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In this article the resolution of the famous Ehrenfest paradox [1] is presented. The paradox relates to a 

spinning disc and the Special Relativity Theory (SRT) applied to it. The resolution of the paradox is based on 
the proposition that the paradox results from an incorrect application of SRT to a system that is not in an iner-
tial motion. The centrifugal and the centripetal forces resulting from the rotation are always present and need to 
be accounted for. Using the previously derived metric for an axially symmetrical space-time the effect of centri-
fugal and centripetal forces can be correctly included. When this is done no paradox is obtained and it is shown 
that the spinning disc has flat space-time geometry. The measured data from experiments conducted on such 
rotating systems are explained by the inertial mass increase as described by SRT. 

 

1. Introduction 
There have been many papers published on the resolution of 

Ehrenfest paradox with various degrees of success and with var-
ious conclusions [1]. Most of them are typically aimed at justify-
ing the application of only SRT to this case and the paradox reso-
lution is often obtained by a very contorted reasoning. The para-
dox results from applying the Lorentz coordinate transformation 
to a spinning plate whose circumference should contract while 
the radius should not since the motion of the radius is always 
perpendicular to the plate’s rotating direction. As a result the 
circumference, according to SRT, is no longer equal to 2oL R , 

which leads to a non-flat space-time geometry that is not a do-
main of SRT. From this consideration it is clear that only the ki-
nematic approach to resolve this problem, as offered by SRT, is 
not enough. SRT deals with the systems in inertial motion and 
does not account for the acceleration and inertial forces. In order 
to resolve the paradox, it is necessary to use the metric from 
General Relativity Theory (GRT) or use other space-time metrics 
that describe the non-flat space-time geometry that may be 
adopted to include the centrifugal and centripetal forces. The 
well known metric describing the space-time around a centrally 
gravitating body that has a mass M is the Schwarzschild metric: 
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where 22 /sR M c is the Schwarzschild radius,   the gravita-

tional constant, and c the speed of light. However, a new metric 
has been recently published [2], which is more accurate and more 
closely describes the reality for this case: 

  
2 222 / 2 /2 2 2 2 2n nc cds e cdt dr r e d dz       (2) 

where the parameter n  is the Newtonian gravitational potential 

of a mass configuration with an axial symmetry. The coordinate 
system for this metric is cylindrical with the symmetry axis in the 
z  direction. A brief derivation of metric shown in Eq. (2) is given 
in the Appendix. 

2. The Paradox Resolution 
 The new metric can now be used to resolve the paradox. An 

observer placed on the spinning plate circumference and rotating 
with it observes a centrifugal force. This force is balanced by the 

mechanical centripetal force of the plate’s material to keep the 
system in a dynamic equilibrium. To resolve the paradox the 
problem can be divided into two steps: 

In the first step, the centripetal force of the disc acting to 
counter the centrifugal inertial force can be simulated by a spe-
cial non-rotating gravitational-like force that is pointing inward 
to the center of the plate. The simulated gravitational-like poten-
tial describing this force can then be substituted into Eq. (2). The 
potential is calculated from the following considerations: for the 
centrifugal inertial force from the relativistic Newton’s law, as 
observed in the laboratory coordinate system, it holds that: 

 222 /1/ cvrmf ocf    (3) 

where om  is the rest mass of a test body located at the circumfe-

rence of the disc and where it was considered that the inertial 
mass depends on the velocity as follows: 

 22 /1/ cvmm oi   (4) 

For the compensating force of the disc material that is simulated 
by the gravitational-like force it will also be considered that it 
depends on the velocity of the observer located at the circumfe-
rence according to the gravitational mass velocity dependence[3]: 

 2 21 /g om m v c   (5) 

It is important to note here that this relation does not follow 
the famous Einstein’s Weak Equivalence Principle (WEP), 

i gm m .[4] The potential for the simulated gravitational-like 

centripetal force is found from the force equilibrium condition: 
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(For more details about this equation see the note at the end of 
Appendix). After integration the potential relative to the labora-
tory coordinate system is equal to:  
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where   is the plate’s angular velocity. The force resulting from 
this potential thus completely images the centrifugal force and 
fully compensates its effects. From the disc trajectory simulation 
point of view it should not matter if the compensating force is the 



 Hynecek: Resolution of the Ehrenfest Paradox Vol. 6, No. 2 2

gravitational-like acting directly on the individual atom masses 
or an inter-atomic solid body force generated by the disc materi-
al. The mechanical disc expansion is not considered here. 

In the second step, by considering again a stationary observer 
relative to the plate and thus not considering any Coriolis accele-
ration and also considering that this observer now does not feel 
any force from the radial acceleration, the standard SRT Lorentz 
transform can be used for the coordinate transformation from the 
rotating to the laboratory system without any problems. The me-
tric line element for the curved space-time generating the simu-
lating fictitious gravitational-like centripetal force is obtained by 
substituting the potential obtained in Eq. (7) into the metric line 
element introduced in Eq. (2). The result is: 
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From this result it is then easily seen that the circumference 
length as observed by the laboratory observer is: 

 2 2/ 1 /i oL L v c    (9) 

while due to the Lorentz contraction the circumference length is: 

 2 21 /c oL L v c   (10) 

The effects thus precisely cancel each other and no paradox 
results. The laboratory observer will see the disk periphery not 
contracted. The similar conclusion is obtained from the metric in 
Eq. (8) also for time. The simulated centripetal force causes the 
time contraction while the Lorentz time dilation compensates this 
effect. The space-time geometry of the rotating disc as viewed by 
the laboratory observer is flat. It thus seems that all the SRT ef-
fects are being compensated for by the curved metric and the 
only remaining SRT effect that is not compensated for is the iner-
tial mass increase. It is also worth noticing that the speed of light 
in the angular direction is c relative to the laboratory observer, or 
c v  relative to the observer positioned on the disc circumfe-
rence. The first integrals of motion derived from the Lagrangian 
corresponding to the metric in Eq. (8) are as follows: 
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where k and   are the arbitrary constants of integration. Elimi-
nating d from these equations results in the familiar formula for 
the conservation of angular momentum: 
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r
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which is one of the well recognized fundamental principles of 
physics. The obtained results thus lend validity to the classical 
explanation and the classical formula for the Sagnac effect with-
out any need for SRT theory. These results are also supported by 
experiments published elsewhere [5]. Finally, the most convinc-
ing argument in support of the presented Ehrenfest paradox res-
olution comes from the GPS data [6]. It is an experimental fact 
that the time rate measured anywhere on the surface of Earth is 
the  same. Only the small differences in the gravitational poten-
tial thus affect the surface located clock rate. 

It is now also possible to consider more complex arrange-
ments. For the case of the two discs placed above each other, one 

rotating, and the other stationary, or both rotating but in oppo-
site directions, there will be no time difference or the circumfe-
rence length difference observed by any of the observers the sta-
tionary or residing on the rotating discs. The observer that re-
turns to the same position after the completion of the full circle 
on the rotating disc will have his clocks synchronized with the 
stationary observer or the counter-rotating observer. 

It is important to note that the standard Schwarzschild metric 
does not offer similar solution to the Ehrenfest paradox and does 
not support the conservation of angular momentum as stated in 
Eq. (13). This is a consequence of the incorrect metric coefficient 
standing by the angular coordinate. The resolution of the Ehrenf-
est paradox using the new metric and the different dependencies 
of the inertial and gravitational masses on velocity thus provide 
an important additional support for the correctness of these for-
mulas. 

The reasoning used in the above derivation can also be re-
versed and it could be stated as a theorem that in order to avoid 
the Ehrenfest paradox the metric for the axially symmetric gravi-
tational field has to have a form given in Eq. (2). It is also possible 
to generalize Eq. (7) for any static space-time metric as follows: 
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and generalize the result further by eliminating the gravitational 
potential: 

 2
0/ttg g g  (15) 

where g and 0g are the metric determinants of the metric line 

element in Eq. (8) with and without rotation. However, the me-
tric determinant 0g has a slightly different meaning in a general 

case as has been explained elsewhere: [2] 
These derivations, however, do not agree with the Einstein’s field 

equations and the Einstein’s WEP, which ultimately casts a significant 
doubt on the accuracy and correctness of GRT. 

There have been many experiments performed in the past in 
rotating systems to confirm various GRT phenomena, but as is 
clear from the above explanation only the SRT inertial mass in-
crease, and the effects related to the inertial mass increase such as 
the absorption line shift in the Mossbauer Fe57 effect can be ob-
served [7]. No GRT effects related to the curved space-time geo-
metry can be measured in these experiments. It is also necessary 
to understand in detail the construction of the particular clock 
used in the experiments to make sure that it is the time what is 
measured and not the inertial mass increase.  

3. Conclusion 
The new space-time metric is used in resolving the Ehrenfest 

paradox and the related experimental verifications. The metric 
allows for an inclusion of the centripetal force into the considera-
tions, which compensates for the time dilation and the length 
contraction effects of SRT. The inertial mass increase, however, is 
not compensated for, which explains the published experimental 
results [7]. The resolution of the paradox thus validates the new 
metric correctness and the different dependencies of inertial and 
gravitational masses on velocity. 

4. Appendix: Metric for the Space-time with 
Axial Symmetry 
A detailed metric derivation for this space-time is available 

elsewhere. [2] This derivation takes a different approach. The 
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general form of a metric line element for an axially symmetric 
space-time with the gravitating axis positioned along the z direc-
tion is as follows: 

  22 2 2 2
tt rr zzds g cdt g dr g d g dz      (A1) 

For the metric coefficient standing by the z coordinate it is 
obvious that it must be unity, since there is an unbounded trans-
lational symmetry for this axis and no space-time deformation in 
this direction is therefore possible. In the next steps the remain-
ing metric coefficients will be found. This is best accomplished by 
first considering a small test body falling from infinity in the 
radial direction in this space-time. The Lagrangian describing 
such a motion is equal to: 
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Since the Lagrangian itself is also the first integral ( 2L c ), it is 
simple to derive the following equations: 
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Rearranging and differentiating Eq. (A4) with respect to  results 
in the following:  
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In this equation it was assumed that the metric coefficients 
are functions of the Newton gravitational potential since this is 
confirmed for large distances by the validity of the Newton’s 
gravitational law. The partial derivative of the bracket must be a 
contravariant component of a tensor, since both sides of the equ-
ation must be of the same type. There are only two possibilities 
how to satisfy this requirement, the bracket derivative either 

equal to ttg  or to rrg . To find the solutions it is thus convenient 

to separate the next steps of the derivation into two cases: the 

first case for 1tt rrg g  , written also as rr
ttg g , corresponding 

to spherical coordinates, and the second case for 1rr
rrg g  , 

corresponding to cylindrical coordinates with the result: 
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In Eq. (A6) the term in the bracket needs to be unity in order 
to keep the contravariant character of geometric objects on both 
sides of the equations the same and also to satisfy the equiva-
lence principle where the acceleration equals the force of gravity. 
It must therefore hold: 
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By integrating this result using the boundary condition at infinity 
where the potential is zero, the ttg  metric coefficient becomes 

equal to: 
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It is interesting to note that Eq. (A8) and the condition 1rr ttg g   

follow uniquely from the metric in Eq. (A1) once it is assumed 

that the gravitational field has a potential and that the metric 
coefficients depend on it.  

The metric coefficient standing by the angular coordinate is 
found by considering a small test body orbital motion in the 
space-time defined by the following metric line element: 

  22 2 2 2
ttds g cdt dr g d dz      (A9) 

The Lagrangian describing the motion is then: 
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The first integral corresponding to the angular coordinate is: 
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where the suitable integration constants was used. It is well 
known and many times experimentally confirmed that the orbital 
motion must satisfy the conservation of angular momentum. 
From Eqs. (A3) and (A11) then follows that: 
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and from this result then also follows that for the angular metric 
coefficient it is: 

 2
ttg r g   (A13) 

since the metric coefficient standing by the radial coordinate is 
unity. The radial coordinate distance is equal to the radial physi-
cal distance in this case. Substituting these results into Eq. (A9) 
the metric line element used in Eq. (2) is obtained. 

Finally a short comment is needed relating to Eq. (6). Accord-
ing to Eq. (A5) the simulated gravitational force equilibrium with 
the inertial centrifugal force should be more generally written as: 
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However, all the terms containing ttg  cancel out making Eq. (6) 

correct also. The derivation of these more general formulas for 
the inertial mass and the gravitational mass dependence on ve-
locity can be found elsewhere. [8] 
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