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Abstract 
Previously, we established a connection between the macroscopic classical laws of gases and the 
quantum mechanical description of molecules of an ideal gas (T. Yarman et al. 
arXiv:0805.4494). In such a gas, the motion of each molecule can be considered independently 
on all other molecules, and thus the macroscopic parameters of the ideal gas, like pressure P and 
temperature T, can be introduced as a result of simple averaging over all individual motions of 
the molecules. It was shown that for an ideal gas enclosed in a macroscopic cubic box of volume 
V, the constant, arising along with the classical law of adiabatic expansion, i.e. PV5/3=constant, 
can be explicitly derived based on quantum mechanics, so that the constant comes to be propor-
tional to /mh2 ; here h is the Planck Constant, and m is the relativistic mass of the molecule the 
gas is made of. In this article we show that the same holds for a photon gas, although the related 
setup is quite different than the previous ideal gas setup. At any rate, we come out with 

Constanthc~PV 4/3  , where c is the speed of light. No matter what the dimensions of the con-
stants in question are different from each other, they are still rooted to universal constants, more 
specifically to h2 and to hc, respectively; their ratio, i.e. V1/3~h/mc, interestingly pointing to the 
de Broglie relationship’s cast.  
 
1. Introduction 
It is known that the question of finding a connection between the Boltzmann constant k and the 
Planck constant h remains unanswered. In the previous work [1] we have shown that such an ef-
fort is in vain, for as we have elaborated on, one can only define one of these quantities, based on 
the other. Instead though, we established an organic bridge between the macroscopic classical 
laws of gases and the quantum mechanical description of molecules of an ideal gas, within the 
framework of a gas relationship involving neither k nor h. Along this line, it would be fair to re-
call that in particular, de Broglie already in his doctorate thesis has brilliantly applied his rela-
tionship (associating a wave length with the momentum of a moving particle) to the statistical 
equilibrium of gases [2], but did not advance his idea, to see whether one can, along such a line, 
obtain anything related to the laws of gases, established long ago, in 1650. Modern statistical 
physics, despite huge efforts to draw a parallelism between the classical law of gases and quan-
tum mechanics, does not yet appear at the level of directly implementing the two disciplines in 
question, into each other, the way we did in ref. [1]. 

In an ideal gas, by definition, one proposes to consider the motion of each molecule inde-
pendently on all other molecules. Accordingly the macroscopic parameters of the ideal gas, such 
as pressure P and temperature T, can be introduced as a result of simple averaging over all indi-
vidual motions of molecules. In the mentioned work [1] we had thus shown that for an ideal gas 
enclosed in a macroscopic cubic box of volume V, the classical law of adiabatic expansion,  
PV=constant,           (1) 
can be derived based on simple quantum mechanics. A principal advantage of such a quantum 
mechanical analysis is the explicit determination of the constant of eq. (1), which turns out to be 

)4/( 0
22 mnh  for a gas made of just one molecule of mass m0. Here n is the integer number cha-

racterizing the energy level the molecule in the simplifying assumption, where all three quantum 
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numbers nx, ny, and nz are equal to n, thus equal to each other. The result can easily be extended 
and, via averaging, generalized to a given set of molecules.  

Below, we first summarize the previous work [1], which constitutes the basis of the 
present contribution (section 2). Then we undertake the case of a photon gas (section 3). We 
show that the PV=constant holds for a photon gas, too, with =4/3. The constant coming into 
play being still nailed to the Planck constant h. Finally a conclusion is drawn in section 4.  
 
2. The harmony of the phenomenological laws of gases with quantum mechanics based on 

the constancy of PV for an adiabatic transformation 
 
As anticipated previously [1], the relationship (1) for an adiabatic transformation, an ideal gas 
displays, constitutes an efficient check point of the compatibility of the macroscopic laws of gas-
es and quantum mechanics. Below, for simplicity, we will operate with one mole of gas. We 
could well operate with just a single molecule, and the results would still be the same, since in an 
ideal gas the molecules are supposed not to interact with each other. 

Thus, the second author et al. have previously proposed to calculate specifically, the con-
stant in question, within a quantum mechanical framework. Below we summarize the derivation. 

Eq. (1) involves the usual definition 

VP CC ,           (2) 

where 

RCV 2

3
 , RCP 2

5
 ,          (3), (4) 

CV being the heat to be delivered to one mole of ideal gas at constant volume to increase the tem-
perature of the gas as much as 1º K, and CP being the heat to be delivered to one mole of ideal 
gas at constant pressure to increase its temperature, still as much as 1º K, and R is the gas con-
stant. Eqs. (3) and (4) are exact, when internal energy levels of molecules are not excited. By de-
finition, such an approximation is fulfilled for an ideal gas. Hence we have  

35 .            (5) 
It is worth to emphasize that eq. (2) would remain valid, even if the ideal gas consists of a 

single molecule. It may indeed be recalled that, within the frame of the kinetic theory of gases, 
one first expresses the pressure for just one molecule of gas, before he proceeds for very many 
more, making up the gas of concern. This is how, one formulates the macroscopic pressure, the 
gas exerts on the walls of its container. In what follows, we determine the constant of eq. (1) first 
for slowly moving molecules of the ideal gas (sub-section 2.1), and then for relativistically mov-
ing molecules (sub-section 2.2) 
 
2.1. The non-relativistic case 
Let us consider a non-relativistic particle of rest mass m0 at a fixed internal energy state, located 
in a macroscopic cube of side L. The non-relativistic Schrödinger equation furnishes the nth ener-
gy En is 
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where we denoted nx=1,2,3…n, ny=1,2,3…n, nz=1,2,3…n the quantum numbers to be associated 
with the corresponding wave function dependencies on the respective directions x, y and z. He-
reinafter, for brevity, while writing En, we introduced the subscript “n” to denote the given state 
characterized by the integer numbers nx, ny and nz, so each “n” in fact, represents a set of three 
integer numbers. 
 



For an ideal gas confined in an infinitely high box, the potential energy input to the 
Schrödinger equation is null everywhere inside the box. (It is evidently infinite at the borders). 
Hence for a non-relativistic particle, we have 

2
02

1
nn vmE  ,           (7) 

vn being the velocity of the particle at the nth energy level. 
At the given energy level, the pressure pn exerted by the single particle on the walls, after 

averaging over three dimensions, becomes [1] 
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Now let us calculate the product pnV
: 
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We observe that the rhs of eq. (9) turns out to be a constant for the given discrete energy 
level n (specified by the set of nx, ny and nz) of the particle of mass m0. Recall that the total quan-
tized energy En in eq. (6) ultimately determines the quantized velocity vn of eq. (7) along with its 
three quantized components.  

When it is question of many particles instead of just one, we have to consider the par-
ticles at different, possible, quantized states. We can anyway visualize the average particle at the 

thn  level, thus corresponding to the given temperature of the gas† at the given state, and suppose 
that all other particles behave the same. Furthermore, all three components of the average 
velocity are expected to be the same in equilibrium state. Thus, we can rewrite eq. (9) for the 
macroscopic pressure nP  exerted at the given average state n  by one mole of gas on the walls of 

the container:‡ 

0
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where NA is the Avagadro number.  
Thus eq. (10) discloses the constant involved by the adiabatic transformation relationship, 

i.e. eq. (1). Note that at the average state n  (i.e. at the given temperature), the mean square speed 

of the gas molecules is 22
nn vv  ; the average energy nn EE   is furnished accordingly, via the 

framework of eq.(7).  

Thus, we arrive to conclude that the constancy VPn , drawn by an adiabatic transforma-

tion of an ideal gas, is nothing but a macroscopic manifestation of its quantum mechanical beha-
vior. 

The above results, i.e. eq. (8) and eq. (9) would not change, if we operated in, not three 
dimensions, but just one dimension. The reason is simply that, the factor 1/3 introduced at the 
level of eq. (8) due to the exercise of three dimensions, would be cancelled out by the factor 3, 

                                                 
† Note that through an adiabatic transformation of particles in a box, the “temperature” will get changed, whereas 
the quantum denominations associated with the energy levels of these particles, will remain the same; that is the 
quantum numbers coming into pay, would not get altered. Thus, we have to precise what we mean here, by “temper-
ature”. We mean, the “average energy of the constituents in the box, at the given state, prior to the transformation”. 
‡ Rigorously speaking, one must write [1]  
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. Hence it becomes clear that, if all particles bare the same set of quantum numbers, 

each with equal quantum numbers along all three directions, i.e. nx=ny=nz= n , then n  becomes 2nn  . 



that would come into play, at the level of eq. (9) due to the introduction of the corresponding 
three quantum numbers (equal to each other regarding the average energy level we visualized).  
 
2.2. The relativistic case 
We start with a relativistic generalization of eq. (8), which obviously implies the replacement of 
m0 by the relativistic mass of molecule m=m0: 
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where n being the relativistic momentum to be furnished by de Broglie relationship, so that  
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Here again to keep a long denomination short, we chose to indicate the state of concern 
by the mere letter n, which in fact should embody the set of three quantum numbers, nx, ny, and 
nz each to be associated with the related dimension. What is then n that will come to multiply h? 
We do not really have to know it. What we have to know is the square of this number, since in 
eq. (11) we need 2

nmv , and not mvn. Thus what we need, is a quantum number to be associated 

with 2
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n vvvv  , i.e. the square of the velocity. It becomes easy to guess that this number 

will be 
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Let us now write eq. (11) for the average state: 
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where the last equality, as before, implies the equality of the three quantum numbers for the av-

erage state we characterize by n . We can then compose VPn  for one mole gas [see, eq.(9)]:§ 
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Thence, we come to the conclusion that in the relativistic case, VPn  does not remain 

constant, since the relativistic mass m is not a constant (albeit the rhs appears to be a constant). 
But γ

nVmP  well is:  
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for an adiabatic transformation.  
Thus, we have found that in a gas where molecules would bare the relativistic energy 

2mcn  , in the average, at the thn  state, the product  VPnn  through an adiabatic transforma-

tion remains constant, which, for one mole of gas, becomes 4/222 cnhN A . What is more, the 

adiabatic constancy of the product  VPnn  is nothing but a macroscopic quantum mechanical 

manifestation, the gas delineates. 

                                                 
§ Note that the total relativistic energy 2mcn   for the average particle is given as  
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Note that up to this point, the exponent  in all expressions of (pressure  volume) was 
5/3. It is different for the photon gas, analyzed in section 3, below, though it will still indicate the 
ratio of specific heats at respectively constant pressure and constant volume.  
 
3. Adiabatic transformation of the photon gas 
 
The basic finding we proposed to provide in this section is whether or not a photon gas would 
fulfill our disclosure about the adiabatic constancy of (pressure  volume). We will see below 
that it does. We will accordingly specifically calculate the constant coming into play in 
(pressure  volume)=Constant. 

Thus, consider once again a cube of side L, with just one photon moving in a perpendicu-
lar direction to two surfaces. The total energy E of the photon is as usual 
E=c,             (17) 
where  is the relativistic momentum of the photon. The force F the photon exerts on the wall is 
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Thus the pressure p on the side of the cube, created by the given photon’s hits is 

V

E

L

c

L

F
p  32


.           (19) 

This is the pressure on the two sides to be perpendicular to the photon direction. However the 
pressure on the other four sides of the cube, the way we have just set it up, is zero. Thus, were 
we working in three dimensions, we are to write the average pressure, as 

V

E
p

3
 ,           (20) 

or 
E=3pV.            (21) 

A photon, on the other hand, has altogether 3x2=6 degrees of freedom: three components 
of momentum with two kinds (right handed or left handed) of circular polarization. Thus at the 
temperature T, one can write 

kT
kT

E 3
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where k is the Boltzmann constant. This makes that for the photon the specific heat cV at constant 
volume, becomes 

k
dT

dE
cV 3 .            (23) 

 In order to derive an expression for cp (the specific heat at constant pressure), we recall 
the first law of thermodynamics 

pdVQdE   ,           (24) 

which expresses an increase of the total energy as much as dE, if an amount of heat Q is re-
ceived from the outside, upon which the constituent delivers to the outside the work pdV. At the 
constant pressure, the first law of thermodynamics yields: 
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where we have used eq.(21). Hence 
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which, via eq.(23), leads to 
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Let us finally calculate the product pV  for the photon at hand, taking into account 
eq. (21): 
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where   is the frequency of the photon of concern, so that hE  . 
To proceed from here on, we may for simplicity (and without any loss of generality) as-

sume that, the photon moves in one dimension only (and perpendicularly to two parallel sides of 
the cube of concern). Thus, classically, and ultimately quantum mechanically, it leads to a stand-

ing way inside the box, where the known basic relationship, i.e. 
2

nn
L


 , is to apply, along with 

nnc  , n  being the wavelength of the photon, and n a corresponding integer number. Hence 

we finally have 
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where we precise the fact that the pressure pn is created by the photon being at the nth level in the 
box. 

This relationship is written for just one photon, also for one dimension only. It can easily 
be generalized to three dimensions and an arbitrary number N of photons confined inside the 
box, for which one will have to define (just the way we have done for an ordinary gas) an aver-
age quantum number n , to be ascribed to the conveniently defined average energy of the pho-
tons of concern: 

6
34 hcn

NVPn  ;          (29) 

here nP  being the average pressure, and n  the average quantum number defined in the same 

way, as above. We can see that the product VPn  remains constant, when the number of photons 

at a fixed energy/frequency state inside the box is a given constant (i.e. there is no absorption of 
photons by the walls of the box).  
 
4. Conclusions 
We recall the fact that PV stays constant through an adiabatic transformation, has been derived 
practically in all books on thermodynamics (e.g., [7, 8, 9,10,]), yet based on the purely phenome-

nological description of the gas. However, the value of the constant delineated by PV , to our 
recollection, is something totally missed over almost a century, after quantum mechanics came 
into play. As far we could see, throughout, no one seems to have even wondered about the possi-
ble value of this constant. 

In a previous work, we had calculated this constant for an ideal gas, thus succeeding at 
the same time to establish an organic link between classical thermodynamics and quantum me-
chanics [1]. The essence of our approach is to express the energy, entering into eq.(8) for the 
pressure exerted by just one molecule, through the quantum mechanical energy eigenvalue rela-
tionship, expressed by eq. (6). We are convinced that this is a warranted procedure, even if the 
molecule is confined inside a macroscopic recipient.  

This way, we could derive the value of the constant delineated by the quantity PV  for 
the given average discrete energy level n related to the particle, no matter what the number n 
might be huge for a macroscopic cube. Then the value of this constant is obtained via simple 
quantum mechanics and ordinary averaging (see, eq. (10)). 

An extension of our approach to the case of relativistically moving particles, composing 
an ideal gas, led to the constancy of the product (total relativistic energy of particle  PV). This 
result seems to be deep, because this product turns out to be a Lorentz scalar (see, eq. (16)). 
However, further discussion of this result will be presented elsewhere.  



Herein we have extended our approach to the photon gas. Because now it is question of a 
photon, the setup is, as expected, different than the one we have established previously. Never-

theless the result, cast-wise, is the same. In other words, the quantity pV  for a photon is i) a 

constant, and ii) nothing but 6hcn . 

Recall that for an ordinary gas, the exponent  in all expressions of (pressure  volume) 
was 5/3. It became 4/3 for the photon gas, though it still indicates the ratio of specific heats at 
respectively constant pressure and constant volume.  

No matter what the dimensions of the constants in question are different from each other, 
it seems of course, striking that, they are still rooted to universal constants, more specifically to 
h2 and to hc, respectively, their ratio, i.e. V1/3=h/mc, interestingly pointing to the de Broglie 
relationship’s cast.  

Finally the results of the present paper may not lead to new experimental predictions. 
Nonetheless, we believe that they have a general significance and unexpectedly show that the 
phenomenological laws for the ideal gas, and for a photon gas, can be interpreted as a macros-
copic manifestation of quantum phenomena, which certainly seems quite unexpected chiefly for 
an ordinary gas.  

Any deviation from constantPV   must mean that, one then deals with something else 
than an ideal gas.  
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