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HOW A TOTAL MASS, EQUIVALENT TO THE GRAVITATIONAL BINDING 
ENERGY SHOULD BE DUMPED, FROM THE REST MASSES OF TWO BODIES 

FALLING INTO EACH OTHER? 
 

Tolga Yarman  
 
 

ABSTRACT 
 
Previously, based on the energy conservation law (in the broader sense of the concept of “energy”, thus 
embodying “mass”), as imposed by the special theory of relativity, we had proposed to alter the rest mass of a an 
object of mass 

m  (measured at a place free of gravitational field), gravitationally bound to a host celestial body 

of mass M  (still measured at a place free of surrounding gravitational field), practically infinite as compared 

to 
m ; accordingly, the rest mass of m

m  was to be decreased, as much as the binding energy coming into play, 

in between the two masses of concern.  
 
This manipulation, together with a quantum mechanical theorem we had established (indicating that if the mass 
of a wave-like object is decreased by a given amount, its internal energy is concomitantly decreased as much), 
did essentially yield the end results of the general theory of relativity, though through a completely different set 
up than that of this latter theory. 
 
Through our previous work, for simplicity, we had assumed that 

m  << M   .  
 
Herein we remove this restriction, and we end up with the relationship about the total binding energy  

)R(EB
coming into play 
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Had the original masses 
m  and M  happen to have fallen up to the distance R from each other, along with the 
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our result is in conformity with the classical linear momentum conservation law.  
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INTRODUCTION 
 
Previously, based on the energy conservation law (in the broader sense of the concept of  
“energy” embodying “mass”), as imposed by the special theory of relativity,1 we have 
proposed to alter the rest mass of an object of mass m  (measured at infinity, in a space free 

of gravitational field), gravitationally bound to a host celestial body of mass M  (also 
measured in a space free of gravitational field),, and this, as much as the binding energy that 
comes into play, in between the two masses.2  
 
In calculating the binding energy EB, we had assumed that the host celestial body of mass 

M , is very massive, so that through the binding process it does not practically move. This 
made that, we retrieved a mass equivalent to the binding energy EB, from the light object 
originally of mass m , only.  
 
In what follows, we allow both objects to move, whilst getting bound. 
 
Thus, below we first calculate the binding energy of two gravitating bodies, taking into 
account the mass deficits of the objects in consideration, delineated through the process of 
binding (Section 1). This enables us to determine the overall relativistic masses of the two 
gravitating objects, including the mass deficits (due to binding) (Section 2). Next, we derive 
the general equations of motion via differentiating these relativistic masses (pointing to the 
total energies of the objects of concern, thus) to be held constant on a given orbit (Section 3). 
This yields us to the classical momentum conservation law, in harmony with our depart point 
(Section 4). A conclusion is presented thereafter (Section 5).   

 

1.   TOTAL GRAVITATIONAL BINDING ENERGY OF TWO OBJECTS, 
EMBODYING THE MASS DEFICITS DELINEATED THROUGH THE 
PROCESS OF BINDING 

Suppose we set the light object of mass m , and the massive object of mass M  (originally 
assumed at rest), simultaneously free (in the reference system of the distant observer), at a 
very big distance from each other. Because of the Newtonian gravitational force (we had 
adopted, though for static masses only), they will accelerate toward each other, and at a given 
distance from each other, they will acquire, respectively the velocities v and V, thus the 
kinetic energies mK  and MK . Now, if somehow the original masses m  and M , are 
stopped; masses respectively equivalent to their kinetic energies are to be retrieved from their 
internal energies.  

 

If we retain the conservation of the linear momentum, we can write  

vmV  M ;             (1) 

here we kept the original masses at infinity, since according to our approach the kinetic 
energies are respectively fueled by the mass deficiencies coming into play, making that the 
overall masses remain constant through the motion, and equal to their original contents; we 
will elaborate on this below. 
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Eq.(1), more essentially, points to an other problem. It is indeed true that a priori, we do not 
know whether the total linear momentum of the system in consideration, is conserved or not, 
within the frame of our approach. Classically, it is conserved (owing to Newton’s Second Law 
of Motion). But the Newtonian attraction force dynamicF , between moving objects, does not 

behave exactly like the Newtonian attraction force staticF ,3 reigning between static masses; 

staticF  is in fact greater than dynamicF ;2 more precisely, we had shown that the inertial mass is 

greater than the gravitational mass, by a factor of 2  (where   is the usual Lorentz dilation 
factor). Nonetheless, there appears an easy way of showing that the conservation of linear 
momentum law should further hold, within the frame of our approach. The force driving the 
motion between m  and  M , can indeed be seen from both the side of m , and that of  M . 

Thus, through the motion, no matter how the Newtonian attraction force exerted by m  on 

 M , and the Newtonian attraction force exerted by  M on m , should be modified, 
depending on their respective velocities; these forces, should remain equal to each other. Both 
of these forces, on the other hand, are equal to the rate of changes of the respective linear 
momenta. Thence these latter quantities, should also remain equal to each other, all the way, 
through the fall. Below, we will elaborate on this too. 

 

Note on the other hand that, Eq.(1) should be written for allover relativistic masses, coming 
into play. Yet through a free fall, the motion is fueled by the transformation of (for current 
cases) a given (minimal) part of the mass of the given object into kinetic energy. This makes 
that the overall masses of the objects falling into each other, are their respective masses, at 
infinity. That is, Eq.(1), is well rigorous.  

 

For small velocities, this equation makes that the ratio f of the kinetic energy of m , to the 
summation of kinetic energies coming into play, turns out to be  
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(fraction of mass to be retrieved from the small mass) . 

 

This constitutes the fraction of the mass equivalent to the binding energy of m  and M  , to 

be retrieved from the small mass m .  

 

The ratio F of the kinetic energy of  M , to the summation of kinetic energies in question, 
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This constitutes the fraction of mass equivalent to the overall binding energy of m  and  M , 

to be retrieved from the big mass  M  .  

 
At relativistic velocities, Eq.(1) must be considered, along with the relativistic relationships of 
momenta. 
 
Through the free fall, based on our previous work,2 one can write the following overall 
relativistic energy conservation equations, regarding the relativistic masses )( 00 rm  , and  

)( 00 rM , of the objects in hand. These ought to be constant, since the kinetic energies they 

acquire on the way, are to by fueled by the transformation of a minimal part of their 
respective rest masses: 
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BE  is the total binding energy coming into play at the given distance of the two bodies, 
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Let us define the instantaneous relativistic momenta mp  and Mp , of the two objects: 
 

vmvmpm   ,          (4-e) 

 
and 
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VvpM   MM .         (4-f) 
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The two momenta, must be equal throughout:    
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or 
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This yields            .          
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leading well to Eqs. (2) and (3), were v and V are small, as compared to the speed of light, i.e. 
the terms in 2

0B c/E  can be dropped. 

 
Note yet that, in the general case, f depends on the binding energy coming into play. 
 
When the two masses have fallen up to distance r, from each other, their binding energy, 

)r(E B , based on Newton’s attraction force reigning between static masses, as assessed by a 
distant observer, can be written as  
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This leads to the differential equation  
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Note that F, out of Eq.(6), can be written as   
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This, along with Eq.(8), yields,  
 

   

 

 

 
   

24
0

2

2
B

2
0

B

2
0

B

2
0

B

2
0

B

2

B

2
0

B

222
0

B
22

2
0

2
B

r

mG

cr

rE

cm

E
1

cm2

E
1

cm

E
1

c2

E
1

m

mG

rE

cm

E
1

m

m

c2

E
1

m

m

cr

G

dr

rdE



















































































































Μ

MM

M

M

Μ

M

M

M

M

M

)(

)(
)(

 .                               

    (8-d) 
 
This is the rigorous differential equation that will furnish the static binding energy. 
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Note that, via ordering the second term on the RHS of this equation, for small binding 
energies, one can land at  
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This unfortunately constitutes a critical result, and bearing only an approximated term in 
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B , makes it that, via plugging it into Eq.(8-d), one gets unacceptable solutions.  
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one occurs when m << M .  Then 

   1
c

rEm
1A

2
0

B
2




 )(

M
 ,                     (ii) 

   which makes that we can contentedly neglect the term in )r(E2
B

, next to the term in )r(EB
. 

   The second interesting case arises when  Mm .  Then 

   
2
0

B

cm4

)r(E
1A



  .                (iii) 

    The solution [Eq.6)] indicates that when 
 Mm ,   [of Eq.(8-a)] becomes 1, which makes that  

 )r(2
0B e1cm)r(E 

   .               (iv) 

    An extreme case occurs when 2/1  (for, the classical singularity). In this case, the binding energy 
BE  

given by Eq.(6), can be used to make an estimate, as a first approximation: 

     2
0

2
0

)2
0B cm6.0)

6

125.0

2

25.0
5.01(cme1cmE 


   ;            (v) 

 thus A becomes   

    85.0
cm4

E
1A

2
0

B 


 ,               (vi) 

   which happens to be still close to unity, making that under the circumstances in consideration, the term in 
)r(E2

B
 should only be envisaged when the objects are in the vicinity of the classical singularity. Otherwise, the 

solution delineated by Eq.(6) is very satisfactory. 
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Then, via neglecting the terms in )r(E2

B , the solution of Eq.(8) is straightforward:  
 

          


















 

Rc

G
1

cm
RE

2
0

2
0

B

M
exp)(  =  )R(

2
0 e1

cm  


  ,                (9)   

(binding energy of m and M , at a distance R from each other) 
 

when m  and M  are at a distance R from each other, with the definitions 
 

rc

G
r

2
0


M

)(   ,                   (10) 

and 

 














M

M
m

1

m
1 2

2

 ,                             (11-a) 

so that  

    








m

m

Rc

G 22

2
0 M

M
  .                (11-b)  

 
The only difference between Eq.(9), and our previous result, where we supposed M   fixed; 
is just  , coming into play within the exponantial term, and 1/  dividing the quantity within 
brackets.  
 
It can be right away observed that,   is unity when m is very small as compared to M ; but 

  is still unity when m and M   are equal to each other; in between,   draws a minimum for        

12m  M/ , for which    becomes 828.02/)22(2  . 
 
Having found this solution one can try to better Eq./8-d) in the following manner. 
 
2. OVERALL RELATIVISTIC MASSES, INCLUDING MASS DEFICITS, DUE TO 

BINDING 
 
We can now derive the static masses of the bound objects. Let us, call them )r(m  and M (r), 
when bound at a distance r from each other.   
 
Thus, via Eqs. (2), (3), and (9) one can write  

                                                                                                                                                         
    Note that, according to our approach, were m very big as compared to M ; the free fall of m into M , from 

practically an infinite distance and from rest, yields 2
0

22 c/v1e  , where v is the velocity of m [cf.    

Eq.(10-a), ahead]. For 2/1 , this yields 8.0c/v 0  . Yet, the second order term of the expansion of 

2
0

2 c/v1 , still remains about %15 of that of the first order; that is the relative correction to be brought to the 

non-relativistic expression of the kinetic energy of m, is just that much.     
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
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





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






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)( e1

m
1

1
1cm
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rE
f1cmcrm

2

2
2
02

0

B2
0

2
0

M

 .                           (12-a) 

 
            [static mass of the object m at a distance r from the object M ] 
 
and, 






























 









 )(

)(
)( e1

M
m

1

1m
1c

c

rE
F1ccr

2

22

2
2
02

0

B2
0

2
0 M

M
M

MM     .             (12-b)      

         
            [static mass of the object  M  at a distance r from the object m ] 
 
One can immediately check that )r(m  and )(rM  reduce indeed to the same quantity, if 

 Mm ; if further m  can be neglected as compared to M , then this latter mass remains 
unaltered, through the binding process. 
 
Suppose now, m  and M  are engaged in a given motion, around each other. 
 
In order to formulate this motion, as we did previously,2 we can imagine that  
 
i) we bring the masses of concern, quasistatically from infinity, at the distance r from each  

other, and then 
 
ii) we assign them, their respective orbit velocities.  
 
The motion of m  and M  will take place around the center of mass of these. 
 
Let then )r(v m  the velocity of the small object with respect to the center of mass; we suppose 

that this object is situated at a distance mr  from the center of mass. Likewise let )r(V M  the 
velocity of the big object, still with respect to the center of mass; we suppose that this latter 
object is situated at a distance Mr  from the center of mass. 
 
Through the motion of concern, on the given orbit, the instantaneous total relativistic energy 
of each of the bound masses (embodying the mass deficit due to binding), must remain 
constant. Or the same, the overall mass of each of these, i.e. the rest mass at infinity decreased 
as much as the corresponding portion of the binding energy, but at the same time increased as 
much as the Lorentz dilation factor, should remain constant. 
 
We can accordingly write, two constancies based on the motion of m  and M , around each 
other: 
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
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









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


M

DConstant  ,             (13-a) 

 
                        (overall mass of the object m,  on the orbit) 
 
and 

         

 

2
0

2

2

22

2

M

2
0

2

2
0

B

c
V

1

e1
m

1

1m
1

c
v

1

cM
E

f1




































M

M

MDMMM Constant   ;        (13-b) 

 
   (overall mass of the object M  on the orbit) 

 
the approximate expressions point to the non-relativistic cases. 
 
Recall that the constants mD  and MD  through a free fall of m and M  into each other, turn out 
to be unity, since the kinetic energies acquired by the masses on the way, based on our 
approach, are fueled by the respective mass defects.2 

 
 
3.   GENERAL EQUATIONS OF MOTION VIA DIFFERANTIATING THE 

RELATIVISTIC MASSES: PROOF OF THE CONSERVATION OF LINEAR 
MOMENTUM  

 
By differentiating Eqs (13-a) and (13-b), we arrive at  
 

      






















 



 2

0

B

2
0

2

2
0

2

2
0

2
0

B

2
0

2 cm

E
f1

c
v

1

c
v

1

c
vdv

m
cm

Ef
d

c
v

1

1
m     ,             (14-a) 

 
    (rigorous equation leading to the equation of motion of m ,  
     regardless we have a free fall, or not) 
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      






















 



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0

B

2
0

2

2
0

2

2
0
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0

B

2
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E
F1

c

V
1

c

V
1

c

VdV

c

EF
d

c

V
1

1
M

M
M     ,             (14-a) 

 
    (rigorous equation leading to the equation of motion of M  ,  
     regardless we have a free fall, or not) 

 
The Right Hand Sides of the above equations, clearly refer to the respective changes of the 
kinetic energies of m and M . [Recall that the numerators of Eqs. (13-a) and (13-b) point to 

the rest masses of m and M , at the given respective locations.] 
 
Thus the Right Hand Sides of the above equations, should come to refer to the changes of the 
gravitational energies induced by the “effective gravitational forces” driving the motion of m 
and M . The strength of effective gravitational force exerted by M  on m , and the strength 

of the effective gravitational force exerted by m on M , must be equal (and this will 
constitute a very convincing physical tool toward the proof of the linear momentum 
conservation). 
 
Thence  

dr

EFd

c

V
1

1

dr

Efd
m

c

v
1

1 B

2
0

2

B

2
0

2

)()(








M  .                         (15-a) 

 
 
For a free fall [for which the constants coming into play in Eqs. (13-a) and (13-b), are unity], 
one can further write 

 
























 2

0

B
B2

0

B
B cM

E
F1EFd

cm

E
f1Efdm )()( M  .              (15-b) 

 
This relationship, together with the previous one, appears to be a fundamental key assuring 
the momentum conservation. 
 
If the origin of the coordinate system is taken at the center of mass of  m  and M  , then† 

                                                 
†  Because the constants 

mD  and 
MD  of Eqs. (13-a) and (13-b) are unity, in the case of a free fall, 

m  and 
M  

become respectively 
m  and M .  Thence, Eq.(16) harmoniously yields Eq.(1) (i.e. the total linear 

momentum conservation equation), had one taken the derivative of it, with respect time. The problem here, at 
the first strike seems though, “it is not trivial to decide whether we should incorporate the ‘static masses’, or 
the ‘relativisitic masses’, with the definition of the ‘center of mass’ of these”. In fact, it is question of just a 
definition; yet defining the center of mass along relativistic masses [via Eq.(16)], is conformous with the 
linear conservation law, whereas defining it based on just static masses, is not.  



 12

 
   Mm rrm   M ,           (16) 
 
together with  
 
                         Mm rrr   .           (17) 
 
Eqs. (16) and (17), yield 
 

   rFr
m

m
rM 








M
 ,                 (18-a) 

and  

rfr
m

rm 







M

M
 ;                         (18-b) 

or 

rFdrd
m

m
drM 








M
 ,                 (19-a) 

and  

drfdr
m

drm 







M

M
 ;                        (19-b)  

 
Hence Eqs. (14-a) and (14-b) can be written as 

dv
dt

dr
mdr

dr

dr

cm

E
f1

dr

)Ef(d m
m

m
2
0

BB












  ,                     (20-a) 

 

  dV
dt

dr
dr

dr

dr

c

E
F1

dr

EFd M
M

M
2
0

BB












 M

M

)(
 .              (20-b) 

 
These equations can be transformed into vectorial equations, as usual:2 

dt

pd

dt

vd
m

r

rm

cm

E
f1

dr

Efd m

m

m
2
0

BB 






 








 





 M

M)(
 ,              (21-a) 

 

dt

pd

dt

Vd
M

r

r

m

m

c

E
F1

dr

EFd M

M

M
2
0

BB 






 








 







M

M

)(
 ;              (21-b) 

 
here we have made use of Eqs. (19-a) and (19-b); v and V should be read as 

dt

dr
v m  ,                   (22-a) 

and  

dt

dr
V M ;                            (22-b) 
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mr  and Mr  are the outward looking unit vectors.‡ 
 
Owing to Eq.(15-b), the left hand sides of Eqs. (21-a) and (21-b) are equal to each other, 
which makes that we come successfully to verify the equalities of the linear momenta. 
 
Eqs. (21-a) and (21-b) are to be solved for the two unknowns mr  and Mr , via the usual 
procedure. (Yet this is not the task we propose to undertake, herein.) 
 
CONCLUSION 
 
Herein we considered two objects m  and M  falling into each other, and based on our 
previous work,2 we proposed to determine the amount of masses, that should be dumped due 
to binding, from respectively the rest masses of these objects.  
 
Through our previous work, for simplicity, we had assumed that m  << M  . Herein we 
removed this restriction, and as a first approximation, we end up with 
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  ,               (9)   

              (binding energy of m  and M  , at a distance R from each other) 
 

for m  and M   having fallen to a distance R from each other, with the definitions 
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G
r
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0


M

)(   ,                   (10) 

and 
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1 2

2

 ,                             (11-a) 

 
The fraction f of BE , to be taken out of m becomes 

 

                                                 
‡  Were m  negligible as compared to M  , these two equations reduce to 
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    
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thus, under the mentioned circumstance, the LHS of the second equation remains negligible as compared to 
the LHS of the first, yielding the fact that dv/dt remains negligible as compared to dV/dt, or the fact that the 
big object stays almost at rest, through the motion; accordingly, the first equation turns out to be the same as 
that we found previously.1 
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  ,        (6) 

 
and, the fraction F of BE , to be taken out of M   is (1-f). 
 
The exact solution of Eq.(8), following the plugging of Eq.(6) into Eq.(7-b), to construct a 
rigorous set up, remains yet to be pinned down, especially, nearby heavily dense objects.  
 
Our finding may point to a clue to the quest of inflation, at the beginning of the universe, 
since mass, equivalent to binding energy, must have been manufactured (out of energy), 
through the process of expansion, following the Big Bang, just like mass is transformed into 
energy through the free fall, we undertook herein.  
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