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The old classical theory of extended elementary particles is introduced; in the first part, the basic non lin-
ear equations for stable particles are presented, together with some simple solutions for semi-infinite media. In

the second and third parts, the well-known failures of classical physics in the microscopic domain are refuted

with old classical arguments; the major arguments of modern physics against the application of classical phys-
ics in the microscopic domain are rejected. 1t is concluded that, although the old classical theory is in a imma-
ture state of development, there is no need to introduce modern concepts, like photons or relativity, to describe

microscopic phenomena; they can be described in old classical terms.

I. Introduction

Although the concepts of relative space and time are com-
pletely foreign to the classical taste in physics, the orifinal mean-
ing of ‘classical physics’ has been corrupted by the quantum
revolution, as nowadays the term includes both special and gen-
eral relativity. Moreover, the term ’classical electron model’ re-
fers either to the point model - an absurdity in classical terms -
or to the naive spherical model - an inherently unstable structure
that is obviously inappropriate to predict the parameters of the
electron. [1-5]

The “old classical physics’ to be considered here assumes ab-
solute space and time, and within this framework Maxwell’s
equations for the electromagnetic field and Newton's equation
for the gravitational field, together with their respective force
equations, provide all that is needed to describe natural phenom-
ena. To predict microscopic phenomena in perfect detail, the
extended structure of the elementary particles must be first
found, by solving the old classical field equations to be pre-
sented. These equations are not well known, and are exceedingly
complicated, so up to now their exact solutions have not been
found. Although the exact shape of the electron is not yet
known, approximate ring models are available [6-13], so this un-
solved problem does not preclude the old classical theory from
making some reasonable assumptions, and from there to stand
up on its own feet, to counter many well known arguments
against its validity.

The search for an old classical model for the stable electron
structure is not very popular, due to the widespread belief that
the truth is taught in colleges and universities about the failures
of classical physics in the quantum domain. This paper attempts
to challenge this belief, by providing factual evidence that - in
general - the most popular arguments against classical physics
are false. These dogmatic reasons do not require much sub-
stance, as long as they serve well their pedagogical purpose: to
ensure that the new students of physics reject the classical order
in the microscopic domain, and embrace instead the ambiguous
uncertainty of quantum physics. The revenge of old classical
physics undermines this purpose, providing more able classical

models'that contradict the current dogma that modern physics
preaches against classical physics.

The subject at hand is extensive; classical physics has, for so
many decades and in so many areas, been unfairly attacked and
humijliated within the microscopic domain that only a series of
monographs could do fair revenge in the subject. In this intro-
ductory paper, no attempt will be made to demonstrate the fac-
tual evidence collected in defense of old classical physics; most of
the arguments given below are quite straightforward, some of
them are available in the literature, and all of them can be rigor-
ously demonstrated.

II. Foundations of the Old Classical Theory

A. Basic Equations for Elementary Particles
1. Conditions for Stability

Assume the center of mass of the elementary particle at rest;
the first condition for stability is the absence of electromagnetic
radiation, as otherwise the particle’s mass will decay with time.
This condition is automatically satisfied if the electromagnetic
fields do not vary with time; thus, we assume static fields in the
analysis of this particular problem. The electrostatic field E can
then be derived from a scalar potential ¢ (E=-V¢) and the
magnetostatic field H can be derived from a vector potential A
(H=VxA). The source of the electrostatic field is the charge
density p, and the source of the magnetostatic field is the current
density J that obeys the continuity equation, which in static
fields is VeJ =0. Maxwell’s equations in vacuum (permeability

€, permittivity p, ) for the potentials are:
Vi +ple,=0 , VPA+J=0

where Lorentz’s gauge ( V-A =0 ) has been implicitly assumed.
The electromagnetic self-stress over the charged volume is:

fp = p(E+p,d x H)

The gravitational field F can be derived from a scalar poten-
tial y (F=-Vy). The source of the gravitational field is the
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mass density 8. Newton’s equation in terms of the gravitational
constant G is:

V2y-4nG5=0

The gravitational self-stress is:

f, = 5F

The relation between the electromagnetic fields and the
sources of the gravitational field must be defined. The simplest
assumption is that all mass and angular momentum are of purely
electromagnetic origin; the perennial charge density p is the

fundamental source, and due to its primordial flow at a velocity
v, a current density J =pv is created. Maxwell’s equations

allow the potentials ¢ and A to be found in terms of p and J.

Once the electromagnetic field is defined, the most logical candi-
date for the source of the gravitational field is the mass density
associated to the energy density of the sources:

8= 2(p0+1oA-d)/ ¢ = =2 (eg0- V20 +1yA-V2A) / &

In this way the gravitational potential y can be found in terms
of pand J.

In this context, the mass density & is a static and stationary
property of the electromagnetic fields and their sources. There is
no mass movement inside the stationary particle; only the charge
density p flows at a velocity v. When the particle is at rest,

there are no angular moments or forces of mechanical origin.
The gravitational force equation can be written as:

f, = p[— % V(9 +p,A-v)/ ¢ J

The quantity within square brackets is the effective electric field
that accounts for the gravitational force, so in this model gravity
is naturally pictured as a second-order electromagnetic effect.
The second condition for stability is that the total self-stress
vanishes anywhere within the charged volume. The followirng

equilibrium condition must hold: fy +f, =0. It can be written
as:

(V20)- (V) - Z2 - (VZA)x (Vx A) +
[% @ V20 + ZZAV2A) / ¢ ] Vy =0

where Z, = Jii; /g, is the free space impedance. The equilib-

rium condition is nonlinear due to the dependence of y on A

and 0.
Poisson’s equation for the gravitational potential y is:

V2y +2nGlegd- V20 +1,A-VZA) / c® = 0
The third condition for stability is that the primordial flow of

charge is perennial; the electromagnetic fields should do no
work. This requires that E-J =0: :
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V$-V2A =0

The three previous equations must be simultaneously satis-
fied to find A, ¢ and y . These are the basic non linear equa-

tions that an old classical model for elementary particles must
satisfy within its charged region. This is a plausible old classical
formulation for stability - not necessarily the only one.

2. Primordial Boundary Value Problem

In toroidal coordinates (1,8, ) we assume a continuous and
finite distribution of charge density p(n,6,¢) inside a torus

whose boundary is a toroidal surface defined by n=mn,. The

region inside the boundary surface (1 >n,), where the condi-
tions for stability must hold, is named Poisson’s region, because
here ¢ and y obey Poisson’s scalar equation, while A obeys
Poisson’s vector equation.

Outside the boundary surface (1 <1,) there are no sources
(p=dJ =8=0) so this outer volume is named Laplace’s region,
because here ¢ and Yy obey Laplace’s scalar equation, while A

obeys Laplace’s vector equation:
V2%=0 , V2PA=0 , Viy=0

In Laplace’s region, the boundary conditions at infinity (1 — 0,
8 — 0) require that the potentials achieve the asymptotic values
that characterize the following observables of the particle: the
charge @ that fixes the value of ¢, the vector M that fixes the
value of A and the mass m that fixes the value of y .

The boundary conditions at the interface require that the
three potentials and their_derivatives with respect to the radial
coordinate 1 are continuous at n=m,. The continuity equation
(V-J =0) requires that the normal component of the current
density must vanish at the boundary (J,, (1,6, ¢) = 0). The con-
tinuity of the charge density at the interface requires
p(no,e,tp) =0. Although this seems to be a plausible require-

ment, it is not mandatory from the point of view of Maxwell’s
equations.

The primordial boundary-value problem can be considered to
be solved when a solution for A, ¢ and y is found that satis-
fies: 1) the conditions for stability in Poisson’s region; 2) the
boundary conditions at the interface; 3) Laplace’s equations in
Laplace’s region; 4) the observable boundary conditions at infin-
ity.

Surface sources ( pg,J/g,8g) are not acceptable in a rigorous
old classical model because they require discontinuity of the
normal derivatives of the potentials. Nevertheless, surface
sources are useful in approximate models; in this case the appro-
priate limiting form of the boundary conditions at the interface
must be employed. In toroidal surface models the potentials may
satisfy Laplace’s equation inside the boundary surface; in this
case Poisson’s region is reduced to the interface.
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3. Properties of Elementary Particles

Assuming that the fields are known, the basic properties of
the stationary particle can be computed. [14,15]. The charge @
of the particle (—e for the electron and +e for the proton) is
equal to the volume integral of the charge density over Poisson’s

o [ffoe

The mass m of the particle (m, for the electron and m, =

region:

1836 m, for the proton) is equal to the volume integral of the

mass density over Poisson’s region:

m={[[ av

The magnetic moment vector M of the particle (M, for the elec-
tron and Mp =M, /658 for the proton) is equal to the following

volume integral over Poisson’s region: ¢

Mg [fexsa

For the electron M =eh/2m_ where h=2nh is Planck’s con-
stant. The Compton wavelength of the electron is A, = 21k =
hlmec=24x 1072 m, so M, =eX c/2. This last equation and
the stability condition to be considered below require that the
particle’s largest dimension be of the order of 2% .

The angular moment vector, or spin S, of the particle
(S, = Sp =S =h/2 for both the electron and proton) is equal to

the following volume integral over the whole space (Poisson’s
and Laplace’s regions):

s=[[[[rx®xmret]av

Assuming that the magnetic moment and the spin are parallel

along a certain axis, the g factor (g, =2 for the electron and

g, = 5.6 for the proton) of the particle is:
g=02m/Q)M/S)

In electron scattering experiments, the maximum electric field
produced by the particle is measured. The effective scattering

radius rg of the electron is equal to the radius of an equivalent

spherically symmetric shell of surface charge, that has total
charge e and that produces the same maximum electric field.
(16]

Sommerfeld was wrong when - after presenting some short-
comings of the spherical model - he claimed without proof that
the spin and the magnetic moment of the electron are “inaccessible
to Maxuwell’s electrodynamics” [3].
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B. Known Solutions of the Basic Equations

The basic equations are very complicated and scarcely
known, so currently only very simple solutions in semi-infinite
media can be presented.

1. Solutions Neglecting Gravitational Fields

As first approximation the gravitational field is neglected, the
equilibrium condition is simplified to f; =0, this leads to a sin-

gle linear equation:
(V2) (V) = Z2 -(V2A)x (VX A)

In this approximate case, the problem arises that the lossless
equation E.J =0 is a consequence of the equilibrium condition

fz =0 (it is deducted from fg+J =0), so there are not enough
independent equations to solve for A and ¢. Anyhow, some
particuiar solutions that satisfy the equilibrium condition can be

found by assuming a simple form for vand a suitable relation
between A and ¢ that satisfies Poisson’s vector equation:

- V2A = —J = —pv = £/ uV %}

In simple geometries, when the charge density p flows at the

speed of light, the magnetostatic cohesive force is exactly equal to
the electrostatic repulsive force. The two luminal solutions to be

considered below also satisfy the lossless condition.
In rectangular coordinates (x,y,z ), if v is a constant vector,

and A(x,y,2)= R o(x,y,2), then the luminal condition
(v = c? ) and the condition E-H =0 are necessary for stability.
A particular type of luminal rectangular solution that satisfies
f; =0 in a charged region is v=c-2, H= H, (x)y and
E=E (x)x.

In cylindrical coordinates (r, ¢, z), when the current flows in
the z direction (v="0,2, A=A %) and the potentials are inde-
pendent of z (semi infinite geometry), luminal solutions
(v-v =c2) with A (r,9)=g,0-¢(r,¢) satisfy the equilibrium
condition. This result is independent of the charge distribution
p(r, ) and does not require axial symmetry about the z axis.

‘Pauli was wrong when he stated that “electrodynamics is quite
incompatible with the existence of charge”, as he incorrectly con-

cluded that the only possible solution for f; =0 is v =0 which
immediately leads to p=0.[1]

Oppenheimer was wrong when he stated that there is no
suitable distribution of charge and current that can produce

f; =0, his “general proof’ assumes a priori that p=0, so it is not

applicable to Poisson’s region. [5]
In spherical coordinates (r,6,9), a spherically symmetric

model rotating about the z axis (V=v$, A= Aq) (,0)¢ ) cannot

be stable because the magnetostatic force vanishes on the axis of
rotation, so there is no way to balance the repulsive electrostatic
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force in this axis. The spherical model is discarded as an old
classical model.

Jackson was wrong when - after considering the instability of
the spherical model - he concluded without proof that “a purely
electromagnetic model of matter must be abandoned” [2]. He and
many other authors [1,3-5] were misguided when they seemed to
believe that spherical symmetry is the only possibility for an old
classical electron model.

In toroidal coordinates (m,6,¢ ), with axial symmetry and

toroidal currents (v=1(n,80)¢ , A= A(P (1,8)¢ ), it can be shown

that there is no stable solution. In particular, the luminal condi-
tion (v = ¢} does not satisfy the equilibrium condition, except in
the limiting case of an infinitely thin ring (1, — ).

This last fact makes the thin luminal ring a better guess than
the naive spherical model; nevertheless, the ring is only a rough
average model of a complex electroimagnetic and gravitational
structure that should not display axial symmetry. This lack of
symmetry implies that centers of mass and charge of the particle

could be at a certain distance < Xc "from the axis of rotation of

the charge.
2. Solutions Considering Gravitational Fields

The general equilibrium equations are non linear, so in cylin-
drical coordinates (r,9,z) a flow with uniform charge density
and speed cannot be in equilibrium. Even the most elementary
semi-infinite geometry with axial symmetry [p(r), v="v(r)z) is
quite difficult to handle. To compute the absolute value of the
potentials, it can be assumed that this geometry is an approxima-
tion to the cross section of a slender ring of known dimensions.
A series procedure in powers of the radius r (normalized to the
boundary radius) leads to a system of equations that can be
solved iteratively to find the distribution of the sources. In this
case only very specific functions p(r) and v(r) satisfy the equi-
librium condition; the speed of the charge is subluminal (v < ¢).

An axially symmetric solution exists in cylindrical coordi-
nates (r,9,z) for a subluminal cylindrical shell with uniform

.

surface charge (p — p,, V="VZ): .
W/ =1-K

where K = 4nGmf£0 /e? =2.4x107™* is the ratio of the gravita-

tional and electrostatic forces between two electrons separated at
distances much larger than the largest dimension of the particle
(r>>2%)).

If two parallel fibers of charge flow are apart by a distance
much larger than their radii, they will be in mutual equilibrium
when the previous equation for v/ ¢ holds.

3. The Electron Ring Model .

Consider an axially symmetric luminal ring of surface charge
with large radius R and small radius r << R, rotating about its
axis of symmetry. The parameters of this model are:

m=p,Q*(p-1)/4n’R , M=%QRC
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S=Z,@*p-2)/4r" , g=~(p-1/(p-D=1 , ry=JuwR

with p=In(8R/r) a constant to be fixed, that must be much
greater than unity ( p >> 1) for the model to represent the correct
mass. As g =1, this rough equivalent model can predict either
the correct magnetic moment, or the correct spin of the electron,
but not both of them together. The model must predict at least
the charge and mass of the electron; these requirements provide
an equation that relates R and p. Two basic ring models are
here presented:

Correct spin model: To achieve the correct spin it is required that
S=38,. This leads to R=%_/2. The predicted magnetic mo-

ment in this case is about half the correct value. The charge ro-

tates at angular frequency w, = 2mec2 /h.
Correct moment model: To achieve the correct magnetic moment
it is required that M = M, . This leads to R=%_. The predicted

spin in this case is about twice the correct value. The charge ro-

tates at angular frequency ®, = mec2 /h.

The ring models are only rough old classical approximations
that provide an equivalent axially symmetric picture of a more
complex and currently unknown asymmetrical electron struc-
ture. Both ring models share the following features that contrib-
ute to the revenge of old classical physics:

a. Very low self-stress

A rigorous solution in toroidal coordinates [8] shows that the
electromagnetic self-stress is more than 90 orders of magnitude
below the electrostatic self-stress. Although the ring models are
not perfectly stable, they do provide a good numerical approxi-
mation to a stable structure. The cohesive character of the mag-
netostatic force is consistently ignored in works by those authors
who - based on the obvious failures of the spherical model - con-
sider classical electrodynamics to fail in the microscopic domain
[1-5]. N
b. Very low scattering radius

The effective scattering radius r g of the models is less than

10-% m, the current empirical limit is r_g < 10718 m, so the ring

electron satisfies this requirement by about 40 orders of magni-
tude. Hestenes is wrong when he states without proof that an

extended electron of size X . cannot display the required scatter-
ing radius [17].
c. Gravitational stress much larger than electromagnetic stress
The gravitational self-stress is 46 orders of magnitude larger
than the electromagnetic self-stress. This means that - although
the gravitational force between two electrons is 44 orders of
magnitude smaller than the electrostatic force - in the micro-
scopic domain the gravitational stress plays a crucial role when
the electrostatic and magnetostatic stresses are almost in equilib-

rium.
d. Logarithmic singularity for infinitely thin ring

If the small radius tends to zero (r — 0) the same logarithmic
singularity of quantum electrodynamics is obtained. This nota-
ble coincidence has been overlooked where Jackson compares
this quantum singularity with the classical singularity; he a priori
assumes that the classical electron must be spherical [2].
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e. Well described by equivalent mechanical models

As in any stationary old classical model, the angular momen-
tum is of electromagnetic origin and there is no mass movement.
Anyhow, an approximate equivalent mechanical model can be
constructed to compute spin by assuming that a uniform slender

ring of mass m and large radius R rotates at angular speed o,

about its axis of symmetry. This equivalent mechanical rota-
tional model allows the angular momentum to be computed as if

it were from mechanical origin ( S = wORm ), with an error below

0.5%. The equivalent moment of inertia of the ring is [ = mR?
and its mechanical rotational energy is W =1Iw, = mRzou0 which

differs less than 0.5 % from the magnetostatic self energy of the
electromagnetic model.

ITII. The Unnecessary Photons
A. The Photoelectric Effect

The fact is that an electron illuminated by an electromagnetic
wave of angular frequency ® acquires a kinetic energy W, =ho

where h =2nh is Planck’s constant.

Physic students are taught that there is no classical interpreta-
tion for this effect, and so the quantum interpretation must pre-
vail; the electromagnetic wave is made of particles called pho-

tons, each one of energy Wp = hw , the point electron is somehow

able to absorb a photon and acquire a kinetic energy W, = Wp

[18, 19].

In 1905, when Einstein put forward his prize winning heuris-
tic principle, the magnetic moment and the angular momentum
(spin) of the electron had not yet been discovered. When these
two experimental facts are considered together, an old classical
interpretation of the photoelectric effect naturally arises.

The first fact is that the electron has angular momentum. The
old classical theory assumes that this moment is of purely elec-
tromagnetic origin, but for approximate computational purposes
it employs equivalent mechanical rotational models. In the cor-

rect-spin mechanical model, a ring of radius Xc /2 rotates at

angular frequency w, = Zmec2 /h in a plane that is perpéndicu-
lar to the magnetic moment vector M, about an axis that will be
labeled as z. The moment of inertia about this axis is

I,,=h/20,. The conditions of electromagnetic stability bre—

clude axially symmetric solutions, so to introduce the required
asymmetry in electron structure, the center of mass of the particle

will be assumed to lie at a certain distance smaller than % c from

its intrinsic axis of rotation.

The second fact is that the electron has a magnetic moment.
This vector M must align itself with the magnetic field of the
wave, so the external torque on the particle vanishes, in the same
way as the magnetic needle of a compass aligns with the mag-
netic field of the earth. The magnetic field of the wave oscillates
at angular frequency @, 5o the magnetic moment vector M of
the electron will be forced to rotate at this same frequency in a
plane that contains this vector. The extended electron must rotate
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at frequency w about an external axis named y, that does not
intersect the charged region, otherwise its rotation will generate a
second harmonic of the wave frequency; a phenomena that has
not been observed. To avoid second harmonics, it is assumed
that the center of charge of the electron is separated at a distance
greater than X from this external axis of rotation.

To model the interaction between the intrinsic and external
rotations, we assume that the electron must revolve about two
perpendicular axes, the equivalent rotational energy associated

to the product of inertia Iyz about the y and z axesis:

Wyz = Iyzmwo

The existence of a product of inertia is supported by the lack
of symmetry of the electron particle - its center of mass may be at
a certain distance from the intrinsic rotational axis - and by the
requirement that the rotation forced by the wave is about an axis
external to the particle. This rotational energy has the required
dependence on ®, so we assume that it represents the energy
gained by the extended electron, due to the interaction of its in-
trinsic angular moment with the rotational movement induced
by the wave. As a first guess we assume that the product of iner-
tia is of the order of the equivalent mechanical moment of inertia

of the correct spin ring model (Iyz ~h/2w)) so we obtain

Wyz~hw/2.

In view of this later result we heuristically assume that the
product of inertia is twice the moment of inertia of the correct-

spin ring model (Iyz =h/w,) and that the rotational energy

associated to this product is totally transformed into kinetic en-
ergy when the rotating electron elastically bounces in an obstacle.
With these two later assumptions we obtain:

To estimate the product of inertia, the mass of the extended elec-
tron can be considered to be concentrated at a point that coin-
cides with its center of mass. For example, if this point lies at a

distance Kc /3 from its intrinsic z axis and at a distance 37&C

from the external y axis, then we obtain Iyz = mexi =hlw,

and the required value is obtained.

The old classical interpretation of the photoelectric effect is
that the electron performs a rotational movement at frequency
due the force exerted by the magnetic field of the wave on the
magnetic moment of the particle. The cross interaction between
this forced rotational movement at frequency ® and the intrinsic

rotation of the charge at frequency ®, - required to assure the

stability of the particle - generates a rotational energy #- that is
transformed into kinetic energy.

Wher and Richards were wrong when - together with many
other authors - they stated without proof that Maxwell’s equa-
tions fail to account for the photoelectric effect. {18]
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B. The Compton Effect

The fact is that when X rays of wavelength A are scattered at
angle 8 by materials, a beam of secondary radiation at a fre-

quency A" =X +% (1~ cos6) is observed.

The quantum interpretation assumes that the electromagnetic
wave is made of particles called photons each one of energy

Wp = hw, so the interaction between the electron and the wave

can be modeled mechanically as an elastic collision between an
electron and a photon. [18-20]

The old classical interpretation follows Compton [20] in his
classical description of the effect that bears his name; it assumes
that scattering electrons submerged in an electromagnetic wave
of wavelength A acquire a velocity v along the direction of
propagation of the wave givenby v/c=1/(1+1/%)).

When the equation for the Doppler Effect is considered, the
predicted wavelength shift of the secondary scattered radiation is

A"=X+A (1-cos6). The observed phenomena are predicted

without further assumptions. Compton gives both interpreta-
tions in the same prize winning paper, but to compute the inten-
sity of the scattered radiation he uses the classical interpretation,
not the quantum interpretation. [20]

Bolles was wrong when he stated - as many other physics
authors did - that electrodynamics cannot explain the Compton
effect [21]. All these authors do not seem to have been aware of
the contents of Compton’s paper on the subject. [20]

C. Radiated Spectra of the Hydrogen Atom

The hydrogen spectrum is well described by Bohr’s mechani-
cal model of the atom where a point electron circles about the
proton, in radial equilibrium between the centrifugal and the
electrostatic forces. This mechanical model gave a good predic-
tion of the frequency of the spectral lines, but it violated Max-
well’s equations [18,19]. Although in the end this model was not
good enough for quantum physics, it is nowadays presented as
sufficient evidence to condemn Maxwell’s equations in the mi-
croscopic domain. Those who follow this weak line of reasoning
have overlooked the fact that in Bohr’s model the point electron =
which is absurd in classical terms - can be replaced by a ring elec-
tron; the same equation for radial equilibrium holds, and the
same final results are obtained without violating Maxwell’s equa-
tions.

Hawking is wrong when he states - as many other physics
authors do - that classical electrodynamics fails because it is vio-
lated by Bohr’s model [22]. All these authors do not seem to be
aware of Allen’s proposal to replace in Bohr’s model the point
electron by a ring electron [9].

The fact is that when the electron changes between two states
that differ in energy by amount A, a spectral line of frequency
 is observed. The quantum interpretation is that a photon of
energy hw is generated; the old classical interpretation is that an
extended electromagnetic particle briefly oscillates at frequency
® and generates an electromagnetic pulse of frequency .
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IV. The Unnecessary Problems
A. Lorentz Transformations and Special Relativity

Lorentz’s transformations for the parameters (m, M,S) of an
electron moving at a speed v with respect to an absolute refer-
ence frame are well known [23]. All these transformations are
automatically satisfied by any electromagnetic electron model, as
long as isotropic contraction is assumed; that is; all electron di-

mensions are reduced by the factor V1-v%/¢?, not just that
dimension in the direction of movement.

According to this old classical interpretation, in scattering ex-
periments the effective scattering radius is reduced by the factor

V1-v2/¢% . The current upper limit for this radius (< 1078 m)
was measured with an energy of 29 GeV, and the mass of the
electron at rest is 0.51 MeV, so a reduction factor of

me(n)7me(0) = 56863 is expected. Considering isotropic con-
traction, the current upper limit for the effective scattering radius

of the old classical particle at rest is ~ 6 x 1073 m.

Special relativity assumes point observers and applicability of
the free space solution for a spherical wave in the presence of an
observer [24]. Both assumptions are invalid; there is no observer
that can be fitted into a mathematical point, and, in the presence
of any real observer, the free space solution is not applicable.
The equations of special relativity may be applicable in an imma-
terial world with point observers devoid of charge, but not in the
real world where the most elementary observer is an extended

charged particle whose largest dimension is of order 2% .

B. Planck’s Radiation Law and the
Discontinuity of the Energy Distribution

Blackbody radiation is well described by a law deducted
through a series of steps. The only step that contradicts old clas-
sical physics is the assumption that the energy of an oscillator
that oscillatés at a frequency ® can take only discrete values of
hw. This assumption is stated as “An oscillator that oscillates at
a frequency w can take only a discrete set of possible energy
values hw, 2h0, 3ho, 4k, ... et cetera.” [18,19]

The old classical interpretation to be presented assumes in-
stead that due to sub-harmonic radiation, those oscillators that
contribute to radiation at frequency ®, can have energy values
that are integer multiples of %®w. The old classical assumption is
stated as “The oscillators that radiate at a frequency ® have pos-
sible energy values hw, 2hm, 3hw, 4k, ... et cetera.”

The quantum interpretation assumes that a radiator that is
oscillating at a mechanical frequency  will only radiate at fre-
quency ®. Under this perspective, it is forced to conclude that
any electron that oscillates at frequency ® must take energy lev-
els that are equal to an integer multiple of A, to contribute to
radiation at frequency . [18,19]

The old classical interpretation assumes instead that an elec-
tron with rotational energy 4w that oscillates at angular fre-
quency @ takes a period T} =2n/w to execute is fundamental
cycle. Within the blackbody enclosure, this electron will be ex-

posed to the whole range of radiated wavelengths, and will exe-
cute synchronous oscillation at those particular frequencies
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whose periods are an integer multiple of its fundamental period
T, =nT,. Any electron that oscillates at fundamental frequency

, under the action of external fields will also oscillate at lower
frequencies w/n , radiating therefore at a discrete range of fre-
quencies ®, w/2, w/3, w/4,...et cetera.

The energy radiated by the blackbody enclosure at a certain
frequency o should consider all the possible oscillators that can
spectrally contribute; this includes the fundamental harmonic of
those oscillators that rotate at a frequency w, the second sub-
harmonic of those oscillators that rotate at a frequency 2w, the
third sub-harmonic of those oscillators that rotate a frequency
3w, et cetera.

From the old-classical point of view, only those oscillators
that have certain discrete nhw energy values will contribute to
the radiation at a given frequency w. This is almost identical to
the quantum interpretation, but in this old classical picture the
oscillators can attain a continuum of energy values hw by oscil-
lating at any possible frequency @; there are no prohibited energy
levels. The illogical assumption of discrete energy levels is to-
tally unnecessary, being replaced by the more logical assumption
of sub-harmonic radiation, without affecting the derivation of the
law. '

Wher and Richards were wrong when - together with many
other authors - they stated without proof that Maxwell’s equa-
tions fail to account for blackbody radiation [18].

C. The Missing Quarter of Electromagnetic Mass

The problem of the missing quarter of electromagnetic mass
is unnecessary in the context of the old classical theory; it is pecu-
liar to the physically absurd spherical electron model [2]. The
redefinition of electromagnetic momentum by Rohrlich [4] to
solve this problem is as unnecessary as the problem that it at-
tempts to solve; it has been resisted in the work of Boyer. [25]

D. Wave Particle Duality

The problem of the wave particle duality is peculiar to the as-
sumption of a point particle [18,19]; when an extended flexible
particle is considered, this duality is unnecessary. Bostick gives a
graphical example of how an extended electron goes through
two slits at the same time [12]. i

E. Radiation Reaction and Runaway Solutions

The weird assumption of a point particle avoids the problem -

of the electron structure. When this structure is neglected in the
computation of radiation reaction, this automatically leads to
weird predictions like the runaway solutions and the violation of
causality [2]. When a structure is assumed for the particle, these
weird solutions disappear [26]. All the problems obtained due to
the point particle assumption are unnecessary; they are Nature’s
indications that there is a price to be paid for avoiding the neces-
sary problem of the electron structure.

V. Conclusion

Nietzche defined truth as those set of beliefs that are neces-
sary for the preservation of the species. To preserve the ambigu-
ous uncertainty of modern physics it is necessary to reject the
logical order of classical physics in the microscopic domain. To
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preserve old classical physics it is necessary to ignore the weird

interpretations of modern physics, and then look with new eyes

the raw facts of microscopic phenomena. Table 1 compares the

alternative interpretations that modern and old classical physics

have to offer to some of the observed facts that have been here
13

considered.

Table 1.
Comparison of Modern and Old Classical Interpretations

Observed facts Modern Old classical
interpretation interpretation

Electron is stable Electronis a Electron has an

’ mathematical extended structure

point with no in equilibrium
structure

Spherical electron
model has many
defects

Nea,

Classical electro-

dynamics can not
describe the elec-
tron

Spherical model is
unsuitable to de-
scribe the electron

Magnetic moment
of electron is

1
—2-e7i,cc

Electron rotates at
speed ¢ oncircle

of radius %, [17]

Charge rotates at
speed ¢ within
region of radius
~ X,

Electron scattering

Electron is a

Electron of radius

radius is below mathematical ~ X, has scatter-

1018 m point with no ing radius <1078 m
structure

Photoeletric effect Electron absorbs Electron acquires
photon of energy rotational energy
ho ho

Compton's effect

Electron collides
elastically with a
photon

Moving electron
radiates according
to doppler effect

Bohr’s model pre-

Maxwell’s equa-

Maxwell’s equa-

dicts hydrogen tions are violated tions are not vio-

spectra by boint electron lated by ring elec-
' tron

Hydrogen line Electron jump Electron structure

spectra at fre-

generates photon

oscillates at fre-

quency of frequency ® quency ®
' Lorentz Space and time are | Moving electrons
transformations relative undergo isotropic

contraction

Planck’s radiation
law

Oscillators can

have only discrete
energy levels

Oscillators radiate
at some discrete
wavelengths

Electron behaves
both as a particle

and as a wave

Electron is dual:
can be either a
point or a wave

Electron has an
extended flexible
structure

The revenge of old classical physics against modern physics
is not complete; it has just begun. It will be over when one of the
following two conditions about the old classical nonlinear equa-
tions is rigorously demonstrated:

A. They do not predict the observed properties of isolated ele-
mentary particles. This will be an honorable death for old classi-
cal physics in the microscopic domain.
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B. They predict the observed properties of isolated elementary
particles. This will be the joyous rebirth of old classical physics
in the microscopic domain.

This paper attempts to cleanse the name of old classical phys-
ics and show that this little-known science deserves more respect
and further research before a final conclusion about its capability
in the microscopic domain can be firmly established. If some
readers are persuaded to contribute to this research - or at least to
look with a more classical attitude at microscopic phenomena -
the objective of this paper has been achieved.
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CORRESPONDENCE
Light Speed Constant. . .(Isn't it?) (cont. from p. 82)

Adhering to principles usually produces better theories, such
as occurs in [1]. As Somerset Maugham once said, "The most
useful thing about a principle is that it can always be sacrificed to
expediency". This is not acceptable in Science, yet SRT apparently
found it very useful.
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Action-Reaction in Electrodynamics

This note calls attention to the fact that the reaction effect that
a moving electron has on a magnetic field was never considered
in the analysis that concludes that mass increases with velocity.

[ have been reviewing Walter Kaufmann’'s experiments of
over 100 years ago, which were used as a basis for Einstein’s
mass increase with velocity assertion. [1] There is nothing wrong
with the experiments, but the analysis of them seemed to have
excluded the fact that an electron moving in a static magnetic
field reduces the force of the magnetic field. It is action-reaction
all over again. The field acts on the electron, and the electron acts
back on the field, effectively reducing its strength. [2] A weak-
ened field has a contraction factor that has to be applied to it.

Let us first write the equation from SRT

Boer/1)=m0/\]1—r)2/c2 1)

According to Carroll [2], the magnetic field has to be diminished

by a factor (1- v? /¢%) on account of reaction, so we apply this

factor to both sides of the Eq. (1), Cont. on page 97




