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In this paper it is shown that the General Relativity Theory (GRT), which belongs to a class of Metric 

Theories of Gravity (MTG), is based on a wrong assumption, contradicts the well established laws of physics 
and also its own postulate. It is shown that in GRT the velocity of a massive body can exceed the speed of light 
and that the motion of a test body in an orbit around the centrally gravitating mass does not satisfy the conser-
vation of angular momentum. Finally, it is shown that GR theory also violates the Gauss law. The proof rests on 
a comparison of the Schwarzschild metric, derived from Einstein's field equations, with a new metric from 
which the Schwarzschild metric can be also derived as a first order approximation but which is not derived 
from Einstein's field equations. 

 

1. Introduction 
In order to make the proof simple and easily understandable 

the space-time, which the metrics describe, will be the space-time 
of a non-rotating centrally gravitating body. The general metric 
line element for such a space-time is thus as follows: 

  2 2 2 2 2 2( ) sintt rrds g cdt g dr g d d        (1) 

where the metric coefficients depend only on the radial coordi-
nate. This form of metric assumes that according to the Riemann 
hypothesis the motion can be represented by a curved space-time 
in which the test bodies move in a free fall along geodesic lines 
not experiencing any forces in contrast to a flat space-time with 
fields and forces that guide the motion. This concept forms the 
basis for all MTG theories and has been also adapted by Einstein 
in his derivation of general relativity. The Einstein's GRT, how-
ever, includes additional assumptions related to Ricci tensor that 
lead to the derivation of Einstein field equations with the 
Schwarzschild metric as a solution. The Riemann principle is 
thus more general than GRT and allows derivation of other me-
trics describing the space-time not only the Schwarzschild metric. 
For the purposes of this article it is not important how the me-
trics were obtained only whether their description of reality is 
reasonable and does not contradict the known laws of physics 
and observational facts. The reader that only studied GRT and 
firmly believes that all the assumptions used in its derivations 
are true and cannot be challenged is probably wasting his time 
reading this paper. It may be difficult to prove GRT incorrect 
using only GRT arguments. From the same assumptions one can 
only come to the same conclusions. So, in order to resolve the 
problems pointed out in this paper it is necessary to thoroughly 
scrutinize the assumptions used in GRT and modify them accor-
dingly and preferably in agreement with the available data that a 
theory of gravity consistent with the fundamental laws of physics 
is developed. The departure from the classical concepts will be 
clearly mentioned in the text. 

2. Definition of Metrics 
The metrics and their metric line elements that will be studied 

and compared against each other and against the known and 
well established laws of physics are: 
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which is the well known celebrated Schwarzschild metric with 
the metric coefficients defined as: 1 /tt sg R r  ,

 
1rr ttg g  , and 

2g r  , where 22 /sR M c , with M  being the mass of the 

main body and   the gravitational constant, and the new metric, 
derived elsewhere [1], 
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where the variable  is found from the differential equation: 

 /2sRd e dr   (4) 

and where the metric coefficients are: 

 exp( / )tt sg R   , 1rr ttg g  ,    2
ttg g   

3. Meaning of Coordinates and the Topology 
of a "Black Hole" 
This section may be superfluous for the proof, but it may be 

helpful to some readers since it clearly defines the terms used in 
this paper and explains their meaning. The literature may some-
times define the same terms differently, causing confusion. 

In this paper only two types of coordinates are used. The nat-
ural coordinates that are for example appearing in the metric line 
element given in Eq. (2) and the physical coordinates, sometimes 
called the proper coordinates, that are defined similarly as is giv-
en for example in Eq. (4). It is important to realize that the physi-
cal coordinates are not affected or changed in any way by the 
gravity, by adding a massive body into the space-time, while the 
natural coordinates are. The amount of distortion of natural 
coordinates is given by the metric coefficients and the gravity 
induced distortion affects everything in the natural space-time 
including our bodies since we are living in this space-time and 
making measurements using clocks and measuring sticks. From 
this description it is obvious that the physical coordinate diffe-
rentials and the natural coordinate differentials become identical 
far away from the gravitating bodies where the gravity has no 
effect. It is therefore also clear that the space-time distortion can 
be easily evaluated against the physical coordinate system, which 
is forming an unchanging reference, when the metric coefficients 
are known. An example for the Schwarzschild metric is given 
below, where the physical coordinate radius is calculated, since 
for this metric it can be calculated analytically: 
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For the purpose of this paper only the physical radius is 
needed. The physical radius is not distorted by gravity, as al-
ready mentioned, it is identical for either metric discussed in this 
paper and it actually expresses the distortion of the natural coor-
dinate radius as an inverse of the function in Eq. (5) that cannot 
be analytically calculated. The graphs of dependence of the natu-
ral coordinate radius plotted as function of the physical coordi-
nate radius are shown in Fig.1 for both metrics normalized to sR . 
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Fig.1. The solid line graph using normalized coordinates is show-
ing the Black Hole region of the Schwarzschild metric and two 
possible space-time extensions into it. The left hand side of the 
graph results from rotation and does not mean that the natural 
coordinate radius rn can have negative values. The dotted line cor-
responds to the new metric that has no BH region. 

This can be also visualized as a cut through a 2D surface of 
rotation around the vertical axis as it is commonly presented. 
From this graph it can be observed that in the Schwarzschild 
metric space-time the addition of a massive body compresses and 
stretches the natural space-time and adds into it an important 
inaccessible region 1nr   called the Black Hole (BH). As the 

mass of the body changes the size of the BH also changes, but the 
physical coordinates and the natural coordinates must match at 
infinity and this helps to visualize why the physical coordinates 
remain unchanged. There are many papers published in the lite-
rature where through the introduction of various coordinates 
and coordinate transformations, for example the Kruskal-
Szekeres coordinates, the space-time is analytically extended into 
the BH. The extension is indicated in the graph by a bowl shaped 
dot-dash line. It is also claimed that at the bottom of this region 
resides the famous Schwarzschild singularity. However, in this 
paper it is clear from the definition of the physical radius, that 
this does not make sense, since the physical radius already covers 
the entire space 0     and cannot be negative. The only ex-
tension of the space-time into the BH that might be meaningful 
can thus be made only in the positive direction of the physical 
coordinate radius, forming a dome shaped surface or be flat as is 
indicated in the graph by the dashed line. It is also clear that this 
extension forms a corner, a shell shaped singularity in the 3D 

space at the Schwarzschild radius where all the mass of the BH 
should then reside. In order to better understand the fundamen-
tal differences between the studied metrics it is also interesting to 
calculate the time of fall of a test body from a certain distance to 
the surface of the centrally gravitating body as observed by a 
distant observer and by an observer riding on the test body. For 
the Schwarzschild metric the time of fall is infinite when ob-
served by a distant observer even if the test body is infinitesimal-
ly close to the BH. This does not seem reasonable and realistic. 
For the co-moving observer the fall time is always finite. For the 
new metric both times are finite as expected. The results of falling 
time calculations normalized to /sR c are shown in Fig. 2. 
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Fig.2.  Normalized times of fall from a given distance to the surface 
of the gravitating body for a distant observer and for an observer 
co-moving with the test body. The dotted and dashed lines 
represent the new metric falling times for a distant and co-moving 
observer respectively. The solid line represents the falling time of 
the co-moving observer for the Schwarzschild metric. The distant 
observer falling time for the Schwarzschild metric is infinite, there-
fore not shown. 

Therefore, in this paper it is considered that at the Schwarz-
schild radius the singularity is real, not only a coordinate singu-
larity as is commonly believed, and that there is an empty void 
inside of the BH that cannot be reached from the exterior region. 
The disadvantage of various coordinate transformations that are 
used for mapping the interior of BHs, particularly when the time 
and space coordinates are mixed together, is that their meaning 
and the relation to the natural and physical coordinates used in 
this paper is lost. When new coordinates or coordinate transfor-
mations are introduced it is necessary to always clearly identify 
whether they can be observed and how they are measured. This 
is often not done and this leads to only mathematical manipula-
tions without any physical meaning behind them or a connection 
to reality. This paper makes an effort to avoid this problem.  

There is no impact of the modified BH model on the proof 
presented in this paper, since it is clear that the interior of the BH 
does not have to be mapped by any coordinate system and taken 
into account, in particular when it is shown that other metrics 
exist describing the space-time of the centrally gravitating body 
without the BH singularity. 

4. General MTG Equations 
The introduced metrics will be tested and evaluated by study-

ing the motion of small test bodies in the space-times that these 
metrics describe. In order to simplify this task only two kinds of 
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motion will be investigated: the radial motion and an orbital mo-
tion in a circular orbit. It is therefore advantageous to first derive 
general equations for these motions based on Eq. (1) and then 
apply them to the respective metrics.  

First, for the circular orbital motion, using the well known 
Lagrange formalism, considering for simplicity the motion only 
in the equatorial plane, the Lagrangian describing such a motion 
of a small test body is as follows: 

 
2 2 2

tt rr
cdt dr d

L g g g
d d d


  

            
     

  (6) 

The first integral of Euler-Lagrange (EL) equation derived from 

the variational principle 0Ld


    that corresponds to the time 

coordinate is: 

 tt
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g k
d
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 (7) 

where k  is an arbitrary constant of integration typically set  to 
1k   to satisfy the  initial condition at infinity. The EL equation 

of motion corresponding to the radial coordinate is as follows: 
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where the dot represents the partial derivative with respect to the 
radial coordinate. Since for the circular orbit the radial coordinate 
is constant, Eq. (8) simplifies to read: 
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where Eq. (7) was used to eliminate the variable  . Considering 
now that the natural coordinate orbital time ot , which is the ob-

servable quantity referenced to the central mass coordinate sys-
tem, is found when the angle is set to: 2  , the following equ-
ation results: 
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This is a general formula that can be used for any metric of 
the form given in Eq. (1) describing the space-time of a non-
rotating centrally gravitating body. From the Lagrangian in Eq. 
(6) also follows the general formula for the conservation of angu-
lar momentum. The first integral corresponding to the angular 
coordinate is: 

 
d

g k
d
 

  (11) 

Dividing Eq. (11) by Eq. (7) the general formula for the conserva-
tion of angular momentum in any MTG whose metric satisfies 
the form given in Eq. (1) is thus as follows: 

 
tt

g d
g dt
    (12) 

In the second step, turning the attention to the tests where the 
test body moves only in the radial direction, the Lagrangian de-
scribing such a motion is as follows: 

 
2 2
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  (13) 

Since the Lagrangian itself is also a first integral equal to 2L c  it 
is simple to derive the following relations:  

 tt
dt

g k
d
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 (14) 
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Rearranging Eq. (15) and differentiating the result with respect to 
 , assuming that the metric coefficients are functions of the gra-
vitational potential, the following equation is obtained: 

 
2 2 2
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In order to maintain the same contravariance character on 
both sides of Eq. (16)  it is easily seen that the partial derivative of 
the bracket must be a component of a contravariant tensor.  
There are only two possibilities how to satisfy this requirement, 

the bracket derivative equal either to rrg  for the spherical coor-

dinates or  to ttg  for the cylindrical coordinates. For the spherical 

coordinates the solution is: 1rr ttg g  , or alternately written as: 
rr

ttg g , simplifying Eq. (16) into:  
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Furthermore, the bracket in Eq. (17) must be equal to unity, so it 
must hold that:  
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in order to obtain the Newton-like equation with the gravitating 
force being equal to acceleration according to the equivalence 
principle: 
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rr nd r

g
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The relation 1rr ttg g   is well known from the Schwarzschild 
metric and can be also derived for the new metric from the condi-
tion that the natural space deformation by the gravity is locally 
isotropic. The solution of Eq. (18) is easily found, assuming zero 
potential boundary condition at infinity: 

 
22 /n c

ttg e   (20) 

This equation thus allows to calculate the gravitational potential 
and therefore the gravitational field intensity from the metric 
coefficient standing by the time coordinate. It is interesting to 
note that Eq. (20) and the condition 1rr ttg g   follow uniquely 
from the metric in Eq. (1) when it is assumed that the gravita-
tional field has a potential and that the metric coefficients depend 
on it. 

 
Finally, once the gravitational field intensity is known it 

should also satisfy the Gauss law as any other standard field in-
tensity. The Gauss law is a conservation law, in this case the law 
of conservation of rest mass, similarly as the conservation of 
charge in the Maxwell's EM field theory. This can be written in 
the static curved natural space-time coordinates as:  
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Since the integrating surface S could be chosen a spherical sur-
face the integration was carried out, and this allows the Gauss 
law to be re-written in terms of the metric coefficients as follows: 

 tt
s

tt tt

g g
R

rg g
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


 (22) 

Any metric of MTG describing the non-rotating centrally gra-
vitating body with mass M should thus also satisfy the condition 
in Eq. (22). The validity of the Gauss law suggests that the field 
energy, which is negative or removed from the space around the 
gravitating body, was converted into the tangible gravitating 
mass of the body. This also implies that the total energy W  of 
the field plus the energy equivalent of the mass of the body could 
be zero and that the gravitation field around the central body 
does not have any tangible gravitating mass. The total energy can 
be calculated as follows: 

 2

0

M

nW Mc dM     (23) 

This becomes for the new metric at the mass equivalent radius 
/ 4e sR 

 
or equivalently for the natural coordinate mass 

equivalent radius 0.009384e sr R   equal to: 
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For the Schwarzschild metric, however, the result is:  
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There is no mass equivalent radius that would make the total 
energy zero for the Schwarzschild space-time, so the energy had 
to be supplied from somewhere else to create this space-time 
with masses and fields in them. To correct this problem those 
who believe in the existence of BHs should consider that half of 
the BH mass is trapped in the void in form of negative energy [2]. 

To summarize the results of this section, it is convenient to ar-
range all the conditions that were found and that any MTG must 
satisfy into a Table 1. These are the general formulas indepen-
dent of the GRT assumption about the Ricci tensor or any other 
assumptions that could be construed as a field theory, in addition 
to the metric such as for example in Ref. [3], that the metrics must 
satisfy. There are five conditions in Table 1 related to metric coef-
ficients and only three metric coefficients in the metric line ele-
ments. It is therefore obvious that there must be some interde-
pendency between the coefficients. By inspecting the formulas it 
is easy to conclude that only one parameter is free to be chosen or 
determined from the experiments, for example the gravitational 
potential or the metric coefficient standing by the time coordi-
nate, the rest are derived parameters. It is also necessary that at 
large distances the potential approaches the Newton gravitation-
al potential. If more than one metric coefficient is specified, this 
violates the mathematical consistency of the metric or some well 
known law of physics as is discussed in more detail in the next 
section. 
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5. Metrics Evaluation. 

 The two metrics introduced in the metric definition section of 
the paper will be now investigated and compared according to 
the criteria in Table 1. Since the criteria formulas are simple it is 
easy to substitute the corresponding metric coefficients into them 
and construct another table, Table 2 for the metrics. By inspecting 
the results it is now easy to evaluate the metrics properties and 
arrive at the following conclusions: 

1. The Schwarzschild metric has a problem at the Schwarzschild   
radius called the Event Horizon (EH). There is no problem for 
the new metric at the Schwarzschild radius, no Black Holes 
exist. The metric coefficient standing by the time coordinate 
must be an exponential function of the gravitational potential, 
the Schwarzschild metric does not satisfy this requirement. 

2. The Schwarzschild gravitational potential at the EH is infi-
nitely negative. No radiation or BH evaporation is thus possi-
ble. There is no problem for the new metric at the EH. The po-
tential for the new metric resembles the Newton gravitational 
potential with a difference of natural coordinate radius being 
replaced by the physical coordinate radius following Eq. (4). 

3. The relations between the time and the radius metric coeffi-
cients are the same. This is the only condition that the 
Schwarzschild metric satisfies exactly and correctly. 

4. The Schwarzschild metric does not conserve the angular mo-
mentum of orbiting test bodies. There is zero angular momen-
tum at the Schwarzschild radius. The BH cannot rotate [2]. 
The new metric maintains the conservation of angular mo-
mentum, which is a well know and many times verified fun-
damental law of physics. 

5. For the Schwarzschild metric the orbital time (the Kepler's 
third law) approaches zero when the mass of the centrally 
gravitating body tends to very large values. This implies an 
infinite orbital speed. For example: at the radius / 2sr R  the 

test bodies would whiz around with the vacuum speed of 
light even inside of the BH, assuming that BHs have any inte-
rior regions. For a smaller radius the speed of light is obvious-
ly exceeded. It is also strange that this formula is identical to 
formula derived classically form the Newton inertial and gra-
vitational laws without any effects from the curvature of 
space-time. For the new metric, however, there is a limit equal 
to the physical orbital length divided by the vacuum speed of 
light and an effect from the space-time curvature. This is what 
would be expected from any reasonable theory of gravity, but 
fails in GRT.  

6. An important finding that should be disturbing to any phy-
sicist is that the gravitational field of the Schwarzschild metric 
does not satisfy the Gauss law. This is a fatal flaw of  GR 
theory particularly when the new metric has no problem with 
it. The new metric result that the gravitational field has no 
tangible gravitating rest mass is interesting and in some sense 
similar to claims used in GRT that in the empty space around 
the gravitating body the mass energy tensor jkT  is zero. 

7. It is surprising and strange that for the Schwarzschild metric 
the inertial and gravitational forces follow the classical New-
ton laws formulas, except for the natural time being replaced 
by the metric invariant  , without any effect from the curva-
ture of space-time. The new metric formula includes these ef-
fects. It is also necessary that the contravariant character of 
geometric objects from the natural space-time is equal on both 

sides of the equation. The Schwarzschild metric formula does 
not seem to satisfy this simple requirement. 

8. Finally, the field energy plus the mass equivalent energy of 
the centrally gravitating body being zero for the new metric is 
an appealing property also from the philosophical point of 
view, since it balances the energy of the entire visible mass of 
the Universe to zero. The current Schwarzschild metric model 
obviously does not offer this possibility. 

From this summary it is clear that the Schwarzschild metric is 
not physical and cannot correspond to reality. From this conclu-
sion also follows that GRT is not a correct theory of gravity. The 
assumption about the Ricci tensor being zero used in the deriva-
tion of Einstein field equations and from that the Schwarzschild 
metric do not correspond to reality. The Schwarzschild metric is 
only an approximation for the weak gravitational fields as is 
shown in the next section.  

6. Weak Field Approximation   
The first order approximation for the new metric coefficient 

ttg and thus for the new metric line element of the centrally gra-

vitating non-rotating body is found by integrating Eq. (4) as fol-
lows: 
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where ( )Ei x  is the Euler exponential integral function. Unfortu-
nately there is no analytic expression for   as function of r , so 
the approximation needs to be found iteratively. For large dis-
tances (0<x<<1), the Euler exponential integral is approximated 
as: 
 ( ) ln( ' ) ...Ei x x    (27) 

where ' 1.781072...   and ln( ')   is the famous Euler constant 

0.577215...  . It is therefore possible to write: 
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Rearranging this result as follows: 
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(29) 

and substituting for 1 / from the left hand side of Eq. (29) to the 
right hand side, the iterative expression for 1 /  valid for large 
distances becomes: 
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  (30) 

From this formula then follows the approximation for ttg : 
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 In the next step the second order term in Eq. (31) can be neg-
lected since the logarithmic function of r increases very slowly 
and sR is for all practical purposes always very much smaller 

than r . This leads to the familiar formula for the metric coeffi-
cient ttg : 

 1 ...s
tt

R
g

r
     (32) 

Substituting this approximation into Eq. (3), and considering that 
the logarithmic term multiplied by / 2sR in Eq. (28) can also be 

for large distances neglected in comparison to r , the formula for 
the metric line element becomes the celebrated Schwarzschild 
metric: 
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The derived approximation also allows finding a condition 
that needs to be satisfied to obtain a reasonable description of the 
space-time geometry by this metric  sr R . The condition is as 

follows:  

 ln 1
s s

r r
R R

    (34) 

From the above derivations there is no doubt that the 
Schwarzschild metric is only the first order approximation of the 
metric introduced in Eq. (3) and thus only the first order approx-
imation of reality. The reality is being defined here as a space-
time described by a metric whose time metric coefficient is an 
exponential function of gravitational potential, metric that does 
not permit larger than the speed of light velocities, and where the 
test body trajectories conserve the angular momentum. Of course 
it is also necessary that the four tests of GRT are satisfied: Mer-
cury perihelion advance, the light bending by the Sun, the Shapi-

ro delay, and the gravitational red shift. Since the Schwarzschild 
metric satisfies these tests and it is the weak field approximation 
of the new metric it is clear that the new metric also satisfies 
them. The Schwarzschild metric is the correct and unique solu-
tion of Einstein field equations for the spherical case, according 
to the well known Birkhoff theorem, [4] therefore, there can be 
only one inescapable conclusion that Einstein field equations 
yield only the first order approximations of the correct metrics 
when the energy-momentum tensor jkT and thus the Ricci tensor 

are set to zero. While the study of Einstein field equations and 
various Einstein Spaces described by these equations can be an 
interesting and intellectually rewarding experience with a large 
amount of work already devoted to this topic, [5] it is clear that 
very little of this work can actually be applied to reality. 

7. Conclusion 
In this paper it has been clearly shown that GRT is only a first 

order approximation of reality and thus it can be concluded that 
Einstein field equations and their various derivatives should not 
be used to search for the metrics to model the strong gravitation-
al fields, be used in various string theories, or be used in model-
ing of the Universe. The assumption about the Ricci tensor being 
zero in an empty space around the gravitating body is not cor-
rect, the zero is not a permissible value for this tensor when the 
centrally gravitating mass generating the field is not zero and 
consequently the Schwarzschild metric does not describe the 
reality accurately and correctly. 
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