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Abstract: 
A relation for the black-hole temperature in a De-Sitter type universe is determined in the 

first step of this paper.  As a result of that, the upper and the lower temperature limits of the black 
hole are calculated, and then the limits of the radius of the universe containing the black hole.  All 
these calculations are based upon the present values of the cosmological constant Λ.  Further 
relations for the dependance of this temperature on Hubble’s constant and the gravitationsal 
energy of the hardons was also derived. 
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1 Introduction: 
 The space-time metric of a De Sitter universe containing a black hole is given by: 
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where [ ]22 2  22  d  sin φθθ +=Ω drd  
In this case the metric posseses a horizon rH at the roots of the equation: 
 03 =+− BArr         (2) 
where: A = -3/Λ and B = 2GM / c2Λ, and where the symbols have their usual meannings.  Solving 
we obtain three roots , but only one is real.  Keeping the real root, we have that: 
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Because the temperature of a black hole is given by: 
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equation (4) becomes: 
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 Looking at expression (5) we realize that regardless of what the mass of the black hole is 
the only significant contribution, comes, from the second term and so (6) becomes: 
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When we introduce in (6) the mass of quantum black holes M = 1015 g, or solar type black holes, M 
= 1033 g, into (6) the dominant term becomes Λ-3 since for the purpose of this calculations Λ has 
been chosen to be equal to 10-54 cm-2.  Finally the temperature of such a black hole will become: 
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Thus we  see that the temperature of such a black hole is independent of it’s mass and depends on 
the square root of the cosmological constant Λ, as well as .k and c , Bh  
 

2 Temperature Calculations 
 To calculate the maximum possible temperature of such a black hole we refer to the work 
of Sivaram and Sabbata [1].  The authors give an expression for the maximum possible value of 
the cosmological constant in the early universe as follows: 
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Substituting in (7) 2-5466 10 10 −=Λ cmand  into (7) [1], [2] we obtain the maximum and 
minimum temperatures of our black hole in De-Sitter space.  So we find: 
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It is easy to recognize that the first temperature is the so called Planck’s temperature and the 
second the lowest possible temperature of a black body in the universe. 
 
 3 Radius of the Universe Calculation 
 Assuming thermodynamic equilibrium between the black hole and a radiation-dominated 
universe, where the temperature changes rapidly according to the law 
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and using the initial condition that t = t(Planck) the radius of the universe is R(universe) = L(Planck) 
we can obtain the following relation: 
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This, of course, may still constitute only a crude approximation.  Substituting for the the two 
different values of the cosmological constant we obtain the following values for the radius of the 
universe: 
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From (12) we can see that for such a universe the minimum achivable value of its radius is just the 
Planck length at early times when Λ is extremely large, and the maximum achivable radius is 
almost the known radius of the universe today. ( RU = 1028 cm ) 
 

4 Black Hole Temperature Connection to Cosmological Parameters 
 The first cosmological constant connection with the black hole temperature can be 
obtained if we use the following definition for the cosmological constant:[2] 
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This makes the black hole temperature in (7) equal to: 
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And one now sees how the original black hole temperature can be related to Hubble’s constant Ho.  
But the gravitational energy of a typical elementary particle ( hadron ) was shown to be [4]: 
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and with the help of (15) (14), this becomes: 
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This may suggest that the temperature of such a black hole is related to the contribution of all the 
hadrons that the black hole might contain. 
 

5 Black Hole Temperature and the Zeldovich Cosmological Constant 
 Another way of associating the black hole temperature to Hubble’s constant can be 
obtained if we consider the Zeldovich definition of the cosmological constant  which can be derived 
from the energy tensor of the quantum field theory of polarized vaccum.  Recall that Zeldovich has 
found that the value of the cosmological constant Λ is given by:[5] 
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where all the symbols have their usual meanings, and m is the mass of the elementary particle.  
Substituting in (7) we obtain: 
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If now use Weinberg’s relation to replace the mass of the elementary particle m:[6] 
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we obtain: 
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This again may suggest that when Weinberg’s relation is used for the mass of the elementary 
particle, the black hole temperature obtained is still related to the contribution of all the hadrons 
that the black hole might contain but this time to a less degree than that suggested by (16) 
 

6 Conclusions: 
In this kind of De-Sitter universe the temperature a black hole was found to independent of 

its mass but proportional to the square root of the cosmological constant.  Depending on the value 
of the cosmological constant the cosmological De-Sitter black hole can have two limiting 
temperature values.  For the maximum value of the cosmological constant at early times when 
quantum effects dominate in the history of the universe the temperature of the black hole reaches 
the Planck temperature, and for the value of the cosmological constant today ( present era) the 
temperature coincides with that of the lowest value of the black body radiation in the universe.  
Next the maximum and minimum values of the radius of such a universe were calculated based on 
the max and minimum values of the cosmological constant.  Finally using Weinberg’s definition for 
the mass of an elementary particle and secondly the Zeldovich’s definition of the cosmological 
constant a connection of the temperature to Hubble’s constant, and finally to the gravitational 
energy of hardons and of their temperature was found. 
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