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ABSTRACT

We consider the quantum mechanical description of a diatomic molecule of “internuclear distance” 
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, and “total electronic energy” Ee. We apply to it the Born & Oppenheimer approximation, together with the cast 
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~h2 (we established previously), written for the electronic description (with fixed nuclei); here, me is the electron mass. Our approach yields an essential relationship for T0, the classical vibration period, at the total electronic energy Ee , i.e. T0 = 
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 is the reduced mass of the nuclei; g is a dimensionless coefficient, roughly around unity; this is a quantity associated with just the electronic structure in consideration; thus it remains practically the same for bonds bearing similar electronic configurations; n1 and n2 are the principal quantum numbers of electrons making up the bond(s) of the diatomic molecule in hand; they will be worked out through a subsequent article. 
The above relationship holds generally, although the quantum numbers n1 and n2 need to be refined. 

The related task is undertaken in our next two articles, yielding a whole new systematization regarding all diatomic molecules.
One can though, already establish a firm correlation between T0 and 
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, even without including the quantum numbers in question, since already g, being related to just the electronic configuration of the bond, stays practically the same for diatomic molecules belonging to a given chemical family; plots based on different chemical families are thus presented; they shall be bettered, along the determination of the quantum numbers throughout the subsequent articles. 
The work presented herein is an elaborated version of the former work of the author [
, 
]. 
The results that will be presented herein, nonetheless, were even before, obtained through a totally different perspective than the one considered herein. We are not going to reinforce this substantial perspective in this article. Nevertheless we should state it briefly, since it indeed allowed us, long ago to derive practically everything we present herein, and this with ease [
,
,
,
].
Thus, it was the author’s original idea that, in order to insure the validity of the theory of relativity, in any entity existing in nature, the “architecture of the internal dynamics” this displays, already at rest, ought to be made in just a given manner. 

In effect any natural entity has got an “internal dynamics”; this works as a clock bearing a clock period T0; it involves a given mass M0, which we call the “clock mass”, installed in a space of size R0. The “clock mass”, carries the “clock labor”; as we shall see, the clock mass is not a trivial quantity; nonetheless it is not the “total mass” of the entity in hand. It is usually a complex mass that carries the oscillatory motion of the internal dynamics in consideration. 

One can define several clocks masses, for the same entity, regarding different internal dynamics this displays. The clock mass of the electronic motion of a diatomic molecule, for instance, is the “electronic mass”, which can be expressed as [a coefficient] x [the electron mass], or merely the electron mass me, if the coefficient of concern is accounted for appropriately. On the other hand, the clock mass of the vibrational motion of a diatomic molecule is (as will be elaborated herein), 
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, where 
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 is the reduced mass of the nuclei of the molecule.

Now, the Lorentz transformations on T0, M0 and R0, were the object brought in a uniform translational motion, or similarly, the transformations that these quantities would undergo, were the object embedded in a gravitational field, impose that, there ought to be already an intrinsic relationship between T0, M0 and R0, which turns out to be T0 ~ M0
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 [1,2,3,4]. This was our original idea, which we will not stress any further, here.

Yet to memorialize this idea, in this article we would like to keep the subscript “0” pinned to the symbols representing the mentioned basic quantities, defined at rest, and at infinity (versus the corresponding quantities yield by a Lorentz transformation, if the object is brought in a uniform translational motion, or versus still the corresponding quantities, but arising from an alteration of the original properties, were the object embedded in a gravitational field, or in fact any field it can interact with).
In this article, we will present a derivation of the relationship T0 ~ M0
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, we conjectured, between T0, M0, and R0, chiefly for a diatomic molecule, based on the quantum mechanical description of it. In this purpose, we will use the Born & Oppenheimer approximation, and a fundamental cast we have derived previously, which we shall soon briefly sketch. We will elaborate on quantum numbers that come into play, in Part II; our approach yields the disclosure of an empirical relationship established back in 1925. We will conclude with a novel systematization of all diatomic molecules in Part III.

We feel embarrassed not being able to furnish basic references other than our work; yet we found nothing similar to what we present herein.
1. THE UMA CAST

For wave-like (i.e. quantum mechanical) object existing in nature, we have shown elsewhere the following Theorem, first, on the basis of the Schrödinger Equation, as complex as this may be, then on the basis of the Dirac Equation, whichever may be appropriate, in relation to the object in hand [4]. 
 Theorem 1: 
In a “real wave-like description” composed of I different particles, if the  masses mi0, i = 1,..., I, of concern, are all multiplied by the arbitrary number 

, then concurrently, 
                     1)  the total energy E0k associated with the given clock’s motion of the object, denominated by “k”, is increased as much, and 
                     2)  the size 
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 of the object in which the given clock’s motion takes place, contracts as much.

                         In mathematical words this is  
         ((mi0, i = 1,..., I) 
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By “real” we mean, not “artificially gedanken”; for say, atomistic and molecular wave-like objects, “real object” means, an object embodying a potential energy made of just Coulomb potentials. (Artificial potentials input to an even, relativistic quantum mechanical description, may indeed lead to incompatibilities with the special theory of relativity.)
If the object is, say an atom, then 
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 is the radius of it; if the object is a diatomic molecule, 
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 is the internuclear distance, etc.

As we will see, the hypothetical operation consisting of multiplying the masses of concern with an arbitrary number 

, within the frame of the above Theorem, may in fact correspond to a physical occurrence. Indeed 

 can well point to the mass change, were the object is brought to a uniform translational motion, or planted into a gravitational field, or in any field the object in hand can interact with.
Anyhow, the operation stated by Eq.(1) yields an invariance, interestingly strapped to h2, i.e. the square of the Planck Constant (which happens to be the universal quantity, which any quantum mechanical description is based on) [4].
This is the content of our Theorem 2, restated right here. 

Theorem 2: The quantities, 
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 (k=1,..., K) (associated with the kth internal motion of the wave-like object in hand), are invariant in regards to a “mass change”, and are all strapped to h2.

Thus, the grand total energy E0(GrandTotal) becomes
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here we tacitly supposed that different energies 
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 we point to, can be calculated as independent entities, which within the frame we propose to deal herein, indeed seems to be a relevant anticipation.  

We call the occurrence framed by the second Theorem, the UMA (Universal Matter Architecture) Cast. It says that in any case, the clock’s motion’s energy, the clock’s mass, and the size of space in which the clock’s labor takes place, must be organized in such a manner that the product 
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, must be strapped to the square of the Planck Constant. 
Note that primarily, what we do here is in not a “dimension analysis”. Anyhow the occurrence we disclose, would not work (i.e. 
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, for the given clock’s motion, would not be invariant in regards to a mass change), if the wave-like object in hand is not “real”, though of course, there still would be no problem, dimension-wise. 
Soon we shall figure out that the proportionality constant embodied by Eq.(2), besides a usual geometry factor and quantum numbers, is made of a dimensionless quantity; depending on just the electronic configuration of the molecule. 
Therefore:

i) It remains the same, regarding the electronic states of a given molecule, provided that these states are electronically configured similarly. 

ii) Furthermore, it stays the same, regarding the ground electronic states of molecules belonging to a given “chemical family”, through which the molecular bond’s electronic configuration, can be assumed to remain alike.

In Appendix 1, we are going to provide a direct derivation of Eq.(2), mainly for the electronic motion of a diatomic molecule, based on the Schrodinger description of it.
2. THE BORN & OPPENHEIMER APPROXIMATION

The quantum mechanical description of a diatomic molecule can be achieved via the usual Schrödinger Equation, involving the “two nuclei” and the surrounding “electrons”. This equation, through the Born & Oppenheimer approximation, is reduced into the separate descriptions of the “nuclear” and “electronic” motions. We thus come to solve separately the two following Schrödinger Equations, written with the usual notation [
]:
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Here “A” and “B” designate the nuclei, and “e” designates the electrons. We have then the following familiar notation. 
	mA  

mB 
ZA 

ZB   

me   
e     


	: mass of A

: mass of B

: atomic number of A

: atomic number of B
: electron mass

: electron charge


	rAi

rBi

rii’

rAB
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	: ith electron's distance to A

: ith electron's distance to B

: distance between the ith and the i’th electron

: distance in between the nuclei 

: eigenfunction associated with the molecule

: eigenvalue associated with the molecule




Eq.(3) describes, for a given electronic state of the molecule, the nuclei vibrational motion, around the given average internuclear distance 
[image: image30.wmf]AB
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; this equation embodies as well, the description of the probable rotation of the molecule. 
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 is the overall eigenvalue of  it. Eq.(4), on the other hand, describes the electronic motion around the two “fixed” nuclei, at a distance 
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 from each other. Ee is the eigenvalue of this latter equation, or the same, the electronic energy of the system whose nuclei are at a fixed distance 
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 from each other. Thus, as usual, one solves Eq.(4), for the given electronic state, in order to determine how the electronic energy Ee varies with respect to 
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, and find the internuclear distance 
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, which makes minimum the eigenvalue Ee; we call rABmin  and Eemin, respectively, the internuclear distance and the eigenvalue in question (for the given electronic state); this is then rABmin to be input to Eq.(3), as 
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. Normally Eemin is negative; yet below, by Eemin we shall mean |Eemin|.

The constant 
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, also to be input to Eq.(3) is given by
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[to be determined, for the electronic state 

                                          of concern, out of Eq.(4)]

Knowing 
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 related to the given electronic state of the diatomic molecule in hand, one can subsequently construct Eq.(3), and solve it as usual, for the (vibrational + rotational) eigenvalue EA,B (at the given electronic state). 

EA,B  thus becomes [
]  
                                         EA,B = 
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IAB is the “moment of inertia” of the nuclei:

                                          IAB = MAB  r

 ,                                                                              (7)

where MAB is the nuclei reduced mass.
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 is the classical vibration frequency of the molecule, the inverse of which, TA,B , is the classical vibration period of the molecule:

                                           TA,B = 2
[image: image44.wmf]0

AB

k

M

p

.                                                                          (8)
                             [classical vibration period, at the given electronic state, written
                              on the basis  of Eq.(3),  were 
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 determined on the basis of Eq.(4)]

Along this definition, EA,B [as expressed by Eq.(6), above] is the solution of Eq.(3), for the nuclear motion of the molecule. 

3. THE “VIBRATION PERIOD”, VERSUS THE “DIATOMIC MOLECULE’S CLOCK MASS”, AND THE “INTERNUCLEAR DISTANCE” 

The Born & Oppenheimer approach, together with the UMA Cast stated above, i.e. Eq.(2), allows us to draw an elegant relationship for the vibrational motion of a diatomic molecule, in terms of different masses taking part in the internal motion of the molecule, along with the “internuclear distance” coming into play.

Thus Eq.(2), i.e. 
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~ h2, must just hold on the basis of Eq.(4); this equation indeed embodies an overall potential energy, which is strictly made of Coulomb potential energies; a Coulomb potential energy is not artificial, and is well compatible with the special theory of relativity. Furthermore, the only mass that comes into play in Eq.(4), is the electron mass, me; in other words, the “clock mass” in question to be associated with the electronic motion of the molecule (with fixed nuclei), is made of only electron masses coming into play, evidently all bearing the same mass me. 
The eigenvalue Ee of Eq.(4) [more precisely Ee(rAB)], assumes the value Eemin  when rAB takes the value of rABmin. The quantities Eemin and rABmin, will then come to replace respectively 
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, in Eq.(2).
Thence, regarding the electronic motion, Eq.(2) will be written with just the electron mass, as
 
        
Eemin me
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 (9-1)
[Eq.(2) written, with just the electron mass, within the frame of Eq.(4)]
The proportionality constant in question is made of i) a geometry factor, ii) appropriate quantum numbers to be associated with h2, and finally iii) a dimensionless quantity that will insure the equality; we will call this quantity 
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, where the subscript “IN” stands for the “invariance” underlined by Theorem 2.
The quantity 
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 is a characteristic of the electronic structure; we provide a quantum mechanical definition of it in Appendix 1; at this step, we rewrite Eq.(9-1), as   

Eemin me
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 ~  h2   [Eq.(2) further elaborated].            
             (9-2)

The check of our end results should anyway constitute a proof of the validity of this relationship.  

Ee(
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) for the purpose of this work, can be fairly expressed in terms of the force constant 
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, defined by Eq.(5), as

                            
Ee(
[image: image55.wmf]AB

r

) =  Eemin + 
[image: image56.wmf]2

1

 
[image: image57.wmf]0

k

(
[image: image58.wmf]AB

r

– rABmin)2 .
                                      (10)

It is true that this relationship does not display characteristics such as “anharmonicity” and “dissociation”; but throughout this work we are going to deal with only the ground vibrational level of the given electronic state, i.e. not far from Eemin; thus Eq.(10) is quite valid for the purpose of this work.
Ee(
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) vanishes at the abscissa 
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, which we can define with respect to rABmin, as
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 = p rABmin   [value which makes Ee(
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p being an unknown coefficient we introduce at this stage, which will soon be clarified, and which (as we shall see), we will not in anyway need to specify.

Eqs.(10) and (11) provide us with the possibility of expressing Eemin, as  
                     

Eemin = 
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(minimum electronic energy for the given 


 electronic state, in regards to the internuclear distance)
We plug the RHS of this equation in Eq.(9-2); next we use Eq.(8) to eliminate the force constant 
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      (classical vibration period at the given electronic state)
where gk replaces 
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Below for simplicity, we call 
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The quantity 



M0 = 
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     (vibrational clock mass)                     
  (14) 
formulated on the basis of the electron mass, has the dimension of a mass. We call it the “vibrational clock mass” (to be associated with the vibrational motion of the diatomic molecule in hand). 
The proportionality constant drawn by Eq.(13) shall then embody a geometry factor, and quantum numbers. A geometry factor of 2
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 originates from the use of Eq.(9-1) [where h2 may be read as h2/4
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 is left after the square rooting, on the way to Eq.(13)]; an other 2
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 factor originates from the use of Eq.(8); thus altogether, a geometry factor of  4
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should multiply Eq.(13) [cf. Eqs. (iii) and (iv) of Appendix 1]. 

The quantum numbers to be introduced in Eq.(13) appear to be more peculiar, and we will elaborate on this problem, in Part II. Nonetheless, one can sense that, in the RHS of the   Eq.(9-1), the product of the principal quantum numbers of the electrons making up the bond(s) of the diatomic molecule in hand, should, as induced by the simple atomic descriptions, take place next to h2 [3].
Eq.(13), thus becomes
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    (classical vibration period of the molecule, at the given electronic
     state, versus the internuclear distance, 
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 being the
     principal quantum numbers of the electrons making up the excited bond)
where now g, an overall, dimensionless, and relativistically invariant quantity, replaces 
[image: image90.wmf]k

IN

g

g

; a quantum mechanical definition of g is provided in Appendix 1. 

Note that, normally the quantum numbers n1 and n2, are to be associated with the electrons making up the bond(s), at the given excited electronic state. 
However, since g depends only on the electronic configuration, it is to stay practically constant for, not only the electronic states of a given diatomic molecule configured similarly, but also for, the ground states of diatomic molecules belonging to a given chemical family, which all, by definition bear alike electronic configurations. 
For this reason, one can visualize the ground state of a diatomic molecule belonging to a given chemical family, as depicting an excited electronic state in reference to say, the ground state of the diatomic molecule belonging to this family, and bearing the lowest classical vibration period. Accordingly, one can very well conjecture to associate the quantum numbers n1 and n2, coming into play in Eq.(15-1), with the bond(s) electrons of the ground state of the given diatomic molecule, in reference to say, the ground state of the diatomic molecule belonging to the family in question, and bearing the lowest classical vibration period; we elaborate on this idea, in Part III.
Nonetheless we can rewrite right away Eq.(15-1), yet now regarding (not the electronic states of a diatomic molecule, but instead) the ground states of members of a given chemical family:
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           (15-2)
(classical ground vibration period of the molecule 
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 internuclear  distance 
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 being the principal quantum numbers 
 of the electrons making up the bond of the molecule at the ground  state)
We kept the subscript “0” pinned to the symbols representing the basic quantities coming into play in Eq.(15-1), to stress the fact that we define them, in the rest frame (versus the Lorentz transformed corresponding quantities); recall indeed that the cast of Eqs. (15-1) and (15-2) delineate a Lorentz invariant compact form of the fundamental quantities, time (period of time), space (size, i.e. internuclear distance), and mass (clock mass), were the object brought to a uniform, translational motion; in the following Part II, to simplify the notation, we will drop the subscript “0”.
Eq.(15-1) or Eq.(15-2), though g is not known beforehand, turns out to be somewhat rigorous. In other terms, despite the Born & Oppenheimer approximation we adopted, also the approximate parabolic potential we introduced at the level of Eq.(10), the use of g (to be determined), ultimately insures the equality of these equations. 

It becomes apparent that, g solely depends on the electronic structure of the molecule’s bond; thus, for alike bonds, delineated by diatomic molecules belonging to a given chemical family, we should expect g to be virtually the same; we call g the “molecular bond looseness factor”, for as we will elaborate in Appendix 1, the inverse of it somewhat characterizes the strength of the bond of concern.
Numerical values g assumes for different molecules, will be provided in Part III.

4. CONCLUSION

In this article, we have provided a quantum mechanical derivation of the relationship             T0 ~ M0
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, between the classical vibration period T0, the clock mass M0, and the internuclear distance r0, to be associated with a given diatomic molecule. We have previously conjectured such a relationship, based on just simple considerations induced by the theory of relativity. Indeed the Lorentz transformations on T0, M0 and r0 (were the object brought in a uniform translational motion), or similarly, the transformations that these quantities would undergo, were the object embedded in a gravitational field, impose that, already at rest, and at infinity (free of any field), there ought to be an intrinsic relationship between T0, M0 and r0; this relationship turns out to be T0 ~ M0
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. This is what makes that the end results of the special theory of relativity, as well as those of the general theory of relativity, hold. This was our original idea.

Herein, we have via qauntum mechanics, effectively ended up with Eq.(15-1), regarding different electronic states of a given diatomic molecule. Thus, this relationship constitutes a quantum mechanical proof of our original conjecture. One can check its validity, especially on the basis of excited states of a given molecule, bearing alike electronic configurations (for which the bond looseness factor g, remains practically the same). We will consider this problem in our subsequent article. 

The approach we developed in this article, next, allowed us to frame Eq.(15-2), regarding the ground states of diatomic molecules belonging to a given chemical family; these molecules by definition, bear alike electronic configurations. Thus, Eq.(15-2) too, allow us to check the validity of our original conjecture, i.e. the cast T0 ~ M0
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The quantum numbers 
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 though, appearing in Eq.(15-1) and Eq.(15-2), should first be determined, and that is what we will specifically undertake in Part II. At any rate, Eq.(15-2) seems still worth to be analyzed (regarding the ground states of chemically alike diatomic molecules), without even taking into account the quantum numbers, given that these should be expected to follow a given pattern, throughout. And indeed already the plots of 
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, for members of a given chemical family, exhibit nicely increasing, almost faultless, smooth curves; we present eight examples in Figures 1 -  7. 
In these figures, c represents the speed of light in empty space, measured in units of cm/second. Thus, the unit we use for the classical vibration period turns out to be “cm”, in fact just like frequencies are most of the time, given, in units of “cm-1”; the periods of time we provide can be converted into quantities given by seconds, if they are divided by 103 c, for the first two, and 104 c for the rest of the plots, we present. 
It should be stressed that our approach discloses in an easy way,  a simple architecture about diatomic molecules, otherwise left behind much too cumbersome quantum mechanical descriptions. This architecture, telling how the vibration period of time, the size, and the clock mass are installed, is Lorentz invariant, and can be considered as the mechanism about the behavior of the quantities in question, in interrelation with each other, when the molecule is brought to a uniform translational motion, or transplanted into a gravitational field, or in fact any field it can interact with [
,
]. 
This is the essence of our approach, and it will be further clarified, in Part III. 
This further constitutes the reason for which we chose to represent in our plots, the classical vibration period, and not the related frequency, versus size and clock mass; “time” is in effect acknowledged by the majority as a more basic concept, along with “space” and “mass”. 
APPENDIX 1

DIRECT DERIVATION OF THE RELATIONSHIP  
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Via the usual weighting and integration of Eq.(4) over the appropriate space domain, and the Virial Theorem, i.e. [
,
]
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 where 
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 is the potential energy of concern, one can write
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    (ii)
this yields
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   (iii)
(electronic description integrated over the space domain)

One can check that for the simplest real wave-like entity, i.e. the hydrogen atom, the integral quantity 
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 is the Bohr orbit radius, and n the principal quantum number associated with 
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The quantity 
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, can further be evaluated within the frame of an even simpler case, i.e. the particle moving in just one dimension, in an infinitely high potential well; the result is -
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, were now 
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 used to denominate the width of the well. 
For other simple cases, such as the rotational motion of a diatomic molecule, the integral quantity in question turns out to be equal to -
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, where 
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 is the space size in which the dynamics in consideration takes place, and N  [equal to (J(J+1), for the rotational motion of a diatomic molecule], is the composite quantum number coming into play. 
Based on these findings, we can define the dimensionless, positive quantity 
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, in regards to the vibrational motion of a diatomic molecule,            
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   (iv)        
        [quantum mechanical definiton of 
[image: image118.wmf]IN

g

, introduced at the stage of Eq.(9-2)]
in order to be able to express the integral quantity 
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, in short, in terms of the average internuclear distance, 
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 and 
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 are the bond electrons’ principal quantum numbers.
One thus, can write Eq.(iii), in the simple form
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    (v)
It is clear that 
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 depends only on the electronic structure. Following our approach, we further expect that 
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 is not far from unity.

On the other hand, note that one can write 
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   (written for the ith electron)
   (vi)
Thus in principle, the sharper the gradient
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, based on Eq.(iv), the smaller will be the coefficient 
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. 
For the bond electrons, the gradient 
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 is roughly speaking, zero within the space left in between the nuclei. However, for a given internuclear distance, the stronger the bond, the sharper will be the gradient along paths, leading away from both nuclei. 
Thence, we expect 
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 to decrease as the bond gets tighter. 

Eq.(iv) provides us with the possibility of establishing a quantum mechanical definition of g of Eq.(15-1), or that Eq.(15-2), too:
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  (vii)
[a quantum mechanical definiton of g, figuring in Eq.(15-1), as well as in Eq.(15-2)]

here p is defined at the level of Eq.(11); thus 
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 = p rABmin  [internuclear distance at which 
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 vanishes]; given that p, thus 
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 is a quantity associated with just the electronic structure; then g,  just like 
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, merely depends on the electronic structure of the molecule in hand, which makes that we expect g to stay indeed practically constant for chemically alike molecules.  

On the other hand, one can guess that the greater p, the smaller will be the dissociation energy, thus the looser will be the bond in consideration. Therefore 
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 behaves just like 
[image: image137.wmf]IN

g

 in regards to the bond strength.  We conclude that the smaller g, the tighter will the bond be. This is why we proposed to call g, the “molecular bond looseness factor”.  
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�  One can nonetheless, develop an insight regarding the coefficient � EMBED Equation.3  ���, as follows. Thus note for instance that for the hydrogen atom, the simplest wave-like entity, one can, via the Bohr Atom Model, write 


� EMBED Equation.3  ���        							      


here e is the electron charge, me is the electron mass, and � EMBED Equation.3  ��� the Bohr radius. This relationship, compared with Eq.(8), yields � EMBED Equation.3  ���, for the force constant � EMBED Equation.3  ���. This, when plugged into Eq.(12), leads to � EMBED Equation.3  ���, for the magnitude of the electronic energy � EMBED Equation.3  ��� of hydrogen atom. 





We can conclude that the coefficient � EMBED Equation.3  ��� of Eq.(12), should be set to unity for the case of the hydrogen atom, given that � EMBED Equation.3  ���for this case, can be expressed as � EMBED Equation.3  ���; thus for the case of the hydrogen atom, � EMBED Equation.3  ��� becomes 1/2. Since p on the other hand, is related to the electronic structure of the molecule, it is clear that � EMBED Equation.3  ��� just like � EMBED Equation.3  ���, depends only on the electronic structure. Generally, � EMBED Equation.3  ��� is not far from unity.    
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