )r(V 0 , as usual denote the potential energy 0
2 r/Ze− .  
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5.2.Correct, Simple, Relativistic Quantum Mechanical Equation 

Via taking into account the terms we have neglected in Eq.(25), we arrive at an 
equation which can be considered well equivalent to Dirac’s relativistic equation, 
incorporating though the mass decrease of the bound electron: 
          

    02
00

2
0

42

0

2

2
00

2
R

R0
2

0

2

cmr

eZ

2

1

r

Ze

cm

E

2

1
E

m2
ψ








−++=ψ∇−

∞∞∞

h
,                  (27) 

                          
             (correct relativistic quantum mechanical equation, derived from  

                        the correct relativistic equation omitting the spin-orbit interaction)  

 
where RE  is the “rigorous total energy” (diminished by the energy content of the rest 
mass), i.e.  

      2
00TotalR cmEE ∞−=   ;                                 (28)  

this is the same definition as the one we provided via Eq.(22), with the difference that 

RE  of Eq.(27), now points to the “rigorous result” [whereas SchrE  of Eq.(26-a) 

constituted a first approximation to it]. 
For the reason which will become clear soon, we will write Eq.(27) in a simpler 

form:     

0S0S0
2

0

2

EU
m2

ψ=ψ+ψ∇−
∞

h
   ,                                                         (29) 

 
where we define SE  and SU  as 

      
2
00

2
R

RS
cm2

E
EE

∞

+=  ,                                       (30-a) 

 

      
2
00

2
0

42

0

2

S
cmr

eZ

2

1

r

Ze
U

∞

+−=   .                                      (30-b) 

Note that once SE  is known, interestingly there are two roots RE , corresponding to 

it. 
 

5.3.Equation Equivalent to that of Dirac’s Relativistic Equation 

Above we preferred to define the quantities SE  and SU , for the following reason:  

On the basis of the classical Schrodinger Equation [Eq.(26-a)], RE  [from      

Eq.(30-a)] would be straight SE ; thus in this case SE , RE  and SchrE  are all the same 

quantity. Through a better approach, but where we neglect the second term of the RHS 
of Eq.(30-b); RE  of Eq.(30-a) becomes  
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                      (in the case where we neglect the potential energy alteration  

                       due to the mass decrease of the bound electron) 

 
where n is the principal quantum number. 

RE  can further be refined via calculating the two roots of Eq.(30-a):   


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Thus the root 
)(RE +
 for the positive sign yields  

  

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


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2
fs

2
2
00)(R

n

Z
11cmE  ,                                      (32-b)       

which strikingly turns out to be the exact Dirac solution were (the second term at the 
RHS of Eq.(31) neglected, and) the spin-orbit interaction not taken into account [1]. 

We can right away estimate that, in this case the magnitude of RE  is larger than 

that of the corresponding Schrodinger eigenvalue, as much as 2
00

2
R cm2/E ∞  (yielding a 

downward shift) [cf. Eq.(23-a)].  
But, what we just have come to neglect essentially, is the effect of the mass 

decrease of the bound electron, altering the potential energy input to the classical 
Schrodinger Equation. In other words, the RHS of Eq.(31) or Eq.(32-b) represents the 
corrected Schrodinger eigenvalue based on only the relativistic effect due to the motion 
of the electron.  

Recall yet that, along the line we pursue, Eq.(31) is incorrect, since Eq.(30-a) 
should be considered together with the RHS of Eq.(30-b) including not only the first 
term, but the second term, as well. This is what we will undertake below.  
 

5.4.The Shift Discovered Along our Approach - Contrary To Dirac’s Prediction - 

is Upward, and not Downward, and is Twice as Important as that of Dirac  
In the case we consider Eq.(30-a), together with Eq.(30-b) as a whole, the 

eigenvalue *

Schr
E , in conformity with the classical Schrodinger Equation’s eigenvalue 

still bears the form displayed by  

     
2
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R
cm2

E
EE
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∞

+=
*

**  ,                      (33) 

but now on the basis of the perturbed potential, defined by the second term at the RHS 
of Eq.(30-b). 

The quantity *

Schr
E  is to be compared with the eigenvalue Unpr

SchrE  of the unperturbed 

classical Schrodinger Equation, i.e. [cf. Eq.(23-a)]       
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But, evidently 

       Unpr
SchrR EE ≅*  .                                                                      (35) 

Thus the perturbed Schrodinger eigenvalue *

Schr
E  of Eq.(21) can be expressed as  
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n4

Z
1E

cm2

)(E
EE

Schr
 .              (36) 

(in the case where we take into account the potential energy  

 alteration due to the mass decrease of the bound electron, along the          

 relativistic dilation of the mass of the electron, in motion) 

 
Thus, it is question of – not a downward, but  – an upward shift, with regards to 

Unpr
SchrE , and this as much as )n4/(ZE 22

fs
2Unpr

Schr α . 

Recall that, as we discussed above, the upward shift we figure out, does not 
interfere with the successful quantum electrodynamical predictions, such as the 
prediction of Lamb shift (since here it is question of relative distances between energy 
levels); though, our finding as stated, should be expected to remedy the discrepancies 
between theory and experiments.  

Anyhow, it is amazing that (supposing the proton is fixed), one can obtain the total 
energy of the electron (diminished by the energy content of its proper mass), 
embodying both its proper mass decrease due to binding, and the relativistic effect 
arising from its motion around the nucleus, from a simple equation just bearing the 
form of the quantum mechanical description written in the non-relativistic case, where 

merely the classical eigenvalue SchrE  is altered by )cm2/(E 2
00

2
Schr ∞−  while the classical 

potential energy is altered by )c2m/(reZ 2
00

2
0

42
∞ , [cf. Eqs. (27)]. 

*  
The foregoing discussion allows us to consider Eq.(1) as a basis, instead of Eq.(13), 

in order to develop a straightforward relativistic quantum mechanical description with 
regards to  gravitation, to be visualized whenever it may be necessary, and mostly for 
very strong fields. 

This is what we undertake next. 
 

6. Full Quantum Mechanical Deployment of Our Approach With 

Regards to Gravitation 

  
Here again we will consider for simplicity just two objects, one very massive and 

the other one is very light, so that the former can be assumed throughout the motion at 
rest vis-à-vis the very light object.   

Let us then evaluate the difference D  based on the usual relativistic definition of 
the momentum )r(p 0  of the electron on the orbit, i.e. 

)r(v)r(m)r(p 0000 = ;                            (37) 

note that here )r(m 0  is the overall mass, defined along our Eq.(11) [along with Eqs. 

(12-a) and (12-b)]. 
Thus 
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Recall on the other hand that 2
00 c)r(m  is nothing else, but (in the relativistic sense) 

the total energy TotalE . Then   
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We can compose the correct relativistic quantum mechanical equation for a 

stationary case, to replace the classical Klein-Gordon Equation, here again, via the 
usual quantum mechanical symbolisms of the momentum, and the energy, i.e. 

∇−= hirp 0 )( ,                                (41) 
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Thus  
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                 (correct relativistic equation written  out of the “overall mass”  

                  expression, embodying the mass deficiency of the bound electron 

                  instead of the classical Klein-Gordon Equation) 

where ),( 00 trΦ  denotes the space and time dependent wave function; note that by 

“correct relativistic equation”, we mean, “equation taking into account the mass 
deficiency of the bound electron, next to the mass dilation of it, due to its motion”. 

Eq.(40), for a stationary case should be written as  

( ) )ψ(rE)ψ(reαexpcmc)ψ(r 0
2
Total0

2α
0

4
0

2
0

2
00

22 =−+∇− −
∞h  ,                              (44)                            

(correct relativistic eigenvalue-eigenfunction equation  
             written with regards to gravitation)  

 
where )r( 0ψ , in short 0ψ , is the eigenfunction of the relativistic description of the 

stationary case in consideration; TotalE  then becomes the corresponding eigenvalue. We 

will see below that Eq.(44) well reduces to an equation involving TotalE  instead of 
2
TotalE , so that at the level of this equation, one does not have to question the classical 

meaning of the wave function )ψ(r0 . 
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6.1.Derivation of a Schrodinger Equation for Gravitation Based on the Present     

Approach 
We can easily derive a Schrodinger Equation, based on Eq.(44). Thus, note first that 

the eigenvalue SchrE  yeld by the Schrodinger Equation is less than TotalE  as much as 
2
00 cm ∞ , the energy equivalent of the rest mass of the electron, i.e. 

2
00TotalSchr cmEE ∞−=   .                                 (45) 

(definition we make in conformity  

with the eigenvalue of the Schrödinger Equation)   
Recall that TotalE  is, by definition [cf. Eq.(4)] a positive quantity. Therefore SchrE  here 

again, is a negative quantity, and as a first approach, can be quickly predicted to be  

      
2

22
2
00

2
00

22

2

2
00Schr

n2
cmcm

n2

1
1cmE

α
−=−α−≅ ∞∞∞

Z
Z )(    (for small Z’s) ,       (46-a)  

where we define the dimensionless quantity Z  as   

   
2

0

e

mG ∞=
M

Z  ,                                                             (46-b) 

in order to be able to keep the same formalism as that we used throughout the previous 
section. (Recall that the gravitational quantities were defined above.) 

Eq.(45) thus can be rewritten as 
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     Via Eq.(45), Eq.(44) will be written as  

          ( ) 0
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(correct relativistic quantum mechanical equation written with  

 regards to gravitation based on the overall mass expression)  
Note that this equation is rigorous; thus so, at this stage, is SchrE . 

Now, let us arrange the brackets at both sides of this equation, noting that both 0α  

and )cm/(E 2
00Schr ∞  are generally very small as compared to unity. 

Thus:  
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M
h      ,                          (49-a) 

or the same 

0Schr000
22

0

E)r(V
m2

1
ψ=ψ+ψ∇−

∞

h      (c.q.f.d.) ,               (49-b) 

              [classical Schrodinger Equation derived from the correct  

               relativistic equation, with the approximation that )cm/(rmG 2
0000 ∞∞− M   

              and )c/(mE 2
00Schr ∞  are very small as compared to unity]   

where )r(V 0  now denotes the classical gravitational potential energy 00 r/mG ∞− M .  
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6.2.Correct, Simple Relativistic Quantum Mechanical Equation with Regards to 

Gravitation 

Via taking into account the terms we have neglected in Eq.(25), but neglecting 
(without any loss of generality), terms higher than the second order term in the Taylor 
expansion of the exponential term, we arrive at an equation which can be considered 
well equivalent to Dirac’s relativistic equation, written for gravitation:††† 
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        (correct relativistic quantum mechanical equation for gravitation 
                  derived from the correct relativistic equation)  
where RE  is the rigorous total energy (diminished by the energy content of the rest 

mass):  

      2
00TotalR cmEE ∞−=  ;                                                                 (51)  

this is the same definition as the one we provided via Eq.(45), with the difference that 

RE  of Eq.(50), now points to the rigorous result [whereas SchrE  of Eq.(49) constituted a 

first approximation to it]. 
We can write Eq.(50) in a simpler form:      

0S0S0
2

0

2

EU
m2

ψ=ψ+ψ∇−
∞

h
   ,                  (52) 

where we define SE  and SU  as 
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Once again, our approach, allowed us to deploy, in a straightforward way, the 
quantum mechanical version of it. It is still amazing that (supposing M  is fixed), one 
can obtain the total energy of the light mass (diminished by the energy content of its 
proper mass at infinity), embodying both its proper mass decrease due to binding, and 
the relativistic effect arising from its motion around M , from a simple equation just 
bearing the form of the quantum mechanical description written in the non-relativistic 

case, where merely the classical eigenvalue RE  is altered by )cm2(E 2
00

2
R ∞− /  while the 

classical potential energy is altered by )cm/(rmG 2
00

2
0

2
0

22
∞∞M . 

                                                
†††  The rigorous equation is  
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        together with [cf. Eq.(12-b)] 
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6.3.A Quick Estimation of the Outcome 
We can develop a feeling about the outcome of Eq.(50). For this, let us consider 

Eqs. (3), (5) and (6-a), for a circular orbit 
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Next, we should write the Bohr’s postulate in an appropriate way. For this, it would 
be useful to recall de Broglie’s doctorate thesis [2].  

Along this approach, Bohr’s postulate reduces to the expression of de Broglie wave 
(associated with the electron’s motion), confined (thus, like any classical wave, bound 
to be quantized), on the orbit. But the momentum of the electron entering the de 
Broglie’s relationship, must be the local relativistic momentum, where then, the “mass” 
should be taken as the overall mass, we defined at the stage of Eq.(1).  
In fact, the first author was recently able to derive the de Broglie relationship, based on 
the main idea presented herein, i.e. the mass deficiency delineated by the bound 
particle, regarding either an electric field or a gravitational field, though inevitably 
inducing an interaction, at tachyonic speeds [37,38]. ‡‡‡  

 
 
 

                                                
‡‡‡  Based on just the energy conservation law, we have come to figure out that, the gravitational motion 

depicts a “rest mass variation”, throughout [cf. Eqs. (4) and (5)]. Consider for instance, the case of a 
planet in an elliptic motion around the sun; according to our approach, an “infinitesimal portion of 
the rest mass” of the planet, is transformed into “extra kinetic energy”, as the planet approaches the 
sun, and an “infinitesimal portion of the kinetic energy” of it, is transformed into “extra rest mass”, 
as it slows down away from the sun, while the total relativistic energy remains constant throughout. 
The same applies to a motion driven by electrical charges.  

 
One way to conceive the mass exchange phenomenon we disclosed, is to consider a “jet effect”. 
Accordingly, an object on a given orbit, through its journey, must eject mass to accelerate, or must 
pile up mass, to decelerate. 

 

The speed U of the jet, strikingly points to the de Broglie wavelength Bλ , unavoidably coupled with 

the period of time 
0T , inverse of the frequency 

0ν , delineated by the electromagnetic energy content 

0hν , of the object; 
0hν  is originally set by de Broglie, equal to the total mass 

0m  of the object (were 

the speed of light taken to be unity).  This makes that, the “jet speed” becomes 

0
2
0

2
0

2
00B vc/v1cT/U −=λ= . 

 
This result seems to be important in many ways. Amongst other things, it may mean that, either 
gravitationally interacting macroscopic bodies, or electrically interacting microscopic objects, sense 
each other, with a speed much greater than that of light, and this, in exactly the same way. 
Furthermore, it induces immediately the quantization of the “gravitational field”, in exactly the same 
manner, the “electric field” is quantized.    
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Thus we are to propose 
      nhrv)r(m2 0 =π ,  n=1, 2, 3, … .                    (55) 

  (de Broglie’s relationship rewritten by the author, instead 

   of Bohr’s postulate, taking into account  the overall mass 

   decrease of the bound electron, confined on the given orbit)  

 
The two unknowns n0v  and n0r  (to be associated with the nth quantum level), for 

circular orbits can then be found to be [27] 
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and 
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Here, the term in n2, next to unity, in between brackets, for common celestial 

bodies, is infinitely small. This makes that the velocity of the rotating object for n=1, as 
well as for enormously high quantum numbers, easily attains the speed of light. Its orbit 
radius r, accordingly, becomes  
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G
r

M
≅  ;                                                                  (58) 

r becomes sensitive to n, only around values of n, satisfying the relationship  
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For a binary system, each of the stars bearing about the mass of our sun, one has 
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for which r becomes only twice as that furnished by Eq.(58), and the rotational speed of 

the bound object is about 2/c2 0 .  

Based on Eq.(59), we can further have an estimate about the mass m of relatively 
light objects, gravitationally bound to each other, on a quantized state. Thus let us 
consider a binary system, at n=1. Thus 
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which interestingly, turns to be the Planck mass.  
The size of such a system based on Eq.(57), becomes 
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which is twice the Planck length. 
The total energy of such a massive atomic system, can further be estimated quickly, 

noting the following points:  
 
i)   It seems to be question of atoms made of Planck masses, bound to each other   

gravitationally. We would like to call such a system a gravitational atom. Thus, 
suppose, it is question of two Planck masses, bound to each other 
gravitationally.  

ii)  The total energy of such a system, as well as energies related to the transitions 
between states (just like in the hydrogen atom), is proportional to the reduced 
mass of the system, which evidently points to the order of magnitude of Planck 
mass.      

iii) Consequently, the total energy of the gravitational atom, as well as energies 
related to the transitions between its states must be greater than those of 
hydrogen atom, as much as [the mass of the Planck mass] / [the mass of the 
electron], i.e. about 2x10-8 / 10-30, or 2x1022. 

 
The energies in question in hydrogen atom, are few electron volts; this frame yields, 

energies for a gravitational atom, in the order of ev1022 , which may clarify, the origin 
of so very high energies encountered amongst cosmic rays.  

Note that our finding about the gravitational quantum states, necessarily induces the 
tendency of an object in motion at a high energy level, to move to lower energy levels. 
Here may be a clue for the creation of gravitational waves, in fact, according to the 
present approach, nothing but electromagnetic waves we expect to be emitted via 
transitions in question.  
 

7. General Conclusion 

 
The energy conservation law, in the broader sense of the concept of energy 

embodying the relativistic mass & energy equivalence, has been a common practice, 
chiefly nuclear scientists make use of.  

Yet amazingly, besides it is not applied to gravitational binding, it also seems to be 
overlooked for atomic and molecular descriptions.  

Thus, via Newton’s law of gravitation between two static masses, and the energy 
conservation law, in the broader sense of the concept of energy embodying the 
relativistic mass & energy equivalence, on the one side, and quantum mechanics, on the 
other side, we have shown that one is able to derive the end results aimed by the 
General Theory of Relativity.  

Likewise, we proposed to reformulate the relativistic quantum mechanics on the 
basis of Coulomb Force, but assumed to be valid only for static electric charges. 

When bound though, the total mass, or the same, the overall energy of the electric 
charges at infinity, must be decreased as much as the binding energy coming into play.  
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The frame we draw amazingly describes in an extreme simplicity, both the atomic 
scale, and the celestial scale, on the basis of respectively, Coulomb Force (written for 
static electric charges), and Newton  Force (written for static masses).  

The decrease of the mass of the bound particle, via Theorem 1, this time applied to 
the internal dynamics of the bound particle, changes both the period of time and the 
size of space to be associated with the internal dynamics in question, in exactly the 
same manner, at either an atomistic scale or a celestial scale.    

Thus, the frame we draw, yields exactly the same metric change and quantization, 
at both scales. 

One important conclusion is that the metric change nearby a nucleus in regards to a 
charge is exactly the same as the metric change nearby a celestial body with respect to a 
mass. 

For simplicity, we made our presentation on the basis of just two particles, one very 
heavy, the other one very light, at both scales, without though any loss of generality.  

All of our predictions, perfectly agree with the experimental results.    
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