Relativity Theory is Dead

By Professor Joe Nahhas, 1977
joenahhas1958@yahoo.com

Hello, my name is Joe Nahhas in October 2009 holding my 1979 thermo book and showing my October 1979 stapled picture whispering relativity theory is dead

The replacement to all four classical quantum relativistic and strings is: Real time universal mechanics explained below and I dare all to prove me wrong

Abstract: The elimination of relativity theory is a matter of time and not a matter of science. The problem in all of physics is wrong experimental data and measurements. Correcting data and measurements mistakes of past 150 years will cure physics from 20th century wrong physics. 20th century wrong physics starts with relativity theory. Taking all of relativity theory experimental proofs and proves that it amounts to nothing and a case of 109 years of Nobel Prize winner physicists and 400 Years of Astronomy that can not read a telescope is not going to end relativity. Physicists built 150 years of physics on
wrong concepts of relativity. Physics progress requires the death of relativity theory and 100,000 living physicists relativistic education attached to it. All relativity theory experimental is visual effects and the proofs are below and I challenge all to prove me wrong.

This Article is Relativity Theory Death Certificate.

A- General relativity has 5 textbook and college taught experimental proofs

3- Planetary Telecommunications time delays (Shapiro) 250 micro second round trip - III
4- Pound Rebka Harvard University Davis Lab experiments ------------------------- IV

B- Special relativity is based on two erroneous principles

That produced wrong physics of

10- Nuclear dark energy --- X

Relativity theory Death Certificate

1- Real time Physics: We can only measure past events. We can not measure something that did not happen. We can only measure things that had happened. What we measure in not what happened. We measure in present time an event that happened in past time.
Present time $=$ present time
Present time $=$ past time + [present time - past time]
Present time $=$ past time + real time delays
Real time physics $=$ event time physics + real time relativistic delays
What one sees is relativistic = what happened in an absolute event + relativistic effects
What happened in an event is absolute $=$ real time physics - real time relativistic effects.
Observer time $=$ observed time + time delays
Real time $=$ absolute time + time delays
Real time $=$ Event time + time delays
Real time Physics $=$ event time Physics + time delays Physics
2 - Real time Universe
All there is in the Universe is objects of mass moving in space (x, y, z) at a location $\mathbf{r}=\mathbf{r}(\mathrm{x}, \mathrm{y}, \mathrm{z})$. The state of any object in the Universe can be expressed as the product.
$\mathbf{S}=\mathrm{m} \mathbf{r}$; State $=$ mass x location:

A - Real time location

An object at of absolute location \mathbf{r} when measured in real time a decay factor of $e^{[\lambda(r)] t}$ and a motion factor of $\mathrm{e}^{[i \omega(r)] t}$ is introduced to a total factor of $\mathrm{e}^{[\lambda(r)+i \omega(r)] t}$ and the location of an object measured in real time is $\mathbf{r}=\mathbf{r}(0) \mathrm{e}^{[\lambda(r)+i \omega(r)] t}$

B - Real time mass

An object at of absolute mass m when measured in real time a decay factor of $e^{[\lambda(m)] t}$ and a motion factor of $\mathrm{e}^{[i \omega(\mathrm{~m})]}$ is introduced to a total factor of $\mathrm{e}^{[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})]}$ t and the location of an object measured in real time is $m=m(0) e^{[\lambda(m)+i \omega(m)] t}$

3 - Real time location along the line of measurement and perpendicular to the line of measurement.
$\mathbf{S}=\mathbf{r} \mathrm{e}^{[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})] \mathrm{t}}=\mathbf{r} \mathrm{e}^{[\lambda(\mathrm{r})] \mathrm{t}} \mathrm{e}^{i \omega(\mathrm{r}) \mathrm{t}}$
$\mathbf{S}_{\mathrm{x}}+\mathrm{i} \mathbf{S}_{\mathrm{y}}=\mathbf{r} \mathrm{e}^{[\lambda(\mathrm{r})] \mathrm{t}}[\operatorname{cosine} \omega \mathrm{t}+\mathrm{i} \operatorname{sine} \omega \mathrm{t}$]
Along the line of measurement
$\mathbf{S}_{\mathrm{x}}=\mathbf{r} \mathrm{e}^{[\lambda(\mathrm{r})]} \mathrm{t}$ cosine $\omega \mathrm{t}$
$\mathbf{S}_{\mathrm{x}=}=\mathbf{r} \mathrm{e}^{[\lambda(\mathrm{r})]} \mathrm{t} \sqrt{\left[1-\sin e^{2} \omega t\right]}$
Perpendicular to line of measurements
$S_{y}=\mathbf{r} e^{[\lambda(r)]}$ tine ωt
Taking $\omega \mathrm{T}=\arctan (\mathrm{v} / \mathrm{c})$
Along the line of measurement
Then $\mathbf{S}_{\mathrm{x}}=\mathbf{r} \mathrm{e}^{[\lambda(\mathrm{r})] \mathrm{t}} \sqrt{ }\left[1-\sin \mathrm{e}^{2} \arctan (\mathrm{v} / \mathrm{c})\right]$
Perpendicular to line of measurements
And $\mathbf{S}_{\mathbf{y}}=\mathbf{r} \mathrm{e}^{[\lambda(\mathrm{r})] \mathrm{t}}$ sine $\arctan (\mathrm{v} / \mathrm{c})$
4 -Real time location motion visual effects along the line of measurement
$\mathbf{S}_{\mathrm{x}}=\mathbf{r} \mathrm{e}^{[\lambda(\mathrm{r})] \mathrm{t}} \sqrt{ }\left[1-\sin \mathrm{e}^{2} \arctan (\mathrm{v} / \mathrm{c})\right]$
With $\lambda(\mathrm{r})=0$
Then
$\mathbf{S}_{\mathrm{x}}=\mathbf{r} \sqrt{ }\left[1-\operatorname{sine}^{2} \arctan (\mathrm{v} / \mathrm{c})\right]$
5 - Lorentz's length contraction historical mistake.
$\mathbf{S}_{\mathrm{x}}=\mathbf{r} \sqrt{ }\left[1-\operatorname{sine}^{2} \arctan (\mathrm{v} / \mathrm{c})\right]$
With (v / c) $\ll 1$
Then $\mathbf{S}_{\mathrm{x}}=\mathbf{r} \sqrt{ }\left[1-(\mathrm{v} / \mathrm{c})^{2}\right]$
This is Lorentz's length contraction 150 years historical mistake
5 - Einstein's constant velocity of light historical mistake
$\mathbf{S}_{\mathrm{x}}=\mathbf{r} \sqrt{ }\left[1-(\mathrm{v} / \mathrm{c})^{2}\right]$
$\mathbf{S}_{\mathrm{x}}=\mathbf{c} \Gamma$ and $\mathbf{r}=\mathbf{c} \mathrm{t}$
Then $\mathbf{c} \Gamma=\mathbf{c t} \sqrt{ }\left[1-(\mathrm{v} / \mathrm{c})^{2}\right]$
And $\Gamma=\mathrm{t} \sqrt{ }\left[1-(\mathrm{v} / \mathrm{c})^{2}\right]$

6 - Einstein's special relativity theory time dilation historical mistake

$\Gamma=\mathrm{t} \sqrt{ }\left[1-(\mathrm{v} / \mathrm{c})^{2}\right]$

7 - Time Factor

$\mathbf{S}_{\mathbf{x}}=\mathbf{r} \sqrt{ }\left[1-\operatorname{sine}^{2} \arctan (\mathrm{v} / \mathrm{c})\right]$
$\mathrm{S}_{\mathrm{x}}=\mathrm{r} \sqrt{ }\left[1-\sin ^{2} \arctan (\mathrm{v} / \mathrm{c})\right]$
If $(\mathrm{v} / \mathrm{c})=(1 / \mathrm{n})=(1 /$ refractive index $)$ and the velocity is constant in absolute value
Or $\mathrm{S}_{\mathrm{x}}=\mathrm{c} \Gamma(\mathrm{x})$ and $\mathrm{r}=\mathrm{ct}$; then
$\Gamma(x)=\mathrm{t} \sqrt{ }\left[1-\sin ^{2} \arctan (\mathrm{v} / \mathrm{c})\right]$
Along the line of measurement
$\Gamma(x)=t \sqrt{ }\left[1-\sin e^{2} \arctan (1 / n)\right]$
Perpendicular to the line of measurement
$\mathbf{S}_{\mathbf{y}}=\mathbf{r} \operatorname{sine} \arctan (\mathrm{v} / \mathrm{c})$
$S_{y}=r \operatorname{sine} \arctan (v / c)$
And $\Gamma(\mathrm{y})=\mathrm{t}$ sine $\arctan (\mathrm{v} / \mathrm{c})=\mathrm{t}$ sine $\arctan (1 / \mathrm{n})$
8- Reins and Cowan 1953 Savannah River Neutrino experiment historical dark energy mistake.
Along the line of measurement
$\Gamma(\mathrm{x})=\mathrm{t} \sqrt{ }\left[1-\sin ^{2} \arctan (1 / \mathrm{n})\right]$
With $\mathrm{t}=25 \mu \mathrm{~s}$
And n of water $=1.33<\mathrm{n}<1.44=\mathrm{n}$ of tri ethyl benzene
$\Gamma(\mathrm{x})=\mathrm{t} \sqrt{ }\left[1-\operatorname{sine}^{2} \arctan (1 / \mathrm{n})\right]$

9 - Real time Straight line
$\mathbf{S}=\mathbf{r} \mathrm{e}^{[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})]}$
With $\lambda(r)=0$
Then $\mathbf{S}=\mathbf{r} \mathrm{e}^{[i \omega(\mathrm{r})] \mathrm{t}}=\mathbf{r}[\operatorname{cosine} \omega \mathrm{t}+\mathrm{i} \operatorname{sine} \omega \mathrm{t}]$
Let $\mathbf{r}=\mathrm{r} \hat{\mathbf{i}}=\mathrm{vtî}$
Then $\mathbf{S}=\mathrm{vt}$ î $[\operatorname{cosine} \omega \mathrm{t}+\mathrm{i}$ sine $\omega \mathrm{t}$]
$\mathbf{S}_{\mathrm{x}}+\mathrm{i} \mathbf{S}_{\mathrm{y}}=\mathrm{vt} \hat{\mathbf{i}}[\operatorname{cosine} \omega \mathrm{t}]+\mathrm{vtî}[\hat{i} \operatorname{sine} \omega \mathrm{t}]$
Along the line of measurement
$S_{x}=v t \operatorname{cosine} \omega t$
$S_{y}=v t \operatorname{sine} \omega t$
At time of measurement $\mathrm{w} T=\arctan (\mathrm{v} / \mathrm{c})$
$S_{x}=\mathrm{vtcosine} \arctan (\mathrm{v} / \mathrm{c})$
$S_{y}=v t \operatorname{sine} \arctan (v / c)$
If $v=c$
Then $S_{x}=v t \operatorname{cosine} \arctan (v / c)=c t \operatorname{cosine} \arctan (c / c)=c t \operatorname{cosine}(\pi / 4)=c t / \sqrt{ } 2$
$S_{y}=v t \operatorname{sine} \arctan (\mathrm{v} / \mathrm{c})=\mathrm{ct} \operatorname{sine} \arctan (\mathrm{c} / \mathrm{c})=\mathrm{ct} \operatorname{sine}(\pi / 4)=\mathrm{ct} / \sqrt{ } 2$
$\mathrm{S}=\mathrm{ct}$
If $\mathrm{r}=\mathrm{r}(0)$
$\mathrm{S}_{\mathrm{x}}=\mathrm{r}(0) \operatorname{cosine} \arctan (\mathrm{v} / \mathrm{c})=\mathrm{r}(0) \sqrt{ }\left[1-\operatorname{sine}^{2} \arctan (\mathrm{v} / \mathrm{c})\right]$
$S_{y}=r(0)$ sine $\arctan (\mathrm{v} / \mathrm{c})$

10 - Real time location in Polar Coordinates

With $\mathbf{r}=$ location; $\mathbf{v}=$ velocity; $\gamma=$ acceleration
And $\mathbf{r}=\mathrm{r} \mathbf{r}_{(\mathbf{1})} ; \mathbf{v}=\mathrm{r}^{\prime} \mathbf{r}_{(\mathbf{1})}+\mathrm{r} \theta^{\prime} \boldsymbol{\theta}_{(\mathbf{1})} ; \boldsymbol{\gamma}=\left(\mathrm{r}^{\prime \prime}-\mathrm{r} \theta^{\prime 2}\right) \mathbf{r}_{(\mathbf{1})}+\left(2 \mathrm{r}^{\prime} \theta^{\prime}+\mathrm{r} \theta^{\prime \prime}\right) \boldsymbol{\theta}_{(1)}$
$\mathbf{S}=\mathrm{r} \mathbf{r}{ }_{(1)} \mathrm{e}^{[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})] \mathrm{t}}$

11 - Real time Velocity

Let $\mathbf{S}=\mathbf{r} \mathrm{e}^{[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})]} \mathrm{t}$
Then Velocity $=\mathbf{P}=\mathrm{d} \mathbf{S} / \mathbf{d} \mathbf{t}=\left\{[(\mathrm{d} \mathbf{r} / \mathrm{dt})+\mathbf{r}[\lambda(\mathrm{r})+i \omega(\mathrm{r})]\} \mathrm{e}^{[\lambda(\mathrm{r})+i \omega(\mathrm{r})] \mathrm{t}}\right.$
$\mathbf{P}=\left\{[\mathbf{v}+\mathbf{r}[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})]\} \mathrm{e}^{[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})] \mathrm{t}}\right.$

12-Real time Areal velocity

$\mathrm{A}=|\mathbf{r} \times \mathrm{d} \mathbf{r} / \mathbf{2}|$
Areal velocity: $\mathrm{d} A / \mathrm{d} \mathrm{t}=|\mathbf{r} \times(\mathrm{d} \mathbf{r} / 2 \mathrm{~d} \mathrm{t})|=|\mathbf{r} \times \mathbf{v} / 2|$
And $|\mathbf{S} \times(\mathrm{d} \mathbf{S} / \mathbf{2 d t})|=|\mathbf{S} \times \mathbf{P} / \mathbf{2}|$

$$
\begin{aligned}
& =\left|\mathbf{r} \mathrm{e}^{[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})] \mathrm{t}} \mathrm{x}\left\{[\mathbf{v}+\mathbf{r}[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})]\} \mathrm{e}^{[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})] \mathrm{t}}\right\} / 2\right| \\
& =|\mathbf{r} \times \mathbf{v} / 2| \mathrm{e}^{2[\lambda(\mathrm{r})+i \omega(\mathrm{r})] \mathrm{t}}
\end{aligned}
$$

$|\mathbf{S} \times \mathbf{P} / 2|=|\mathbf{r x v} / 2| \mathrm{e}^{2[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})] \mathrm{t}}$

13-Real time Areal velocity in polar coordinates

$$
\begin{aligned}
|\mathbf{S} \times \mathbf{P} / 2| & =|\mathbf{r} \times \mathbf{v} / 2| \mathrm{e}^{2[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})] \mathrm{t}} \\
& =\left|[\mathrm{r} \mathbf{r}(\mathbf{1})] \times\left[\mathrm{r}^{\prime} \mathbf{r}(\mathbf{r})+\mathrm{r} \theta^{\prime} \boldsymbol{\theta}(\mathbf{1})\right] / 2\right| \\
& =\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)\left[\mathrm{e}^{2[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})] \mathrm{t}}\right]
\end{aligned}
$$

14- Real time motion Areal velocity visual effects in polar coordinates

$$
\begin{aligned}
|\mathbf{S} \times \mathbf{P} / 2| & =|\mathbf{r} \times \mathbf{v} / 2| \mathrm{e}^{2[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})] \mathrm{t}} \\
& =\left|[\mathrm{r} \mathbf{r}(\mathbf{1})] \times\left[\mathrm{r}^{\prime} \mathbf{r}(\mathbf{1})+\mathrm{r} \theta^{\prime} \boldsymbol{\theta}(\mathbf{1})\right] / 2\right| \\
& =\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)\left[\mathrm{e}^{2[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})] \mathrm{t}}\right]
\end{aligned}
$$

With $\lambda(r)=0$

$$
|\mathbf{S} \times \mathbf{P} / 2|=\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)\left[\mathrm{e}^{2 i \omega(\mathrm{r}) \mathrm{t}}\right]
$$

15 - Real time motion Areal velocity in polar coordinates along the line of measurement

$$
\begin{aligned}
|\mathbf{S} \times \mathbf{P} / 2| & =|\mathbf{r} \times \mathbf{v} / 2| \mathrm{e}^{2[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})] \mathrm{t}} \\
& =\left|[\mathrm{r} \mathbf{r}(\mathbf{1})] \times\left[\mathrm{r}^{\prime} \mathbf{r}(\mathbf{1})+\mathrm{r} \theta^{\prime} \boldsymbol{\theta}(\mathbf{1})\right] / 2\right| \\
& =\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)\left[\mathrm{e}^{2[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})] \mathrm{t}}\right]
\end{aligned}
$$

With $\lambda(r)=0$
$|\mathbf{S} \times \mathbf{P} / 2|=\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)\left[\mathrm{e}^{2 i \mathrm{i} \omega(\mathrm{r}) \mathrm{t}}\right]$

$$
=\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)[\operatorname{cosine} 2 \omega \mathrm{t}+\mathrm{i} \operatorname{sine} 2 \omega \mathrm{t}]
$$

$|\mathbf{S x P} / 2|(\mathrm{x})=\left(\mathrm{r}^{2} \theta^{\prime} / 2\right) \operatorname{cosine} 2 \omega \mathrm{t}$

$$
=\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)\left[1-\sin ^{2} \omega \mathrm{t}\right]
$$

$|\mathbf{S} \times \mathbf{P} / 2|(\mathrm{x})-\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)=-\mathrm{r}^{2} \theta^{\prime} \sin \mathrm{e}^{2} \omega \mathrm{t}$
16-400 years of wrong Astronomy of real time Areal velocity visual effects
$|\mathbf{S} \times \mathbf{P} / 2|(\mathrm{x})-\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)=-\mathrm{r}^{2} \theta^{\prime} \sin ^{2} \omega \mathrm{t}$
With $\omega \mathrm{T}=\arctan (\mathrm{v} / \mathrm{c})$
$|\mathbf{S} \times \mathbf{P} / 2|(\mathrm{x})-\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)=-\mathrm{r}^{2} \theta^{\prime} \operatorname{sine}^{2} \arctan (\mathrm{v} / \mathrm{c})$
With (v/c) $\ll 1$
Then $|\mathbf{S} \times \mathbf{P} / 2|(\mathrm{x})-\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)=-\mathrm{r}^{2} \theta^{\prime}(\mathrm{v} / \mathrm{c})^{2}$

17- Real time Areal velocity visual effects for an ellipse

Then $|\mathbf{S} \times \mathbf{P} / 2|(\mathrm{x})-\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)=-\mathrm{r}^{2} \theta^{\prime}(\mathrm{v} / \mathrm{c})^{2}$
With $\mathrm{r}^{2} \theta^{\prime}=2 \pi \mathrm{ab}$
Then $|\mathbf{S x} \mathbf{P} / 2|(\mathrm{x})-\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)=[-2 \pi \mathrm{ab} / \mathrm{T}](\mathrm{v} / \mathrm{c})^{2}$
18 - Advance of Perihelion visual effects

$$
\begin{aligned}
\left.\left\{|\mathbf{S} \times \mathbf{P} / 2|(\mathrm{x})-\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)\right\} 2 / \mathrm{a}^{2}(1-\varepsilon)^{2}\right\} & =[-2 \pi \mathrm{ab} / \mathrm{T}](\mathrm{v} / \mathrm{c})^{2}\left[2 / \mathrm{a}^{2}(1-\varepsilon)^{2}\right] \\
& =-4 \pi(\mathrm{~b} / \mathrm{a})(\mathrm{v} / \mathrm{c})^{2 / T}(1-\varepsilon)^{2} \\
& =-4 \pi\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] / \mathrm{T}(1-\varepsilon)^{2}\right\}(\mathrm{v} / \mathrm{c})^{2}
\end{aligned}
$$

19- Advance of Perihelion visual effects in arc sec/ century.
$\left.\left\{|\mathbf{S} \times \mathbf{P} / 2|(\mathrm{x})-\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)\right\} 2 / \mathrm{a}^{2}(1-\varepsilon)^{2}\right\}=-4 \pi\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\}(\mathrm{v} / \mathrm{c})^{2}$
$\{(180 / \pi)(36526)(3600)\}=[-720 \times 36526 \times 3600 / \mathrm{T}]\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\}(\mathrm{v} / \mathrm{c})^{2}$
20 - Advance of Perihelion visual effects of Planet mercury in arc sec/ century. $\left.\left\{|\mathbf{S} \times \mathbf{P} / 2|(\mathrm{x})-\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)\right\} 2 / \mathrm{a}^{2}(1-\varepsilon)^{2}\right\}=-4 \pi\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\}(\mathrm{v} / \mathrm{c})^{2}$ $\{(180 / \pi)(36526)(3600)\}=[-720 \times 36526 \times 3600 / \mathrm{T}]\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\}(\mathrm{v} / \mathrm{c})^{2}$
With $\varepsilon=.206, \mathrm{~T}=88 ; \mathrm{v}=\mathrm{v}^{*}+\mathrm{v}^{\circ} ; \mathrm{v}^{*}=$ orbital velocity $=47.9 \mathrm{~km} / \sec \mathrm{v}^{\circ}=\operatorname{spin}$ speed of observer on earth $=0.3 \mathrm{~km} / \mathrm{sec}$ Europe. $\mathrm{v}=\mathrm{v}^{*}+\mathrm{v}^{\circ}=48.2 \mathrm{~km} / \mathrm{sec}$; v° (mercury) $=3$ m/s
And W" $($ calculated $)=[-720 \times 36526 \times 3600 / T]\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\}(\mathrm{v} / \mathrm{c})^{2}$

$$
\begin{aligned}
& =[-720 \times 36526 \times 3600 / 88](1.552)(48.2 / 300,000)^{2} \\
& =43.10 \text { Arc sec /century --1}
\end{aligned}
$$

21 - Advance of Perihelion visual effects of Planet Venus in arc sec/ century. $\left.\left\{|\mathbf{S x P} / 2|(\mathrm{x})-\left(\mathrm{r}^{2} \theta^{\prime} / 2\right)\right\} 2 / \mathrm{a}^{2}(1-\varepsilon)^{2}\right\}=-4 \pi\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\}(\mathrm{v} / \mathrm{c})^{2}$ $\{(180 / \pi)(36526)(3600)\}=[-720 \times 36526 x 3600 / \mathrm{T}]\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\}(\mathrm{v} / \mathrm{c})^{2}$ With $\varepsilon=.206, \mathrm{~T}=244.7 ; \mathrm{v}=\mathrm{v}^{*}+\mathrm{v}^{\circ} ; \mathrm{v}^{*}=$ orbital velocity $=35.12 \mathrm{~km} / \mathrm{sec} \mathrm{v}^{\circ}=\operatorname{spin}$ speed of observer on earth $=0.3 \mathrm{~km} / \mathrm{sec}$ Europe. And $v^{\circ}($ Mercury $)=6.52 \mathrm{~km} / \mathrm{sec}$ $\mathrm{v}=\mathrm{v}^{*}+\mathrm{v}^{\circ}=41.94 \mathrm{~km} / \mathrm{sec}$

$$
\begin{aligned}
\text { And W" (calculated }) & =[-720 \times 36526 \times 3600 / T]\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\}(\mathrm{v} / \mathrm{c})^{2} \\
& =[-720 \times 36526 \times 3600 / 244.7](1.00761)(41.94 / 300,000)^{2} \\
& =7.6192 \text { Arc sec /century }
\end{aligned}
$$

22 - Binary stars apsidal motion in arc sec

$\mathrm{W}^{\prime \prime}($ calculated $)=[-720 \times 36526 \times 3600 / \mathrm{T}]\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\}(\mathrm{v} / \mathrm{c})^{2} \mathrm{arcsec} /$ century
23 - Global Positioning Systems: --- II
$U($ seconds/day $)=[24 / 360][-720 x 3600]\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\}(\mathrm{v} / \mathrm{c})^{2}$ sec/day
33 - Interplanetary telecommunications around the Sun round trip time delays $\Delta \Gamma=\left[16 \pi \mathrm{G} \mathrm{M} / \mathrm{c}^{3}\right]\left[1+/-\left(\mathrm{v}^{\circ} / \mathrm{v}^{*}\right)\right]^{2}$

24 - Interplanetary telecommunications around the Sun round trip time delays Nahhas constant
$\Gamma(0)=16 \pi \mathrm{G} \mathrm{M} / \mathrm{c}^{3}=247.597 \mu \mathrm{~s}$
25 - Mars telecommunications around the sun time delays Shapiro's historical mistake
$\Delta \Gamma=\left[16 \pi \mathrm{G} \mathrm{M} / \mathrm{c}^{3}\right]\left[1+\left(v^{\circ} / \mathrm{v}^{*}\right)\right]^{2}=250 \mu \mathrm{~s}---------------------------$ III

26-Circular motion Advance of starting point visual effects

$\mathrm{W}^{\prime \prime}($ calculated $)=[-720 \times 36526 \times 3600 / \mathrm{T}](\mathrm{v} / \mathrm{c})^{2} \mathrm{arc} \mathrm{sec} /$ century; $\varepsilon=0$
27 - Pound- Rebka Gravitational confused for light aberrations: $\mathbf{S}=\mathbf{r} \operatorname{Exp}[\mathbf{i ̉} \omega$ t]
$\operatorname{Or} \lambda(\mathbf{S})=\lambda(\mathbf{r}) \operatorname{Exp}[i \not \omega t]$
Measurements are defined at $\mathrm{t}=\mathrm{T} ; \omega \mathrm{T}=\arctan (\mathrm{v} / \mathrm{c})$
With sine $\omega \mathrm{T}=$ sine $\arctan (\mathrm{v} / \mathrm{c}) ;$ cosine $\arctan \omega(\mathrm{r}) \mathrm{T}=\sqrt{ }\left\{1-[\operatorname{sine} \operatorname{arc} \tan (\mathrm{v} / \mathrm{c})]^{2}\right\}$
And with $\mathrm{v} \ll \mathrm{c}$; then $\omega(\mathrm{r}) \mathrm{T}=\arctan \mathrm{v} / \mathrm{c} \approx \mathrm{v} / \mathrm{c}$
Then sine $\omega \mathrm{T}=$ sine $\operatorname{arc} \tan \mathrm{v} / \mathrm{c} \approx \mathrm{v} / \mathrm{c}$;
And cosine $\omega \mathrm{T}=$ cosine $\operatorname{arc} \tan \mathrm{v} / \mathrm{c}=\sqrt{ }\left[1-\operatorname{sine}^{2} \arctan (\mathrm{v} / \mathrm{c})\right]=\sqrt{ }\left[1-(\mathrm{v} / \mathrm{c})^{2}\right]$
Or $\lambda(\mathbf{S})=\lambda(\mathrm{r})\left\{\sqrt{ }\left[1-(\mathrm{v} / \mathrm{c})^{2}\right]+i(\mathrm{v} / \mathrm{c})\right\}=\operatorname{Real} \lambda(\mathbf{S})+\operatorname{Imaginary} \lambda(\mathbf{S})$
Projected or Real $\lambda(\mathrm{S})=\lambda(\mathrm{r}) \sqrt{ }\left[1-(\mathrm{v} / \mathrm{c})^{2}\right] \approx \lambda(\mathrm{r})\left[1-1 / 2(\mathrm{v} / \mathrm{c})^{2}\right]$
$\Delta \lambda=\operatorname{real} \lambda(\mathrm{S})-\lambda(\mathrm{r})$
$\Delta \lambda=\lambda(\mathrm{r}) \sqrt{ }\left[1-(\mathrm{v} / \mathrm{c})^{2}\right]-\lambda(\mathrm{r})$
$\left.\Delta \lambda=-\lambda(\mathrm{r})(\mathrm{v} / \mathrm{c})^{2}\right]$
$\Delta \lambda=-\lambda(r)(v / c)^{2} / 2 U p$
$\Delta \lambda($ total $) / \lambda(\mathrm{r})=-1 / 2(\mathrm{v} / \mathrm{c})^{2}[\mathrm{up}]-\left\{1 / 2(\mathrm{v} / \mathrm{c})^{2}[\right.$ down $\left.]\right\}=-(\mathrm{v} / \mathrm{c})^{2}$
$\Delta \lambda / \lambda=-(\mathrm{v} / \mathrm{c})^{2}$
$\mathrm{v}^{2}=2 \mathrm{gh} ; \mathrm{g}=9.81 \mathrm{~km}^{2} / \mathrm{s}^{2}$ gravitational acceleration; $\mathrm{h}=$ height; $\mathrm{h}=22.5$ meters
$\Delta \mathrm{v} / \mathrm{v}$ [Total] $=-\Delta \lambda / \lambda=+(\mathrm{v} / \mathrm{c})^{2}=\left[2 \mathrm{gh} / \mathrm{c}^{2}\right]$
$\Delta \mathrm{v} / \mathrm{v}=4.93 \times 10^{\wedge}-15$

28 - Light bending: Lord Eddington confusion with light aberrations

 $\mathrm{S}=\mathrm{r} \operatorname{Exp}\left[1{ }^{\mathrm{i}} \mathrm{t}\right.$]From Kepler's Equation: $\mathrm{r}^{2} \theta^{\prime}=2 \mathrm{~h}=2 \mathrm{~A} / \mathrm{T}$
With $h=S^{2}(r, t) \theta^{\prime}(r, t)=r^{2}(\theta, t) \theta^{\prime}(\theta, t)=r^{2}(\theta, 0) \operatorname{Exp}[2 i \omega t] \theta^{\prime}(\theta, 0)$
And $\theta^{\prime}(\theta, \mathrm{t})=\theta^{\prime}(\theta, 0) \theta^{\prime}(0, \mathrm{t})=\left[\mathrm{h} / \mathrm{r}^{2}(\theta, 0)\right] \operatorname{Exp}[-2 \mathrm{i} \omega(\mathrm{r}) \mathrm{t}]$

Then $\theta^{\prime}(\theta, \mathrm{t})=\left[\mathrm{h} / \mathrm{r}^{2}(\theta, 0)\right]\left\{1-2 \sin ^{2} \omega(\mathrm{r}) \mathrm{t}-2 \mathrm{i} \sin \omega(\mathrm{r}) \mathrm{t} \operatorname{cosine} \omega(\mathrm{r}) \mathrm{t}\right\}$
Now $\left[\mathrm{t} \theta^{\prime}(\theta, \mathrm{t})\right]=\left[2 \mathrm{~A} / \mathrm{r}^{2}\left(\theta^{\prime} 0\right)\right]\left[1-2 \sin ^{2} \omega(\mathrm{r}) \mathrm{t}\right]-2 \mathrm{i}\left[2 \mathrm{~A} / \mathrm{r}^{2}(\theta, 0)\right][\sin \omega(\mathrm{r}) \mathrm{t} \operatorname{cosine} \omega(\mathrm{r}) \mathrm{t}]$

$$
=\Delta x+i \Delta y
$$

$\Delta \theta=\Delta \mathrm{x}-\left[\mathrm{A} / \mathrm{r}^{2}(\theta, 0)\right]=-\left[\mathrm{A} / \mathrm{r}^{2}(\theta, 0)\right]\left[4 \sin ^{2} \omega(\mathrm{r}) \mathrm{t}\right] ; \omega(\mathrm{r}) \mathrm{t}=\operatorname{arc} \tan \mathrm{v} / \mathrm{c}$
$\Delta \theta=-\left[\mathrm{A} / \mathrm{r}^{2}(\theta, 0)\right]\left[4 \sin ^{2} \operatorname{arc} \tan \mathrm{v} / \mathrm{c}\right]$
$\Delta \theta=-\left[\mathrm{A} / \mathrm{r}^{2}(\theta, 0)\right] 4(\mathrm{v} / \mathrm{c})^{2}$
And [4sin ${ }^{2}$ arc tan v / c] $\approx 1.757857113{ }^{\prime \prime}$
$\mathrm{v}^{2}=\mathrm{GM} / \mathrm{R} ; \mathrm{G}=$ Gravitational constant; $\mathrm{M}=$ Sun mass; $\mathrm{R}=$ sun radius
$\Delta \theta=\left[\mathrm{A} / \mathrm{r}^{2}(\theta, 0)\right][1.75 "] ; \mathrm{A}=$ area
The values depend on near by stars and the measured values fit this equation.

Russians in 1936; $\boldsymbol{\Delta} \boldsymbol{\theta}=\mathbf{2 . 7 4}$

$\left[\mathrm{A} / \mathrm{r}^{2}(\theta, 0)\right]=\pi / 2$
$\Delta \theta=\pi / 2(1.75 ")=2.74 "$ \qquad V

29- Universal Mechanics
$\mathbf{S}=\mathrm{m} \mathbf{r}$; State $=$ mass x distance
$\mathbf{P}=\mathrm{d} \mathbf{S} / \mathrm{dt}=\mathrm{d}(\mathrm{m} \mathbf{r}) / \mathrm{d} \mathrm{t}=\mathrm{m}(\mathrm{d} \mathbf{r} / \mathrm{d} \mathrm{t})+(\mathrm{dm} / \mathrm{dt}) \mathbf{r}$
Velocity $=\mathbf{v}=(\mathrm{d} \mathbf{r} / \mathrm{d} \mathrm{t})$; mass rate change $=\mathrm{m}^{\prime}=(\mathrm{d} \mathrm{m} / \mathrm{dt})$
$\mathbf{P}=\mathrm{m} \mathbf{v}+\mathrm{m}^{\prime} \mathbf{r}$; Momentum = change of state $=$ change in location or change in mass
$\mathbf{F}=\mathrm{d} \mathbf{P} / \mathrm{d} \mathrm{t}=\mathrm{d}^{2} \mathbf{S} / \mathrm{d}^{2}=\mathrm{d}[\mathrm{m}(\mathrm{d} \mathbf{r} / \mathrm{d} \mathrm{t})+(\mathrm{d} \mathrm{m} / \mathrm{d} \mathrm{t})] / \mathrm{dt}$
$=\mathrm{m} \mathrm{d}^{2} \mathbf{r} / \mathrm{d}^{2}+(\mathrm{dm} / \mathrm{dt})(\mathrm{d} \mathbf{r} / \mathrm{dt})+(\mathrm{dm} / \mathrm{d} \mathrm{t})(\mathrm{d} \mathbf{r} / \mathrm{dt})+\left(\mathrm{d}^{2} \mathrm{~m} / \mathrm{dt}\right)^{2} \mathbf{r}$
$\mathbf{F}=\mathrm{m} \mathrm{d}^{2} \mathbf{r} / \mathrm{d} \mathrm{t}^{2}+2(\mathrm{~d} \mathrm{~m} / \mathrm{dt})(\mathrm{d} \mathbf{r} / \mathrm{dt})+\left(\mathrm{d}^{2} \mathrm{~m} / \mathrm{dt}\right)^{2} \mathbf{r}$
Force $=$ Change of momentum
$\mathbf{F}=\mathrm{m} \mathbf{a}+2 \mathrm{~m}^{\prime} \mathbf{v}+\mathrm{m}^{\prime \prime} \mathbf{r}$
Acceleration $=\mathbf{a}=\mathrm{d}^{2} \mathrm{r} / \mathrm{dt}^{2}$; mass acceleration $=\mathrm{d}^{2} \mathrm{~m} / \mathrm{dt}^{2}=\mathrm{m}^{\prime \prime}$

30 - Real time two body problem

In Polar coordinates
With $\mathrm{d}^{2}(\mathrm{mr}) / \mathrm{dt}^{2}-(\mathrm{mr}) \theta^{\prime 2}=-\mathrm{GmM} / \mathrm{r}^{2}$ Newton's Gravitational Equation
And $d\left(m^{2} r^{2} \theta^{\prime}\right) / d t=0$
Central force law
(2): $d\left(m^{2} r^{2} \theta^{\prime}\right) / d t=0$

Then $\mathrm{m}^{2} \mathrm{r}^{2} \theta^{\prime}=$ constant

$$
\begin{aligned}
& =\mathrm{H}(0,0) \\
& =\mathrm{m}^{2}(0,0) \mathrm{h}(0,0) ; \mathrm{h}(0,0)=\mathrm{r}^{2}(0,0) \theta^{\prime}(0,0) \\
& =\mathrm{m}^{2}(0,0) \mathrm{r}^{2}(0,0) \theta^{\prime}(0,0) ; \mathrm{h}(\theta, 0)=\left[\mathrm{r}^{2}(\theta, 0)\right]\left[\theta^{\prime}(\theta, 0)\right] \\
& =\left[\mathrm{m}^{2}(\theta, 0)\right] \mathrm{h}(\theta, 0) ; \mathrm{h}(\theta, 0)=\left[\mathrm{r}^{2}(\theta, 0)\right]\left[\theta^{\prime}(\theta, 0)\right] \\
& =\left[\mathrm{m}^{2}(\theta, 0)\right]\left[\mathrm{r}^{2}(\theta, 0)\right]\left[\theta^{\prime}(\theta, 0)\right] \\
& =\left[\mathrm{m}^{2}(\theta, \mathrm{t})\right]\left[\mathrm{r}^{2}(\theta, \mathrm{t})\right]\left[\theta^{\prime}(\theta, \mathrm{t})\right] \\
& =\left[\mathrm{m}^{2}(\theta, 0) \mathrm{m}^{2}(0, \mathrm{t})\right]\left[\mathrm{r}^{2}(\theta, 0) \mathrm{r}^{2}(0, \mathrm{t})\right]\left[\theta^{\prime}(\theta, \mathrm{t})\right] \\
& =\left[\mathrm{m}^{2}(\theta, 0) \mathrm{m}^{2}(0, \mathrm{t})\right]\left[\mathrm{r}^{2}(\theta, 0) \mathrm{r}^{2}(0, \mathrm{t})\right]\left[\theta^{\prime}(\theta, 0) \theta^{\prime}(0, \mathrm{t})\right]
\end{aligned}
$$

With $\mathrm{m}^{2} \mathrm{r}^{2} \theta^{\prime}=$ constant
Differentiate with respect to time
Then $2 m m^{\prime} r^{2} \theta^{\prime}+2 m^{2} r^{\prime} \theta^{\prime}+m^{2} r^{2} \theta^{\prime \prime}=0$

Divide by $\mathrm{m}^{2} \mathrm{r}^{2} \theta^{\prime}$
Then $2\left(\mathrm{~m}^{\prime} / \mathrm{m}\right)+2\left(\mathrm{r}^{\prime} / \mathrm{r}\right)+\theta^{\prime \prime} / \theta^{\prime}=0$
This equation will have a solution $2\left(\mathrm{~m}^{\prime} / \mathrm{m}\right)=2[\lambda(\mathrm{~m})+\mathrm{i} \omega(\mathrm{m})]$
And 2($\left.\mathrm{r}^{\prime} / \mathrm{r}\right)=2[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})]$
And $\theta^{\prime \prime} / \theta^{\prime}=-2\{\lambda(\mathrm{~m})+\lambda(\mathrm{r})+\mathrm{i}[\omega(\mathrm{m})+\omega(\mathrm{r})]\}$
Then $\left(\mathrm{m}^{\prime} / \mathrm{m}\right)=[\lambda(\mathrm{m})+\mathrm{i} \omega(\mathrm{m})]$
Or d m/mdt=[$\lambda(\mathrm{m})+\mathrm{i} \omega(\mathrm{m})]$
And $\mathrm{dm} / \mathrm{m}=[\lambda(\mathrm{m})+\mathrm{i} \omega(\mathrm{m})] \mathrm{dt}$
Then $m=m(0) \operatorname{Exp}[\lambda(m)+i \omega(m)] t$
$\mathrm{m}=\mathrm{m}(0) \mathrm{m}(0, \mathrm{t}) ; \mathrm{m}(0, \mathrm{t}) \operatorname{Exp}[\lambda(\mathrm{m})+\mathrm{i} \omega(\mathrm{m})] \mathrm{t}$
With initial spatial condition that can be taken at $\mathrm{t}=0$ anywhere then $\mathrm{m}(0)=\mathrm{m}(\theta, 0)$
And $m=m(\theta, 0) m(0, t)=m(\theta, 0) \operatorname{Exp}[\lambda(m)+i \omega(m)] t ; \operatorname{Exp}=$ Exponential
And $m(0, \mathrm{t})=\operatorname{Exp}[\lambda(\mathrm{m})+i \omega(\mathrm{~m})] \mathrm{t}$
Similarly we can get
Also, $r=r(\theta, 0) r(0, t)=r(\theta, 0) \operatorname{Exp}[\lambda(r)+i ̀ \omega(r)] t$
With $r(0, t)=\operatorname{Exp}[\lambda(r)+i \omega(r)] t$
Then $\theta^{\prime}(\theta, \mathrm{t})=\left\{\mathrm{H}(0,0) /\left[\mathrm{m}^{2}(\theta, 0) \mathrm{r}(\theta, 0)\right]\right\} \operatorname{Exp}\{-2\{[\lambda(\mathrm{~m})+\lambda(\mathrm{r})] \mathrm{t}+\mathrm{i}[\omega(\mathrm{m})+\omega(\mathrm{r})] \mathrm{t}\}\}----\mathrm{I}$
And $\left.\left.\theta^{\prime}(\theta, \mathrm{t})=\theta^{\prime}(\theta, 0)\right]\right\} \operatorname{Exp}\{-2\{[\lambda(\mathrm{~m})+\lambda(\mathrm{r})] \mathrm{t}+\mathrm{i}[\omega(\mathrm{m})+\omega(\mathrm{r})] \mathrm{t}\}\}----------------\mathrm{I}$
And, $\theta^{\prime}(\theta, \mathrm{t})=\theta^{\prime}(\theta, 0) \theta^{\prime}(0, \mathrm{t})$
And $\theta^{\prime}(0, \mathrm{t})=\operatorname{Exp}\{-2\{[\lambda(\mathrm{~m})+\lambda(\mathrm{r})] \mathrm{t}+\mathrm{i}[\omega(\mathrm{m})+\omega(\mathrm{r})] \mathrm{t}\}$
Also $\theta^{\prime}(\theta, 0)=\mathrm{H}(0,0) / \mathrm{m}^{2}(\theta, 0) \mathrm{r}^{2}(\theta, 0)$
And $\theta^{\prime}(0,0)=\left\{\mathrm{H}(0,0) /\left[\mathrm{m}^{2}(0,0) \mathrm{r}(0,0)\right]\right\}$
With (1): $\mathrm{d}^{2}(\mathrm{mr}) / \mathrm{dt}^{2}-(\mathrm{m} \mathrm{r}) \theta^{\prime 2}=-\mathrm{GmM} / \mathrm{r}^{2}=-\mathrm{Gm}{ }^{3} \mathrm{M} / \mathrm{m}^{2} \mathrm{r}^{2}$
And $\quad d^{2}(\mathrm{mr}) / \mathrm{dt}^{2}-(\mathrm{m} r) \theta^{\prime 2}=-\operatorname{Gm}^{3}(\theta, 0) \mathrm{m}^{3}(0, \mathrm{t}) \mathrm{M} /\left(\mathrm{m}^{2} \mathrm{r}^{2}\right)$
Let $\mathrm{m} r=1 / \mathrm{u}$
Then $d(m r) / d t=-u^{\prime} / u^{2}=-\left(1 / u^{2}\right)\left(\theta^{\prime}\right) d u / d \theta=\left(-\theta^{\prime} / u^{2}\right) d u / d \theta=-H d u / d \theta$
And d $\mathrm{d}^{2}(\mathrm{mr}) / \mathrm{dt}^{2}=-\mathrm{H} \theta^{\prime} \mathrm{d}^{2} \mathbf{u} / \mathrm{d} \theta^{2}=-\mathrm{Hu}^{2}\left[\mathrm{~d}^{2} \mathbf{u} / \mathrm{d} \theta^{2}\right]$
$-\mathrm{Hu}^{2}\left[\mathrm{~d}^{2} \mathrm{u} / \mathrm{d} \theta^{2}\right]-(1 / \mathrm{u})\left(\mathrm{Hu}^{2}\right)^{2}=-\mathrm{Gm}^{3}(\theta, 0) \mathrm{m}^{3}(0, \mathrm{t}) \mathrm{Mu}^{2}$
$\left[\mathrm{d}^{2} \mathrm{u} / \mathrm{d} \theta^{2}\right]+\mathrm{u}=\mathrm{Gm}^{3}(\theta, 0) \mathrm{m}^{3}(0, \mathrm{t}) \mathrm{M} / \mathrm{H}^{2}$
$\mathrm{t}=0 ; \mathrm{m}^{3}(0,0)=1$
$\mathrm{u}=\mathrm{Gm}^{3}(\theta, 0) \mathrm{M} / \mathrm{H}^{2}+\mathrm{A} \operatorname{cosine} \theta=\mathrm{Gm}(\theta, 0) \mathrm{M}(\theta, 0) / \mathrm{h}^{2}(\theta, 0)$
And $\mathrm{mr}=1 / \mathrm{u}=1 /[\operatorname{Gm}(\theta, 0) \mathrm{M}(\theta, 0) / \mathrm{h}(\theta, 0)+\mathrm{A} \operatorname{cosine} \theta]$ $=\left[\mathrm{h}^{2} / \mathrm{Gm}(\theta, 0) \mathrm{M}(\theta, 0)\right] /\left\{1+\left[\mathrm{Ah}^{2} / \mathrm{Gm}(\theta, 0) \mathrm{M}(\theta, 0)\right][\operatorname{cosine} \theta]\right\}$ $=\left[\mathrm{h}^{2} / \mathrm{Gm}(\theta, 0) \mathrm{M}(\theta, 0)\right] /(1+\varepsilon \operatorname{cosine} \theta)$

Then $m(\theta, 0) r(\theta, 0)=\left[a\left(1-\varepsilon^{2}\right) /(1+\varepsilon \cos \theta)\right] m(\theta, 0)$
Dividing by $\mathrm{m}(\theta, 0)$
Then $r(\theta, 0)=\mathbf{a}\left(1-\varepsilon^{2}\right) /(1+\varepsilon \cos \theta)$

This is Newton's Classical Equation solution of two body problem which is the equation of an ellipse of semi-major axis of length a and semi minor axis $b=a \sqrt{ }\left(1-\varepsilon^{2}\right)$ and focus length $\mathrm{c}=\varepsilon \mathrm{a}$
And $m \mathrm{r}=\mathrm{m}(\theta, \mathrm{t}) \mathrm{r}(\theta, \mathrm{t})=\mathrm{m}(\theta, 0) \mathrm{m}(0, \mathrm{t}) \mathrm{r}(\theta, 0) \mathrm{r}(0, \mathrm{t})$
Then, $r(\theta, \mathrm{t})=\left[\mathrm{a}\left(1-\varepsilon^{2}\right) /(1+\varepsilon \cos \theta)\right]\{\operatorname{Exp}[\lambda(\mathrm{r})+i \omega(\mathrm{r})] \mathrm{t}\}$ \qquad
This is Newton's time dependent equation that is missed for 350 years
If $\lambda(\mathrm{m}) \approx 0$ fixed mass and $\lambda(\mathrm{r}) \approx 0$ fixed orbit; then
Then $r(\theta, \mathrm{t})=\mathrm{r}(\theta, 0) \mathrm{r}(0, \mathrm{t})=\left[\mathrm{a}\left(1-\varepsilon^{2}\right) /(1+\varepsilon \operatorname{cosine} \theta)\right] \operatorname{Exp} i \omega(\mathrm{r}) \mathrm{t}$
And $m=m(\theta, 0) \operatorname{Exp}[i \omega(m) t]=m(\theta, 0) \operatorname{Exp} i \omega(m) t$
We Have $\theta^{\prime}(0,0)=\mathrm{h}(0,0) / \mathrm{r}^{2}(0,0)=2 \pi \mathrm{ab} / \mathrm{Ta}^{2}(1-\varepsilon)^{2}$

$$
\begin{aligned}
& =2 \pi \mathrm{a}^{2}\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] / \mathrm{T} \mathrm{a}^{2}(1-\varepsilon)^{2} \\
& =2 \pi\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] / \mathrm{T}(1-\varepsilon)^{2}
\end{aligned}
$$

Then $\theta^{\prime}(0, \mathrm{t})=\left\{2 \pi\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] / \mathrm{T}(1-\varepsilon)^{2}\right\} \operatorname{Exp}\{-2[\omega(\mathrm{~m})+\omega(\mathrm{r})] \mathrm{t}$

$$
=\left\{2 \pi\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\}\{\operatorname{cosine} 2[\omega(\mathrm{~m})+\omega(\mathrm{r})] \mathrm{t}-\mathrm{i} \sin 2[\omega(\mathrm{~m})+\omega(\mathrm{r})] \mathrm{t}\}
$$

And $\theta^{\prime}(0, \mathrm{t})=\theta^{\prime}(0,0)\left\{1-2 \sin ^{2}[\omega(\mathrm{~m})+\omega(\mathrm{r})] \mathrm{t}\right\}$

$$
-\mathrm{i} 2 \mathrm{i} \theta^{\prime}(0,0) \sin [\omega(\mathrm{m})+\omega(\mathrm{r})] \mathrm{t} \operatorname{cosine}[\omega(\mathrm{~m})+\omega(\mathrm{r})] \mathrm{t}
$$

Then $\theta^{\prime}(0, \mathrm{t})=\theta^{\prime}(0,0)\left\{1-2 \operatorname{sine}^{2}[\omega(\mathrm{~m}) \mathrm{t}+\omega(\mathrm{r}) \mathrm{t}]\right\}$

$$
-2 i \theta^{\prime}(0,0) \sin [\omega(\mathrm{m})+\omega(\mathrm{r})] \mathrm{t} \operatorname{cosine}[\omega(\mathrm{~m})+\omega(\mathrm{r})] \mathrm{t}
$$

$\Delta \theta^{\prime}(0, \mathrm{t}) \quad=\operatorname{Real} \Delta \theta^{\prime}(0, \mathrm{t})+$ Imaginary $\Delta \theta(0, \mathrm{t})$
Real $\Delta \theta(0, \mathrm{t})=\theta^{\prime}(0,0)\left\{1-2 \operatorname{sine}^{2}[\omega(\mathrm{~m}) \mathrm{t} \omega(\mathrm{r}) \mathrm{t}]\right\}$
Let $\mathrm{W}($ calculated $)=\Delta \theta^{\prime}(0, \mathrm{t})($ observed $)=\operatorname{Real} \Delta \theta(0, \mathrm{t})-\theta^{\prime}(0,0)$

$$
\begin{aligned}
& =-2 \theta^{\prime}(0,0) \operatorname{sine}^{2}[\omega(\mathrm{~m}) \mathrm{t}+\omega(\mathrm{r}) \mathrm{t}] \\
& =-2\left[2 \pi\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] / T(1-\varepsilon)^{2}\right] \operatorname{sine}^{2}[\omega(\mathrm{~m}) \mathrm{t}+\omega(\mathrm{r}) \mathrm{t}]
\end{aligned}
$$

$\mathrm{W}(\mathrm{Cal})=-4 \pi\left\{\left[\sqrt{\left.\left.\left.\left(1-\varepsilon^{2}\right)\right] / T(1-\varepsilon)^{2}\right]\right\} \operatorname{sine}^{2}[\omega(\mathrm{~m}) \mathrm{t}+\omega(\mathrm{r}) \mathrm{t}]}\right.\right.$
If this apsidal motion is to be found as visual effects, then
With, $\mathrm{v}^{\circ}=$ spin velocity; $\mathrm{v}^{*}=$ orbital velocity; $\mathrm{v}^{\circ} / \mathrm{c}=\tan \omega(\mathrm{m}) \mathrm{T}^{\circ} ; \mathrm{v}^{*} / \mathrm{c}=\tan \omega(\mathrm{r}) \mathrm{T}^{*}$
Where $\mathrm{T}^{\circ}=$ spin period; $\mathrm{T}^{*}=$ orbital period
And $\omega(\mathrm{m}) \mathrm{T}^{\circ}=$ Inverse $\tan \mathrm{v}^{\circ} / \mathrm{c} ; \omega(\mathrm{r}) \mathrm{T}^{*}=$ Inverse $\tan \mathrm{v}^{*} / \mathrm{c}$ $\left.\mathrm{W}(\mathrm{ob})=-4 \pi\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] / T(1-\varepsilon)^{2}\right] \operatorname{sine}^{2}\left[\right.$ Inverse $\tan v^{\circ} / \mathrm{c}+$ Inverse tan $\left.\mathrm{v}^{*} / \mathrm{c}\right]$ radians Multiplication by $180 / \pi$
$\mathrm{W}(\mathrm{ob})=(-720 / \mathrm{T})\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\} \operatorname{sine}^{2}\left\{\right.$ Inverse $\left.\tan \left[\mathrm{v}^{\circ} / \mathrm{c}+\mathrm{v}^{*} / \mathrm{c}\right] /\left[1-\mathrm{v}^{\circ} \mathrm{v}^{*} / \mathrm{c}^{2}\right]\right\}$ degrees and multiplication by 1 century $=36526$ days and using T in days
$\mathrm{W}^{\circ}(\mathrm{ob})=(-720 \times 36526 /$ Tdays $)\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\} \mathrm{x}$ $\operatorname{sine}^{2}\left\{\right.$ Inverse $\left.\tan \left[\mathrm{v}^{\circ} / \mathrm{c}+\mathrm{v}^{*} / \mathrm{c}\right] /\left[1-\mathrm{v}^{\circ} \mathrm{v}^{*} / \mathrm{c}^{2}\right]\right\}$ degrees $/ 100$ years

Approximations I

With $\mathrm{v}^{\circ} \ll \mathrm{c}$ and $\mathrm{v}^{*} \ll \mathrm{c}$, then $\mathrm{v}^{\circ} \mathrm{v}^{*} \lll \mathrm{c}^{2}$ and $\left[1-\mathrm{v}^{\circ} \mathrm{v}^{*} / \mathrm{c}^{2}\right] \approx 1$
Then $\mathrm{W}^{\circ}(\mathrm{ob}) \approx(-720 \times 36526 /$ Tdays $)\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\} \times \operatorname{sine}^{2}$ Inverse $\tan \left[\mathrm{v}^{\circ} / \mathrm{c}+\mathrm{v}^{*} / \mathrm{c}\right]$ degrees/100 years

Approximations II

With $\mathrm{v}^{\circ} \ll \mathrm{c}$ and $\mathrm{v}^{*} \ll \mathrm{c}$, then sine Inverse $\tan \left[\mathrm{v}^{\circ} / \mathrm{c}+\mathrm{v}^{*} / \mathrm{c}\right] \approx\left(\mathrm{v}^{\circ}+\mathrm{v}^{*}\right) / \mathrm{c}$
$W^{\circ}($ Cal $)=(-720 \times 36526 / T d a y s)\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\} \times\left[\left(v^{\circ}+v^{*}\right) / c\right]^{2}$ degrees $/ 100$ years

In arc second per century

$\mathbf{W}^{\prime \prime}($ Cal-arc sec $)=(-720 \times 36526 \times 3600 /$ Tdays $)\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\} \times\left[\left(v^{\circ}+v^{*}\right) / c\right]^{2}$
In Time seconds
$W^{\prime \prime}($ Cal- sec $)=(-720 \times 36526 \times 3600 / 15 T d a y s)\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\} \times\left[\left(v^{\circ}+v^{*}\right) / c\right]^{2}$
31- The 11 binary stars systems that no one ever solved or knew how to solve including Einstein and all 100,000 Physicists all solved by this formula
$W^{\circ}(\mathbf{C a l})=(-720 \times 36526 /$ Tdays $)\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\} \times\left[\left(v^{\circ}+v^{*}\right) / c\right]^{2}$ degrees $/ 100$ years
www.worldsci.org click on scientists Joe Alexander Nahhas
1- Camelopardalis
2 - AI Hya
3- CM Draconis
4- DI Herculis
5 - V1143 Cygni
6- V541 Cygni
7- Alpha-Borealis
8-731 Cepheid
9 - NV Canis Majoris
10 - CW Canis Majoris
11- GG Orion
32- Visual $\mathrm{E}=\mathrm{mc}^{2}$
$\mathrm{E}=\mathrm{mv}^{2} / 2=\mathrm{mc}^{2} / 2$
$\mathbf{P}=\left\{[\mathbf{v}+\mathbf{r}[\lambda(\mathrm{r})+i \omega(\mathrm{r})]\} \mathrm{e}^{[\lambda(\mathrm{r})+i \omega(\mathrm{r})] \mathrm{t}}\right.$
With $\lambda(r)=0, \mathbf{P}=[\mathbf{v}+i \omega(r) \mathbf{r}] \mathrm{e}^{i \omega(r) t}$
(P. P) $=\left[v^{2}-\omega^{2} r^{2}+2 i \hat{i} \omega r v e^{2 i \omega(r) t}\right.$
$E=m(\mathbf{P} \cdot \mathbf{P}) / 2=(m / 2)\left[v^{2}-\omega^{2} r^{2}+2 i \omega r v\right] e^{2 i \omega(r) t}$
$\mathrm{E}=(\mathrm{m} / 2)\left[\mathrm{c}^{2}-\mathrm{c}^{2}+2 \mathrm{ic}^{2}\right] \mathrm{e}^{2 \mathrm{i} \omega(\mathrm{r}) \mathrm{t}}$
With $\omega \mathrm{r}=\mathrm{c}$
$\mathrm{E}=(\mathrm{m} / 2)\left[2 \mathrm{inc}^{2} \mathrm{e}^{2 \mathrm{i} \omega(\mathrm{r}) \mathrm{t}}\right]$
$E=(m / 2)\left|2 i^{c}\right|\left|e^{2 i \omega(r) t}\right|$
$\mathrm{E}=(\mathrm{m} / 2)\left(2 \mathrm{c}^{2}\right)=\mathrm{mc}^{2}$
$33-\mathrm{E}=\mathrm{mc}^{2}$ in the Lab
With $\mathrm{m}=\mathrm{m}(0) \mathrm{e}^{-\lambda \mathrm{t}}=\mathrm{m}(0)[1-\lambda \mathrm{t}]$
And $m v^{2} / 2=m(0) v^{2} / 2[1-\lambda t]$
And $m(0) v^{2} / 2-m v^{2} / 2=\left[m(0) v^{2} / 2\right] ; \lambda t=1$
34 - Relativity theory: $\mathrm{m} \mathrm{c}^{2}-\mathrm{m}(0) \mathrm{c}^{2}=\mathrm{m}(0) \mathrm{v}^{2} / 2$

Momentum

$S x=$ Visual location along the line of sight $=r\left[\sqrt{ }\left[1-(v / c)^{2}\right]\right.$
$P \mathrm{x}=\mathrm{v}\left[\sqrt{ }\left[1-(\mathrm{v} / \mathrm{c})^{2}\right] ; \mathrm{v}=\mathrm{constant} ; \mathrm{P} \mathrm{x}=\mathrm{d}[\mathrm{S} x] / \mathrm{dt}\right.$
And $m P_{x}=m v\left[\sqrt{ }\left[1-(\mathrm{v} / \mathrm{c})^{2}\right]=\mathrm{m}(0) \mathrm{v}\right.$
Mass Then $m=m(0) /\left[\sqrt{ }\left[1-(\mathrm{v} / \mathrm{c})^{2}\right]\right.$
Also; $m=m(0) /\left[1-1 / 2(v / c)^{2}\right]$
5- Energy
$\mathrm{mc}^{2}=\mathrm{m}(0) \mathrm{c}^{2} /\left[1-1 / 2(\mathrm{v} / \mathrm{c})^{2}\right]$
$\mathrm{E}=\mathrm{m}(0) \mathrm{c}^{2} ; \mathrm{v}=0$

$$
\text { Also } \mathrm{m} \approx \mathrm{~m}(0)\left[1+1 / 2(\mathrm{v} / \mathrm{c})^{2}\right]
$$

Hence $\mathrm{m} \mathrm{c}^{2} \approx \mathrm{~m}(0) \mathrm{c}^{2}+\mathrm{m} \mathrm{v}^{2} / 2$
The Illuiosn of length contraction and a confusion that two particles with light speed velocities c and c in absolute value and going in opposite directions then their relativie velocity is c lead to special theory of relativity with scientific value of less than two dollars in food stamps. Building on visual effects lead to Mysterious dark energy that consitute $8 / 9$ of the Universe but not detectable! This Physics is for dummies and for dummies only. And this consitute a Death certificate of relativity theory. Novemebr 22, 1977. Joe Alexander Nahhas joenahhas1958@yahoo.com

