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ABSTRACT

In this paper we find a connection between the macroscopic classical laws of gases and the quantum mechanical description of non-interacting particles confined in a box, in fact constituting an ideal gas. In such a gas, the motion of each individual molecule can be considered independently from all other molecules, and thus the macroscopic parameters of ideal gas, like pressure P and temperature T, can be introduced as a result of simple averaging over all individual motions of molecules. It is shown that for an ideal gas enclosed in a macroscopic cubic box of volume V, the constant, in the classical law of adiabatic expansion expression, i.e. 
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, can be derived, based on quantum mechanics. Physical implications of the result we disclose are discussed. In any case, our finding proves, seemingly, a macroscopic manifestation of a quantum mechanical behavior, and this in relation to classical thermodynamics.
1.  INTRODUCTION 

Time to time, most of us, no doubt, just like many scientists of the 20th century, were puzzled with the question of finding a bridge between the Boltzmann Constant k and the Planck Constant h. We will see below that this is actually a vain effort. Nevertheless, de Broglie already in his doctorate thesis has brilliantly applied his relationship (associating a wave length with the momentum of a moving particle) to the statistical equilibrium of gases [1], but did not advance his idea, to see whether one can, along such a line, obtain anything related to the law of gases, established long ago, in 1650.

The Boyle-Mariotte law of ideal gas is given, as usual, by
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with the following designations: P is the pressure of the gas, V the volume of the gas, T the temperature of the gas, n the number of moles the gas is made of, N the number of molecules making the gas, R the gas constant, and k the Boltzmann Constant.

The value of R is measured to be

R = 8.31 Joules / º K .  







(2)

The Boltzmann Constant is then given by
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where 
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 is the Avagadro number; note that n is,  N / NA .
The Kinetic Theory of Gases allows us to derive the same casing as that of Eq.(1) via considering the momentum change of molecules when bouncing back from a wall of the container [2]. Assuming for simplicity a cubic geometry, one obtains
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, being the average translational energy of molecules of mass m.

The comparison of this relationship with Eq.(1) yields
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Furthermore, Eq.(4), given the way it is framed (cf. the footnote, we have just provided), can well be written for the pressure p, that would be built in a volume V, containing just one molecule of translational energy 
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Could this equation be a basis to build a bridge between the law of gases (mainly characterized by the Boltzmann Constant), and quantum mechanics (which will evidently involve the energy quantity 
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)? Here though, while the equality 
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 is no more than a definition of the temperature, in terms of the average translational energy of the molecules 
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, once k is defined via Eq.(3). So 
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 is not to provide us with any relationship between k and h . (It is just a definition of T, once k is known.) 
Accordingly, Eq.(6) does not bring us anywhere in finding a bridge between the “law of gases” and “quantum mechanics”. 
In other terms, 
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 is to be expected to involve the Planck Constant, yet this, does not provide us, with a relationship between h and k, if we based ourselves on Eq.(6),  for such an equality would yield merely a relationship between h and kT. In effect, the introduction of the temperature concept next to the concept of energy is not only redundant, but also somehow dichotemic, thus misleading. Hence, based on Eq.(6) we are bound to fail to establish a relationship between macroscopic properties of an ideal gas and the quantum mechanical description of its molecules. 

Thereby we find out that, when we propose to draw a line between the law of gases and quantum mechanics, we should not really look for a relationship between h and k. Any such effort will be dissolved through a plain definition of the temperature, in terms of the average translational energy of the molecules, and nothing beyond. How ever, we can still go ahead to check whether the phenomenological laws of gases are well matched to quantum mechanics, if we could explore those laws of gases, which do not involve the constants R or k. That is the key point of our approach.  
2.   THE COMPATIBILITY OF THE LAW OF GASES WITH QUANTUM 

MECHANICS, BASED ON THE CONSTANCY OF PV
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 FOR AN ADIABATIC TRANSFORMATION

There is a relationship satisfying the criteria we have just set; this is the one describing an adiabatic transformation of gases in a wide temperature range, i.e. 
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obtained in the familiar way based on the law of gases, considered together with the first law of thermodynamics [3], with the usual definition
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where
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 being the heat to be delivered to one mole of ideal gas at constant volume to increase its temperature as much as 1º K, and 
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 being the heat to be delivered to one mole of ideal gas at constant pressure to increase its temperature still as much as 1º K. Eqs. (9) and (10) are exact, for an ideal gas, for which The Boyle Mariotte law [Eq.(1)] holds for even one molecule. That is if R were replaced by the Boltzmann Constant in these equations, then one lands at 
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, defined for just one molecule. This means we can confidently use the ratio Cp/Cv or the same, the ratio cp/cv in the quantum world. Furthermore, recall that, Eqs. (9) and (10) are known to be valid, when internal energy levels of molecules are not excited. Such an assertion is fulfilled for an ideal gas, by definition. And we will find out that an ideal gas, thus defined, on the basis of the Boyle Mariotte law [Eq.(1)], is in fact, a gas which is made of non-interacting molecules, each behaving as a simple quantum mechanical particle locked up (potential energy – wise) in an infinitely high box.

Note that, classically, although it is established that 
[image: image26.wmf]g

PV

 should remain as a constant quantity, through an adiabatic transformation, no one knew, what this constant would be. No one would even seemingly wondered whether such a constancy could be explained based on any universal constant, such as the Planck Constant.

From Eqs. (8) - (10), one has,  
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We should emphasize that this ratio can well be applied to a gas made of just one molecule, thus quantum mechanically, to a particle in a box.

In an ideal gas, all molecules are considered independently from each other. As we will see, this can be checked out. Thus, Eq.(7) remains  valid, even if the gas consists in just one molecule. And once again, within the frame of the Kinetic Theory of Gases, one first, is to express the pressure for one molecule only, before he proceeds for all molecules, making up the gas, in order to formulate the macroscopic pressure, the gas exerts on the walls of the container (cf. the aforementioned footnote). 

It should be stressed that Eq.(7), as expected, embodies, neither the temperature T, nor the average translational energy 
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, so we are well off the incorrectly set, dead end problem we reported above, regarding the search for a pointless bare link between k and h.

Further on, we would like to introduce the following fundamental question: 
Is Eq.(7) compatible with a corresponding quantum mechanical frame, one would set?

Let us thus consider a particle of mass m with a fixed internal energy state, located in a macroscopic cube of side L. Herein we will consider the non-relativistic case. Our approach however can be extended to the relativistic case with no difficulty. The non-relativistic Schrödinger equation furnishes the energy 
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 of the particle in the box, at a given energy level, i.e. 


[image: image30.wmf](

)

2

2

2

2

2

2

2

2

2

2

2

2

8

8

mL

n

n

n

h

L

n

L

n

L

n

m

h

E

z

y

x

z

y

x

n

+

+

=

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

,




(12)

where we denoted 
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, the quantum numbers to be associated with the corresponding wave function dependencies, on the respective directions x, y and z. For brevity, we introduced, the subscript “n” which denotes the specific state characterized by the set of integer numbers 
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. [These should of course, not be confused with the number of moles n (not written in the italic form), introduced in Eq.(1).] 

For an ideal gas the “potential energy” within the box, is null. Thus, we have
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 being the velocity of the particle at the nth energy level.

At the given energy level, the pressure 
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 exerted by just one particle on either wall, becomes [cf. Eqs. (4) and (6)]
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Now, let us calculate (for just one particle), the product 
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Hence, this quantity indeed, turns out to be a constant for a given particle of mass m at the given energy level.

Recall that the total energy En of Eq.(12), ultimately determines the quantized velocity vn of Eq.(13). 

When it is question of many particles instead of just one, normally, we would have particles at different, possible, quantized states. This is most likely, what leads to the Maxwellian Distribution of particles, with different translational energies, in a container, at a given temperature. It is on the other hand, this temperature which specifies the average particle. We can well visualized the average particle, as a single particle, obeying to Eq.(15), thus situated at the nth level, and of course associate the given temperature with the energy coming into play, along with Eq.(5).
Not to complicate things, let us get focussed on the average particle, and simply suppose that all others, behave the same. Furthermore, all three components of the average velocity in equilibrium are expected to be the same. Thus, we can rewrite Eq.(15) for the macroscopic pressure Pn exerted at the given average state n, by one mole of gas, on the walls of the container:
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 is the Avagadro Number. 
Eq.(16) well discloses the constant involved by Eq.(7). Note that, at the average state n (i.e. at the given temperature), the mean square speed of the gas molecules is vn2. The average energy is furnished accordingly, via the framework of Eq.(13). Let us calculate what would n be, for 1mole of H2, delineating the pressure of 105 Pascal (i.e. 1 atmosphere), in a volume of 1 m3. From Eq.(16), we obtain: 
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3. DISCUSSION

One may question whether or not our approach can be considered to be a general one. Herein we have simply provided an answer to the enigmatic constant of Eq.(7).  If this equation for any reason fails, it is true that, our approach cannot be applied. But if Eq.(7) fails, this would, before everything else, mean that, the gas at hand is not an ideal gas. Thus we would expect other effects such as interactions between the molecules making up the gas, coming into play. 
We should like to note that, Eq.(7) is not a relativistic equation, anyway. That is, if ever the constituents of the gas, moved at speeds which can not be neglected as compared to the speed of light, then, it is not anyway, a valid relationship, and (at the average state denominated by n), it should be replaced, as insinuated by Eqs.(15) and (16), by  
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where 
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 then, is the relativistic energy of the average particle, i.e.
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 Note further that the relationship 
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 well holds for a photon gas, though with the exponent 
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We spare the discussion of these interesting points for a future work.
4. CONCLUSION

In this article, we aimed to bridge, classical thermodynamics and quantum mechanics. Though, we have determined that, toward that aim, it is in vain, to look for a relationship between Bolzmann Constant k, and Planck Constant h. Indeed, a relationship involving both k and h, such as Eq.(6), is nothing more than a definition of say, the temperature, in terms of the translational energy of the particle in hand.

So, we had to nail down a relationship which involves, neither k, not h, to be able to work out, our goal. Thus, we came out with the task of working out the constancy of 
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The value of the constancy of 
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, is something totally missed over almost a century, in the literature. As far as records are concerned, no one seems to have even wondered about the possible value of this constant.
Herein we have calculated this constant, based on quantum mechanics, at last making a bridge between classical thermodynamics, and quantum mechanics.
Our result further makes that, the behavior of an ideal gas, otherwise defined by the Boyle Mariotte law [Eq.(1)], is nothing, but a macroscopic manifestation of quantum mechanics, in fact the quantum mechanical behavior of particles, which can all be considered separately, in the same macroscopic box. 

Thus, the classical adiabatic constancy of [pressure] x [volume](5/3) (thus generally, the frame drawn by the law of ideal gases), happens to be rooted to quantum mechanics, and seems to be deep. It is that the quantity [mass ] x [pressure] x [volume](5/3)  turns out to be a Lorentz scalar. 
Thereby, we expect this scalar, to be somehow nailed to a Lorentz invariant universal constant; this constant, more specifically, turns out to be 
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(the square of the Planck Constant). 
Accordingly, for a given mass m, the quantity [pressure] x [volume](5/3) relates to 
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; this is, what we have revealed, in this article. 
Henceforth i) the constancy of [pressure] x [volume](5/3)  appears to be an extension of quantum mechanics to macroscopic scales, but even more essentially, ii) it delineates how the internal dynamics displayed by a quantum mechanical particle of a given mass, is organized in conjunction with the size of space, and the dynamics in question takes place in, and this universally, at all scales [4, 5]. Here, we will not go in any further details of this fundamental problem.
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�  For the sake of completeness, let us recall the classical derivation of Eq.(4). The force � EMBED Equation.3  ��� exerted by the molecule of mass m and velocity v, delineating vx as its x-component, on the wall � EMBED Equation.3  ��� to x, is given by Newton’s second law, i.e. � EMBED Equation.3  ���, where � EMBED Equation.3  ��� is the algebraic increase in the momentum, whilst the molecule bounces back from the wall, and � EMBED Equation.3  ���, L being the size of the container along the x-direction. 











Thus, � EMBED Equation.3  ���becomes � EMBED Equation.3  ���. We can suppose that we deal with an average molecule, and all molecules behave as this average molecule. Hence, summing over N molecules, the gas is made of, we get the total force 


� EMBED Equation.3  ��� , 


where we have the mean square velocities; recall that at the equilibrium the mean square velocities, for all directions, point to the same quantity. The pressure P exerted by N molecules on the wall of concern, is thence


� EMBED Equation.3  ���,


which is Eq.(4), along with V=L3. Note that the foregoing derivation is well based on the formulation of the pressure exerted by just one molecule on the given wall; thus it is surely valid for solely one molecule of ideal gas, in which case N=1.








� Rigorously speaking, one must write 


      � EMBED Equation.3  ��� ,						(i)


    


    along with the definition,


      � EMBED Equation.3  ��� . 							(ii)





    Thus it becomes clear that, if all particles bared the same set of quantum numbers, each with equal quantum numbers along all three directions, i.e. � EMBED Equation.3  ���=� EMBED Equation.3  ���=� EMBED Equation.3  ���=n, then							� EMBED Equation.3  ���. 									(iii)
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