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ABSTRACT
This article first consists in the quantum mechanical study of an adiabatically compressed particle, residing in an infinitely high potential well, which we will consider, as the basis of an ideal gas. Thus we prove in both non- relativistic and relativistic cases, that, all the compression energy is transformed into extra kinetic energy of the particle. The result may be intuitive, but does not seem trivial. Thus it shows a full accordance between Quantum Mechanics, Newton’s Second Law of Motion, the Law of Energy Conservation, Special Theory of Relativity, and furthermore Classical Thermodynamics and Kinetic Theory of Gases. In effect, on the same basis, one can quantum mechanically derive, an essential relationship associated with an ideal gas, that is Pressure x (Volume)5/3=Constant, with regards to any set of adiabatic transformations, the gas at hand, would undergo. More important, by doing so, one as well, specifically derives the value of the Constant making the RHS of this relationship, which has been otherwise left obscure since the time Quantum Mechanics came into the scene. Our finding means that, the ideal gas behavior, is just a macroscopic manifestation of Quantum Mechanics. In other words i) it can be derived, by all means, based on the quantum mechanics of a single particle, ii) along that line, it excludes any interaction of the constituents, the gas, embodies. The latter is something known, for it is classically assumed, based on the Kinetic Theory of Gases. However we arrived at it, via the quantum mechanical approach we have deployed. Thus we end up with a precise definition of an ideal gas: It is a gas, where the behavior can be predicted based on the quantum mechanics of a single particle imprisoned in a box. This is how the classical assumption as to, it should be free of any interaction of its constituents, whatsoever, comes to find a deeper root
1. INTRODUCTION

When one learns more, as most of us experience, things can get more and more confusing until they are cleared up, with extra knowledge, and findings. One example concerns most likely many teachers, as well as students who work chiefly, in the interfaces of thermodynamics and nuclear sciences, such as nuclear engineering. Thus, suppose we bombard a gold plate with an alpha nucleus thrown by a uranium nucleus, the way Rutherford did.
 The alpha particle can occasionally make a head on collision with a gold nucleus residing in the gold plate. If so, it will slow down, gradually, after which it will stop. Then it will be repelled, by the gold nucleus in consideration. Now let us focus to the very moment when the alpha particle is stopped by the repelling force. If we weigh at that moment the gold plate and the alpha particle, near each other, we should measure a total rest mass, which ought to be greater than the overall rest mass of the gold plate, and that of the alpha particle, weighed separately, and this, as much as the equivalent of the initial kinetic energy of the alpha particle, owing to the mass & energy equivalence of the Special Theory of Relativity (STR).

This means that, in this example, energy is stored as an extra rest mass. This is of course, something very familiar to nuclear scientists. 
When two protons undergo a head on collision, in a fusion reactor, exactly the same, occurs. Note that here, we exclude the point where nuclear fusion can take place, although the mass equivalence of the resulting nuclear energy will still be accounted through the same, mass & energy equivalence principle. Anyway, for simplicity we suppose we are far from the fusion point. 
Let us now notice that, squeezing two protons and squeezing two atoms, are not really any different. For, the atoms, when pushed into each other, because of their electronic clouds, will also repel each other. 
Then the following question arises: When, say, adiabatically compressed, what would happen to the gas constituents, that will now repel each other even more intensely, than they would  initially? Would the compression energy get transformed into solely extra kinetic energy? Or would some of the energy be stored, as extra rest mass of the charged constituents, which on the average, have now come closer to each other, just like in the case where an alpha particle is stopped by a gold nucleus, the overall original rest mass of the pair of alpha particle and gold nucleus, must get increased?    

Anyhow, how the electric interaction between the constituents of a gas, will be reflected onto the partition of energy, between different possibilities, if any, following the energy transfer to the gas constituents bearing electric charges, through a compression process?

Then, effectively, things may get shaky, as referred to what we have lucidly learned and admitted, while we first studied thermodynamics… 

In this article we will show that, for an ideal gas, there is absolutely no interaction between the constituents of a gas, either mechanically or electrically. This is something, somewhat known, for it is classically assumed, through the Kinetic Theory of Gases.
,
,
 However we will arrive at it, via the quantum mechanical behavior of a single particle, imprisoned in a box. Thus we prove that, all the compression energy is indeed, transformed into extra kinetic energy of the particle. Hence, the above questions automatically, drop.
Thereby we show that, one can derive an essential relationship of an ideal gas [free of the Gas Constant, i.e. 8.31 Joule/(molexºC), or the same, Boltzmann Constant, i.e. 1.38x10-23/ºC, associated with just one constituent], namely, Pressure x (Volume)5/3=Constant, with regards to any set of adiabatic transformations, a given gas would undergo, via just the quantum mechanical behavior of a particle imprisoned in an infinitely high potential well. More important, by doing so, one specifically derives the value of the constant, which has been otherwise left obscure, since the time Quantum Mechanics was established. This means that, the ideal gas behavior is a macroscopic manifestation of Quantum Mechanics. In other words i) it can be derived based on the quantum mechanical behavior of a single particle, ii) thus it excludes any interaction of the constituents, the gas embodies. The latter is something known, for it is classically assumed. However we arrive at it, via the quantum mechanical approach we will develop. In any case, we end up with a precise definition of an “ideal gas”: It is a gas, where the behavior can be predicted based on just the quantum mechanics of a single particle imprisoned in a box. This is how the classical assumption as to, it should be free of any interaction of its constituents, whatsoever, comes to find a deeper root.
We will undertake in a subsequent article, the topic of how the findings presented in this article can be considered to handle the case in which the constituents of a gas, interact electrically with each other.
Thus, in Section 1, we consider a non-relativistic quantum mechanical particle in an infinitely high potential well. We thus check out that the work done to squeeze adiabatically the size of the box, is entirely transformed into extra kinetic energy of the particle in consideration. In Section 2, we handle the same problem, though along with a relativistic quantum mechanical particle. Thus, the work done to squeeze adiabatically the size of the box is still transformed into extra kinetic energy, but evidently now “kinetic energy” being expressed relativistically. These results may somewhat seem trivial, yet here it is worth to note that, the meaning they display is deep, for it delineates a full accordance between Quantum Mechanics, Newton’s Second Law of Motion, the Law of Energy Conservation, STR, and furthermore, Thermodynamics and Kinetic Theory of Gases, which becomes thus necessary to understand.  

In Section 3, we summarize the parallelism, the first author et al. have previously drawn between the classical laws of thermodynamics, mainly the law of adiabatic expansion, and Quantum Mechanics. We generalize our findings in Section 4 to come to the conclusion that an ideal gas is made of individual quantum mechanical constituents, imprisoned in the container of the gas, and having no interactions whatsoever. Our result is nothing but strikingly, a macroscopic aspect of Quantum Mechanics. 
Finally a conclusion is drawn in Section 5.
1.   THE NON-RELATIVISITIC PARTICLE IN THE BOX: THE WORK DONE TO SQUEEZE THE SIZE OF THE BOX, IS FULLY TRANSFORMED INTO EXTRA KINETIC ENERGY. BUT HOW REALLY?
We consider a particle of rest mass 
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 in an infinitely high box. For simplicity we visualize only a one dimensional box of size L, of 1
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 of lateral surface. Thus the particle is quantum mechanically confined in this box, where it oscillates indefinitely, back and forth, along the x axis. The total energy 
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 of the particle, first supposed moving at non-relativistic velocities can be found as the solution of the corresponding Schrodinger Equation,
 along with a zero potential energy:
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 (quantum mechanical total energy of the 
  non-relativistic particle in an infinitely high box)
Note that this energy is just the kinetic energy of the particle at the nth energy level, since the potential energy input to the Schrodinger Equation is zero. Now we propose to calculate the work done on the particle at the nth energy level in consideration, to compress it into an infinitely smaller volume. This work should lead an increase in the particle’s energy, or here, the same, kinetic energy:
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                        (increase in the total non-relativistic energy 
                         due to the infinitely small squeezing of the box)
dL, by definition is Lfinal - Linitial, where Lfinal is the box width after compression, and Linitial is the box width before compression, the two quantities being infinitely close to each other. Thus here dL, by definition, is a negative quantity, and 
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 is, as expected, a positive quantity.
Let us check whether this energy, turns really out to be the work dW, which is by definition 
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                        (work necessary to furnish to the system, 
                          in order to squeeze it infinitesimally)
we would have to furnish to the system to squeeze it, as much as –dL; here p is the pressure exerted by the single particle on the side walls, as it bounces back.
Recall that the force 
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 exerted on the wall perpendicular to the x axis, by the particle of mass 
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 and velocity 
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 (along the x axis), is given as usual, by Newton’s second law,
 as 
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(Newtonian Definition of Force)

where 
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 is the algebraic increase in the momentum, whilst the molecule bounces back from the given wall; the momentum is thus written as 
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 before the bouncing, and as 
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 after the bouncing; the negative sign thus tells us that the force is on the direction of the particle before the bouncing, which we wanted to express, indeed; on the other hand, we have
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Note that fx, the way it is written, also represents the magnitude of the force, exerted by the particle on the wall. If we propose to compress the box, we will naturally have to operate with that same magnitude. In any case 
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 becomes 
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The pressure p exerted by the given particle on the wall, is then
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    (pressure exerted by the particle on the walls)
since we have assumed that the wall has an area of 1
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. 
Via Eq.(3), this makes that, the energy we have to furnish to the system to squeeze it, as much as –dL, is
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          (work we have to furnish to the system 
                        in order to squeeze it infinitesimally )

Recall that the kinetic energy K of the particle in the non-relativistic case, i.e.
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amounts to the total energy of the particle given by Eq.(1).

Eq.(8), then, via Eqs. (9), (1) ad (2) leads to 
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                       (work necessary to furnish to the system in order to squeeze 
                         it infinitesimally, amounting to the related change in
                         the quantum mechanical  total energy of the particle)

As trifling as it may seem, to secure the completeness of the presentation, this is worth to be stated as an assertion.

Assertion 1:   The work one would furnish to squeeze adiabatically the size of the box in which a non-relativistic, quantum mechanical particle, free of any field, is confined, is fully transformed into an increase in the kinetic energy, or the same, into an increase in the translational energy of the particle.
Many of us could have even assigned the above problem as a homework to our students, although the authors of this paper, do not recall any place, it has been reported to. At any rate, it will constitute the basis of the continuation of our analysis, we present right below. But before we proceed, it is important to ask the following question:
- How come, the two different approaches based on Eqs. (2) and (10), lead to  identical results?

And the answer does not seem as innate as the content of the above assertion. 
Eq.(2) is based on just our faith on Quantum Mechanics. And this in return is based on the Law of Energy Conservation, together with the de Broglie relationship. Eq.(10), on the other hand, is based on the simple definition of work. Here we made use of the expression for the pressure, thus the expression of force in terms of the change rate of the relativistic momentum, with respect time, i.e. the Newton’s second law of motion, here in the non-relativistic case. But right below, we will consider the relativistic case, and we will end up, with exactly the same conclusion, framed in the above assertion.

How come? In effect, here it is question of several different disciplines, i.e. Newton Mechanics, along with the definition of force and energy, Quantum Mechanics, and Relativity Theory, and further on, we will deal with the classical laws of Thermodynamics and Kinetic Theory of Gases. Is of course not evident that, Quantum Mechanics on the one side, and all other disciplines, and ingredients, on the other side, can furnish exactly the same result. 
And we do not recall any place where the answer of our question is answered, nor even our question was posed.

We have though an answer: It is that de Broglie relationship,
 can be obtained as the result of the relativistic law of energy conservation, embodying the mass & energy equivalence of the STR.
,
 This relationship is one fundamental pillar of Quantum Mechanics. One may argue that in order to construct the operator framework of Quantum Mechanics, one uses instead the assumption with respect to the momentum operator 
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 Yet, in effect, this is nothing, but the very casing of de Broglie relationship. 
The second pillar of Quantum Mechanics is the relativistic law of energy conservation. So the deep-seated law of Quantum Mechanics is the relativistic law of energy conservation - for it is as well this law which leads to de Broglie relationship. Let us add that even though the Schrodinger Equation constitutes, a non-relativistic approach, still its solutions, were appropriate potential energy terms, i.e. compatible with the STR, are used throughout, are Lorentz invariant,
 and in effect, as can be checked easily, Eq.(1) delineates, well, a Lorentz invariant framework.
As to the reconstruction of Eq.(3), based on Eqs. (4), (6) and (7), all that matters is the pressure, calculated based on the description of force, as the change rate in the momentum, as prescribed by Newton. If further the mass input there, is a relativistic mass, the way we will have to consider, right below, then again such a description remains perfectly valid. One can show that the Newtonian description of force is well compatible with the relativistic law of energy conservation.
 
Briefly, the equality of the Right Hands Sides of Eqs. (2) and (10), are secured as a deep-seated law, by the relativistic law of energy conservation. It is that we owe to this law, the exact accordance of Newton Mechanics, along with the definition of force and energy, Quantum Mechanics, Relativity Theory, and Thermodynamics and Kinetic Theory f Gases.

2.  THE RELATIVISITIC PARTICLE IN THE BOX: THE WORK DONE TO SQUEEZE THE SIZE OF THE BOX, IS STILL FULLY TRANSFORMED INTO EXTRA RELATIVISTIC KINETIC ENERGY

In case, the particle in the box, is a relativistic particle, the total energy 
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 [cf. Eq.(1)], though, now including the rest mass of the particle  can be written as
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           (11-a) 
 (quantum mechanical total energy of the 

  relativistic particle in an infinitely high box)

here mc2 is the overall relativistic energy of the particle at the nth state; in other words the quantity
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is the relativistic kinetic energy of the particle of concern

Eq.(10) can be expressed as 
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where we have 
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and the last equality of Eq. (12-a), relates to the case, where 
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Note that 
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 bears the dimensions of energy, and 
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 amounts to the momentum of the particle. Recall indeed that, for the well in consideration, the de Broglie relationship involving the wavelength to be associated with the nth state, shall be written as 
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(nth state wavelength
where 
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 is evidently, the momentum 
[image: image35.wmf]x

mv

 of the particle, at the given state.

Thus the quantity 
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 [cf. Eq.(12-b)] that we had introduced, is in fact 
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When one squeezes the size L, as much as -dL, the total relativistic energy 
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 varies [cf. Eqs. (11-a) and (11-b)] as much as    
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(increase in the overall relativistic energy 
 

 due to the infinitely small squeezing of the box)

Thus, we obtain the following intermediary results. 1) The change manifests as an increase of the relativistic kinetic energy. 2) For a small 
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, as expected, we end up with the result we have derived within the frame of the non-relativistic case. 
Now, let us calculate the work dW [cf. Eqs. (3), (6) and (8)], to achieve the squeezing process in question, based on the straight definition of dW:  
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                        (work necessary to furnish to the system in order to squeeze it 
                         infinitesimally, and amounting to the related 

                         change in the overall relativistic energy of the particle)

where though, now, we had to use the relativistic mass m, instead of the rest mass we have used in Eq.(3).
Via Eqs. (11-b), (12-b), (13), (14) and (15), this can be written as 
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Thus, in the case of a relativistic particle too, we well check out the result, derived previously, based on the non-relativistic particle. Thus we can state the following assertion.
Assertion 2:   The work one would furnish to squeeze adiabatically the size of an isolated box in which a relativistic, quantum mechanical particle, free of any field, is confined, at a given energy level, is fully transformed into an increase in the relativistic kinetic energy of the particle, at the given energy level. 

Here again, as trivial as the content of the above assertion may be, it still seems important to ask “How come the Right Hand Sides of Eqs. (15) and (17), occurred to be equal to each other?”, since evidently,  the formulation of these equations are based on totally different conceptions. Indeed Eq.(15) is based on solely Relativistic Quantum Mechanics, whereas Eq.(17), is based on the Newtonian description of force, in terms of the change rate of the relativistic momentum.

Along the elaboration we presented right above, the answer is the following: The identity of the Right Hands Sides of Eqs. (15) and (17), are secured by the relativistic law of energy conservation. This law is indeed the deep-seated ingredient of the Relativistic Quantum Mechanics, including the de Broglie relationship. It also remains quite compatible with the Newtonian force description. 
4. THE WELL-MATCH OF THE LAW OF GASES WITH QUANTUM 

MECHANICS, BASED ON THE CONSTANCY OF PV
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 (Gas Law for an adiabatic transformation)
written for an adiabatic transformation, an “ideal gas” undergoes, constitutes an efficient check point of the link between Macroscopic Laws of Gases, and Quantum Mechanics.
 Here P is, as usual, the pressure the gas of volume V exerts on the walls of the container in consideration. Below, in our quantum mechanical derivation of Eq.(18), for simplicity, we will operate with one mole of gas. 
Eq.(18) is particularly interesting, for it does not embody the Gas Constant (Boltzmann Constant x Avagadro Number). 
Indeed, as shown in Reference 16, it is futile to look for a relationship between the Planck Constant h, and the Boltzmann Constant k, despite the fact that “energy” E, can be expressed both based on h, and k, which ever is appropriate for the discipline we work im, and case at hand, namely
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where a and b are appropriate coefficients.

Thus a beginner would be inclined to haste of hunting a relationship between h and k, chiefly after he figure out, there is not any around.

In reality any such attempt, say via equating the right hand sides of Eqs. (19) and (20),  turns to yield solely a definition of kT in terms of h, knowing 
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 (see the footnote), or vice versa, a definition of 
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Accordingly, the equality 
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 does not bring us anywhere, in finding a bridge between the “Law of Gases” and “Quantum Mechanics”. 

Actually, the temperature concept next to the energy concept is not only redundant, but also somehow dichotomous, thus misleading. It is why, one may seek in vain a relationship between h and k. More fundamentally, Thermodynamics and Quantum Mechanics, have grown through different basic concepts, quantities, and constants, particularly, along with energy and h, for the first discipline, and temperature and k, for the second one, and this language difference seems to have badly masked any possible link between the two disciplines. For this reason, it seems important to draw a framework, where one can strictly work with energy instead of temperature, and to start with, preferably, where we have strictly no temperature quantity, at all.
This is indeed possible. Thus the first author et al., have previously proposed to consider, as a primary framework, Eq.(18), where we have, no Gas Constant and no temperature, and based on it, try to calculate, the constancy of the LHS, and furthermore, specifically, the value of the constant itself, via just quantum mechanics.16 Below we summarize the derivation in question, in the non-relativistic case, and then extend it, to the relativistic case. 
Note that, as surprising as this may be, we have identified no one, who worked out the constant of Eq.(18), moreover, who even wondered about it. We all were more than content to thermodynamically derive Eq.(18), and write it as the kernel of a sequential equalities for different states, 1, 2, 3, … I, the gas may assume through adiabatic expansions or compression, as 
[image: image50.wmf]g

g

g

g

=

=

=

=

I

I

3

3

2

2

1

1

V

P

V

P

V

P

V

P

.....

.
Eq.(18) involves, the usual definition
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 is the heat to be delivered to one mole of ideal gas at constant volume to increase its temperature as much as 1º K, and 
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 is the heat to be delivered to one mole of ideal gas at constant pressure to increase its temperature as much as 1º K; R is the Gas Constant. Eqs. (22) and (23) are exact, when internal energy levels of molecules are not excited. 
We thus have 
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Since in the quantum mechanical derivation we will present below, all molecules are considered to behave independently from each other, Eq.(21) remains still valid, had the gas consisted, even in one single molecule. It may be recalled that, within the frame of the Kinetic Theory of Gases too, one first expresses the pressure for just one molecule of gas, before he proceeds for very many more, making up the gas of concern. This is how, one formulates the macroscopic pressure, the gas exerts on the walls of its container [cf. Eqs. (4), (5), (6) and (7)]. 

The Non-Relativistic Case

Let us consider a particle of rest mass 
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 with a fixed internal energy state, located in a macroscopic cube of side L. The non-relativistic Schrödinger equation furnishes the nth energy 
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 [cf. Eq. (1)]: 
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 (non-relativistic energy in three dimensions)
where we denoted 
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, the quantum numbers to be associated with the corresponding wave function dependencies on the respective directions x, y and z. Here, for brevity, while writing En, we introduced, the subscript “n”, to denote the given state, thus characterized by the integer numbers 
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For an ideal gas confined, in an infinitely high box, the potential energy input to the Schrodinger Equation, is null, in the inside. Thus, for the non-relativistic case which is generally the case, we have  
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 being the velocity of the particle at the nth energy level.

At the given energy level, the pressure 
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 exerted by the single particle in consideration, this time in three dimensions, on the walls, becomes [cf. Eqs. (6) and (7)]
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Now, let us calculate the product 
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(quantum mechanical constancy to be 
 associated with the adiabatic transformation)

This quantity amazingly turns out to be a quantum mechanical constant for a given particle of mass 
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 at the given energy level n (specified by the set nx, ny , and nz) .

Recall that the total quantized energy En of Eq. (25) ultimately determines the quantized velocity vn of Eq. (26), along with, its three components, which are all, in return, quantized. 

When it is question of many particles instead of just one, normally, we will have particles at different, possible, quantized states. 
We can anyway visualize the average particle, at the 
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th level, thus corresponding to the “temperature” coming into play [if one wishes to handle things via the consideration of Eq.(20], and well suppose that all other particles, behave the same. Furthermore, all three components of the average velocity, in equilibrium will be expected to be the same. Thus, we can rewrite Eq.(28) for the macroscopic pressure 
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(the adiabatic constancy for one mole of gas, via assuming that 

 each molecule is at the average quantum mechanical  state)
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 is the Avagadro Number. Thus, Eq.(29) well specifies the constant involved by the adiabatic transformation relationship, i.e. Eq.(18). Note that, at the average state 
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 (i.e. at the given temperature), the mean square speed of the gas molecules is 
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 is furnished accordingly, on the basis of Eq.(26). 
The above finding is worth to be stated as our next assertion.
Assertion 3:   The essential thermodynamic relationship, Pressure x (Volume)5/3=Constant, with regards to a set of adiabatic transformations, a gas may undergo, can be obtained via just the quantum mechanical behavior of a single particle, imprisoned in a box. The value of the constant in question, for one mole of gas, becomes 
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 the quantum number characterizing the average quantum mechanical state, and 
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 the mass of  the molecule, a set of which makes up the gas. The quantum mechanical result 
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, means that the long-existing thermodynamic relationship, Pressure x (Volume)5/3=Constant, is nothing but a macroscopic quantum mechanical manifestation, the gas delineates, implying as well, the way we obtained it, no interaction of the gas constituents, whatsoever.

Let us now undertake the same problem, though highly improbable, in the relativistic case. 
The Relativistic Case
The pressure 
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 delineated by just one molecule, at a given nth level, is given by Eq.(27), where how ever now, we have to consider the relativistic mass m, furnished by Eq.(11-a):
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 here Pn is the relativistic momentum furnished by Eqs. (12-b) and (14), so that
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where the last equality, arises from the fact that, the three average quantum numbers 
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, are assumed to be equal to each other, with regards to the average state we characterize by 
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, just the same way we did, through the previous non-relativistic approach. 
We can then compose 
[image: image90.wmf]g

V

P

n

 for one mole gas [cf. Eq.(30)]
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which, via Eq.(11-a), leads to
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(quantum mechanical constancy to be associated with the
             adiabatic transformation of a gas, made up high speed molecules
Thence, we come to the conclusion that in the relativistic case, 
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 does not remain constant, since the multiplier of this term, displayed at the LHS of the above relationship, depends on the size of the container of concern (albeit the RHS well appears to be a constant).

At any rate, as clearly seen [cf. Eqs. (11-a) and (33)], the quantity 
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for an adiabatic transformation, remains constant; so what remains adiabatically constant is Relativistic Mass x Pressure x (Volume)(5/3). We state this interesting occurrence, as our next assertion.

Assertion 4:   Consider a gas where molecules bear the relativistic translational energy 
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, for a set of adiabatic transformations, the given relativistic gas may exercise, is nothing but a macroscopic quantum mechanical manifestation, the gas delineates - for this relationship is driven via the quantum mechanical behavior of a single particle imprisoned in a box. This also means that, such a relationship is valid, only if there is no interaction in between the constituents of the gas.  
Note further that the relationship 
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 well holds for a photon gas, as well,  though with the exponent 
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 (as induced by the characteristics of a photon), instead of 5/3. We spare the discussion of this interesting topic for a future work.

4.   GENERALIZATION: AN IDEAL GAS IS MADE OF INDIVIDUAL 

QUANTUM CONSTITUENTS, IMPRISONED IN THE CONTAINER OF 
THE GAS, WELL YIELDING THE KNOWN MACROSCOPIC THERMODYNAMIC MANIFESTATIONS
Assertions 3 and 4, can be extended as follows.

Assertion 5:   A gas, in which molecules do not interact with each other, is structured in total accordance with the quantum mechanical behavior of just a single particle imprisoned in the container, hosting the gas.    

This, right away, induces the following two essential assertions.
Assertion 6:   The well established classical thermodynamic behavior of an ideal gas is nothing but an overall macroscopic manifestation of the quantum mechanical conduct of each of its constituents, imprisoned in the container in consideration, for the long- existing thermodynamic behavior can well be derived via just the quantum mechanical behavior  of a single particle in a box.
Assertion 7:   An ideal gas, as defined classically based the Kinetic Theory of Gases, to be made of  the individual behavior of each molecule, is in fact nothing but a gas made of constituents, each behaving as a quantum mechanical particle imprisoned in the container of the gas of concern, thus undergoing no interaction with others, whatsoever. 
This latter assertion provides a quantum mechanical foundation to the classical definition of an ideal gas, classically based on the empiric law of gases, i.e. 
PV=RT ,









  (35)
written for just one mole of gas, where as usual, P is the pressure the gas exerts on the walls of its container of volume V, at the absolute temperature T, and R is the Gas Constant, 8.31 Joules / º K.
Hence, we can generalize Our Assertions 5, 6 and 7, proven for a single quantum mechanical object, imprisoned in a box, to the case of an ideal gas, thus made of non-interacting quantum mechanical constituents.  
Assertion 8:   The work one would furnish to squeeze adiabatically an ideal gas, thus made of non-interacting quantum mechanical particles, assumed to be free of any field, amounts to the related change in the average kinetic energy of the particles. Conversely the adiabatic expansion of a gas, delivers to the outside, the energy stored, as extra translational energy, within the box. 

Once said, this assertion may seem to be trivial. Nonetheless we have to recall that, we were able to state it, generally, i.e. regardless how fast the constituents making the gas, may move. 
It was thus important to elucidate, and this via Quantum Mechanics, the fact that, the ideal gas constituents all behave i) individually, but moreover ii), as quantum mechanical objects, each imprisoned in the container of the gas. “Individuality” evidently, excludes any possible interactions in between the gas constituents, mechanic or electric, whatsoever. This point is not only crucial in avoiding possible non-linearities, but is also crucial in dropping all kinds of electric field interaction between the gas constituents, despite the ordinary repulsion that can take place in between the electronic clouds of these. 
Within the framework we have drawn, no allocation is made with regards to the storage of energy, via rest mass increase of the constituents (cf. the discussion we have provided in the Introduction), contrary to what one may anticipate.

One can accordingly provide an answer to the following question, which may at the first strike, seem puzzling:18 If work is achieved between the two compartments of a closed system, what happens to the overall internal energy? The answer is trivial, based on Assertion 8. The internal energy, consisting on the kinetic energy of the constituents of the expanding gas, will decrease. And the internal energy, again, consisting on the kinetic energy of the constituents of the compressed gas will increase, just as much. Thence the total energy will remain constant, as expected, since the whole thing is announced to be closed. Note that our approach allows reasoning based on just one particle, which makes deductions, quite simple.
Along the line we have drawn, it becomes also interesting to revisit Joule’s experiment,
 where Joule demonstrated that the internal energy of a gas, depends only on the temperature, and not for instance on the volume of the gas.
Thus, Joule considered two compartments connected with a valve in the middle. At the beginning, one of the compartments is filled with a gas, and the other is empty. The whole thing is immersed in water bath, at a given temperature. The valve is open and the gas is offered a larger volume. But the gas does not do any work to the outside. It does not receive any heat from the outside. Thence, owing to the law of energy conservation, its internal energy must be kept constant. On the other hand the temperature of the water in which the gas together with its container is immersed does not change. It is then concluded that internal energy solely depends on the temperature; if indeed the internal energy is not changed, then the temperature does not either change. We know by now that, based on our approach, we can well reason on just one molecule. Thus we can at once affirm that, had the gas molecule not lost any energy, through the opening process of the valve, or while bouncing back from the far edge of the second compartment, which can well be assumed to consist in a similar scattering process the gas kept on undergoing before the opening of the valve, it would then preserve its original translational energy, all the way through. The temperature, being related to this energy, will indeed not change. Note that the gas does not even do an internal work, while expanding. It may have, if the initially empty compartment is not all the way empty. Then how ever nothing would change, for again the total internal energy would have remained constant, as long as the gas do not do work to the outside and does not receive heat form outside. Let us note one last thing: After the Joule gas expands, based on Eq.(1), while the energy is kept constant, the cruise width of the particle is now stretched. Accordingly, its quantum number must be visualized as increased just as much. 
CONCLUSION

Herein we were able to a set a direct link between an ideal gas behavior and Quantum Mechanics. Classically an ideal gas, based on the Kinetic Theory of Gases, is made of individual constituents. Here though, we were able to arrive at the classical thermodynamic results, via considering just the quantum mechanical behavior of a single particle, imprisoned in a box. 

Thence we came up with a deep-seated description of an ideal gas. It is, a gas, where the behavior can be predicted based on the quantum mechanics of a single particle, imprisoned in a box, thus not interacting with each other, whatsoever. The box, at the macroscopic level is nothing else, but the container confining the gas in consideration. 

The ideal gas behavior, thereby is in fact nothing else, but a quantum mechanical manifestation, at the macroscopic level. Thus, the adiabatic compression of a gas yields the increase of the quantum mechanical relativistic kinetic energy of its constituents, moving in a zero field, inside the container. 
The classical adiabatic constancy of Pressure x Volume(5/3) seems even deeper. It is that the quantity [Mass ] x [Pressure] x [Volume](5/3)  turns out to be a Lorentz scalar. Thereby, we expect this scalar, to be somehow nailed to a Lorentz invariant universal constant; this constant, more specifically, as Eq.(33), in the general relativistic case, displays,  turns out to be 
[image: image102.wmf]2

h

(the square of the Planck Constant). 
Henceforth i) the constancy of the product, 
                      Relativistic Mass x Pressure x Volume(5/3= Constant, 


  (36)  
happens to be not just an extension of quantum mechanics to macroscopic scales, but even more essentially, ii) it delineates how the internal dynamics displayed by a quantum mechanical particle of a given mass, is organized in conjunction with the size of space, and the dynamics in question takes place in, and this universally, at all scales;
,
 it is of course striking to observe that, the same holds for a system, such as gas, made of even billion x billion x billion particles. The first author called the distinctive organization in question, “Universal Matter Architecture”.
Too much pressure put on a gas, would necessarily bring in, electrostatic repulsion effects, which may involve energy to be stored, as a rest mass increase, of the constituents, the way we have discussed above, in the Introduction. The expansion of the gas, conversely would involve the transformation of rest mass into kinetic energy. We save that topic for a subsequent article.

The major conclusion of this article is that, our approach establishes a faultless accordance between Quantum Mechanics, Newton’s Second Law of Motion, the Law of Energy Conservation, Special Theory of Relativity, Classical Thermodynamics and Kinetic Theory of Gases, which we believe, was masked for so very many decades.
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