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Application of Bi-Quaternions 
in Physics 

André Waser* First issued: 29.07.2000 
 Last update: 06.05.2007 

This paper introduces a new bi-quaternion notation and applies this nota-
tion to electrodynamics. A set of extended MAXWELL equations and other 
fundamental equations of electrodynamics are derived. By applying the 
LORENTZ condition, these equations reduce to the classical form. 

Additionally the bi-quaternion notation allows a compact formulation 
of SRT. Furthermore an application of bi-quaternions in other disciplines of 
physics as mechanics (dynamics) is shown.  

 

Introduction 
One of the most emotional disputes in the late nineteenth-century was about the mathe-
matical notation to use with electrodynamics equations[2]. Today’s vector notation was 
not fully developed at that time and many physicists – one of them was James Clerk 
MAXWELL – promoted the quaternion notation. The quaternion was “invented” in 1843 
by Sir William Rowan HAMILTON[6]. Peter Guthrie Tait[11] was the most outstanding 
promoter of quaternions. On the other side Oliver HEAVISIDE[7] and Josiah Willard 
GIBBS[13] both decided independently that they could better apply a part of the quaternion 
number than use the entire number, why they proceeded further with that, what today is 
called the vector notation. Generally the vector notation used in pre-EINSTEIN[4] electro-
dynamics uses three-dimensional vectors. The quaternion on the other hand is a four-
dimensional number. To make the quaternion compatible to the three-dimensional 
electrodynamics of MAXWELL, HAMILTON and TAIT, the scalar part of the quaternion 
was indicated with the prefix ‘S’ and the vector part with the prefix ‘V’. By doing this, 
the quaternion has been ‘vectorized’. 
This notation was also used by Maxwell in his Treatise[9], where he published some 
equations with ‘vectorized’ quaternion notation. But with applying this prefixes the 
whole benefit of quaternions is not used. Maxwell didn’t use any quaternion calculus. He 
only converted some summarized end results into ‘vectorized’ quaternion notation. The 
quaternion notation was simply not as powerful and suitable as the vector notation. 
 

Some time ago we have shown, that the introduction of bi-quaternions – a complex 
expansion of quaternions – makes a compact formulation of electrodynamics in spirit of 
TAIT’s and HAMILTON’s work possible. This article is a continuation of TAIT’s and 
HAMILTON’s ideas and shows the broad applicability of bi-quaternions in physics. 

                                                           
* André Waser, Birchli 35, CH-8840 Einsiedeln 
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HAMILTON‘s Quaternions 
A general quaternion has both a scalar (real) and a vector (imaginary) part. In the exam-
ple below ‘a’ is the scalar part and ‘ib + jc + kd’ is the vector part. 
 Q = a + bi + cj + dk  (1.1) 
Where a, b, c, and d are real numbers and i, j, k are so-called Hamilton’ian unit vectors 
with the magnitude of 1− . They satisfy the equations 

 i2  =  j2  =  k2  =  ijk  =  −1 (1.2) 

 ij  =  k        jk  =  i        ki  =  j 
 ij  =  − ji        jk  =  − kj        ki  =  − ik 

A nice explanation about the rotation capabilities of the HAMILTON’ian units in a three-
dimensional ARGAND diagram was published by GOUGH[5]. 

A quaternion is a hypercomplex number. The quaternion radii (or magnitude) in 
four-dimensional space is defined similar as for ordinary complex numbers as: 

 2 2 2 2
0 1 2 3Q x x x x≡ + + +   (1.3) 

as also shown by WALKER[12]. By introducing a conjugate quaternion number 
 Q* = a - bi - cj - dk  (1.4) 
the quaternion magnitude is also 

 2 2 2 2
0 1 2 3Q QQ x x x x*≡ = + + +  .  (1.5) 

Such a four-dimensional quaternion is very suitable to represent an event in four-
dimensional space: 
 0 1 2 3X x x x xi j k= + + +  . (1.6) 

 
From now on we use the following convention for indices and unit vectors: 
• Indices k = 1, 2, 3 
• Indices j = 0, 1, 2, 3 = 0, k  
• The unit vectors of three-dimensional space are 1 2 3 k, ,e e e e=  
• The HAMILTON’ian units i, j, k are written in italic letters  
• and the imaginary unit i 1= −  in normal letter. 
 
Then we can summarize the HAMILTON’ian units and the unit vectors to  
 ( )1 2 3, ,i i e j e k e≡  (1.7) 

and we find the following notation for a quaternion Xj 
 j 0 kX x xi= + ⋅   (1.8) 
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Calculus wit Quaternions 
 
We introduce the following two quaternions 

( )0X x xi= + ⋅  und ( )0Y y yi= + ⋅  . 

A conjugate quaternion X* is then: 

 ( )0X x x* i= − ⋅  (1.9) 

The scalar multiplication X·Y is: 
 ( )0 0X Y Y X x y x y⋅ = ⋅ = + ⋅  (1.10) 

The multiplication XY is: 

 
( ) ( )
( ) ( )

0 0 0 0

0 0 0 0

XY x y x y x y xy x y

YX x y x y x y xy x y

i

i

= − ⋅ + ⋅ + + ×

= − ⋅ + ⋅ + − ×
 (1.11) 

The magnitude of the quaternion X is: 

 2
0X X X x x x= ⋅ = + ⋅  (1.12) 

Then we have also  
 2

0XX X X x x x X X X* *= = + ⋅ = = ⋅  (1.13) 

The inverse quaternion X-1 is 

 0
2 2

0

x ix1 X X
X XX x x xX

* *

*

i− ⋅
= = =

+ ⋅
 (1.14) 

And the division Y/X is: 

 
( )( )0 0

0 0

y iy x ixY YX
X x y x xXX

*

*

i i+ ⋅ − ⋅
= =

+ ⋅
 (1.15) 
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Introduction of Bi-Quaternions 
An expansion of quaternions to bi-quaternions is made by replacing the real numbers a, 
b, c and d with complex numbers. A (complex) quaternion – or a bi-quaternion – is then: 

 ( ) ( )0 k
0 kx ix ix xi= + + ⋅ +   (1.16) 

 
This new introduced quaternion is different from the octionions (known form LIE alge-
bra) since the HAMILTON‘ian units i, j, k are still valid and no new imaginary units are 
introduced. Such a bi-quaternion now represents a superposition of two four-dimensional 
numbers: 

 ( ) ( )j 0 k
j 0 kx ix ix xi i= + = + ⋅ + + ⋅     (1.17) 

The later shown examination with this eight-fold number shows, that such a bi-
quaternion is very useful for a compact description of electrodynamics and other disci-
plines in physics. 

But first we have to decide whether we use  j or j as our representation of a physi-
cal four-vector. Easy calculations show, that both lead to the same result. Therefore we 
are free to choose between j and j. To still have a real term, we decide for j and 
apply this part of the bi-quaternion to physical four-vectors. 

As we will se later, all basic equations of classical and relativistic electrodynamics 
can be written just by applying bi-quaternion multiplications without using any tensor 
multiplication. 

A multiplication of two bi-quaternions produces 16 or 64 terms, which in turn build 
again a bi-quaternion according to (1.17). The mapping of these terms to physical four-
vector j gives in parallel j=0. 

As we show later, this nullifying of the other four-vectors has it’s origin in physical 
laws of conservation. 

 
The bi-quaternion (1.17) can be classified as: 

Incomplete bi-quaternion j 0 k
j 0 kx ix x ixi i= + ⋅ = + ⋅    (1.18) 

Complete bi-quaternion ( ) ( )j 0 k
j 0 kx ix ix xi i= + = + + ⋅ + ⋅     (1.19) 
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Calculus with incomplete bi-quaternions 
We have the following two incomplete bi-quaternions 

( )0 kx ixi= + ⋅  und ( )0 ky iyi= + ⋅  . 

A conjugate incomplete bi-quaternion * is then: 

 ( )0 kx ix* i= − ⋅  (1.20) 

The scalar multiplication of two incomplete bi-quaternions · is: 
 ( )0 0 k kx y x y⋅ = ⋅ = − ⋅     (1.21) 

and ·* is: 
 ( )0 0 k kx y x y* *⋅ = ⋅ = + ⋅     (1.22) 

The multiplication of two incomplete bi-quaternions  is: 

 
( ) ( )
( ) ( )

0 0 k k 0 k k 0 k k

0 0 k k 0 k k 0 k k

x y x y i x y x y x y

x y x y i x y x y x y

i

i

= + ⋅ + ⋅ + − ×⎡ ⎤⎣ ⎦
= + ⋅ + ⋅ + + ×⎡ ⎤⎣ ⎦




 (1.23) 

The magnitude if an incomplete bi-quaternion  is: 

 2
0 k kx x x= ⋅ = − ⋅    (1.24) 

Then we have also 
 2

0 k kx x x* *= = − ⋅ = = ⋅       (1.25) 

 
 

Calculus with complete bi-quaternions 
We have the following two complete bi-quaternions 

( )0 k
0 kx ix ix xi⎡ ⎤= + + ⋅ +⎣ ⎦   und  ( )0 k

0 ky iy iy yi⎡ ⎤= + + ⋅ +⎣ ⎦ . 

where the superscripts and subscripts represent the indices k=1,2,3.  
 
A conjugate complete bi-quaternion * is then: 

 ( ) ( )0 k
0 kx ix ix x* i⎡ ⎤≡ − − ⋅ −⎣ ⎦  (1.26) 

The scalar multiplication · is: 

 
( )
( )

0 0 k k
0 0 k k

0 k 0 k
0 k 0 k

x y x y x y x y

i x y x y x y x y

⋅ = ⋅ = − ⋅ + − ⋅

+ + ⋅ + + ⋅

   
 (1.27) 

and ·* is: 
 0 0 k k

0 0 k kx y x y x y x y* *⋅ = ⋅ = + ⋅ + + ⋅     (1.28) 

The multiplication  is: 

 

( ) ( )
( ) ( )
( ) ( )

0 0 k k 0 k 0 k
0 0 k k 0 k 0 k

k 0 k 0 0 k 0 k
0 k 0 k 0 k 0 k

k k k k
k k k k

x y x y x y x y i x y x y x y x y

x y x y y x y x i x y x y y x y x

x y x y i x y x y

i

= + ⋅ − − ⋅ + − + −

⎡+ ⋅ − + − + + + +⎣
⎤+ × − × + × + × ⎦



 (1.29) 

The magnitude of a complete bi-quaternion  is: 

 ( ) ( )2 0 0 k k 0 k
0 0 k k 0 kx x x x x x x x 2i x x x x= ⋅ = − ⋅ + − ⋅ + + ⋅    (1.30) 
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The multiplication * is: 

 ( ) ( ) ( )0 0 k k k 0 k
0 0 k k 0 k kx x x x x x x x 2 x x x x i x x* i ⎡ ⎤= + − ⋅ − ⋅ + ⋅ + + ×⎣ ⎦  (1.31) 

The multiplication * is: 

 

( ) ( )
( ) ( )
( ) ( )

0 0 k k 0 k 0 k
0 0 k k 0 k 0 k

k 0 k 0 0 k 0 k
0 k 0 k 0 k 0 k

k k k k
k k k k

x y x y x y x y i x y x y x y x y

x y x y y x y x i x y y x x y y x

x y x y i x y x y

*

i

= + − ⋅ − ⋅ + + − −

⎡+ ⋅ + + + + + − −⎣
⎤× + × + × + × ⎦



 (1.32) 

 
 

Derivations 
The bi-quaternion NABLA operator is: 

 j
j 1 2 3

1 1i i
c t x x x c t

i j k i
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

∇ ≡ = + + + = + ⋅ ∇⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (1.33) 

The bi-quaternion d‘ALEMBERT operator is: 

 ( )
2 2 2 2 22

j j j j 2 2 2 2 2 2 2
1 2 3

1 1
c t x x x c t

* ∂ ∂ ∂ ∂ ∂
Δ ≡ ∇ = ∇ ∇ = − − − = − Δ

∂ ∂ ∂ ∂ ∂
 (1.34) 

  
 

Total time derivative 
The operator for the total time derivative of a bi-quaternion is (see Appendix A): 

 ( )i c
t c t

d
dt

i∂ ⎡ ∂ ⎤⎛ ⎞ ⎛ ⎞+ ⋅∇ + ⋅ ∇ + − ×∇⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
= vv v  (1.35) 

The special multiplication symbol ° indicates, that on applying this operator, the scalar 
multiplication must be used for the scalar part and the cross product must be used for the 
vector part. 
 
The operator in equation (1.35) is analogue to the known operator of two-dimensional 
derivations:  

 d
dt t

∂= + ∇
∂

v  

 
With the following multiplication we get the same result as with (1.35): 

 ( ) ( )i c
t c t

i
⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

∂ ∂∇ = + ⋅∇ + ⋅ ∇ + − ×∇
∂ ∂

vv v    (1.36) 

 
Applying this to the event vector X we find 

 ( )d 1
dt 4

= = ∇


    (1.37) 

 
 



 
copyright © (2007) by André Waser;  www.andre-waser.ch Page 7 

Bi-Quaternions in four-dimensional space 
An event  in four-dimensional space can be expressed directly with a bi-quaternion 
according to 
 ct ixi≡ + ⋅  . (1.38) 

According (1.12), the magnitude (distance of an event to fulcrum) is: 

 2 2 2c t x= −  (1.39) 

In special theory of relativity SRT this magnitude is invariant for each inertial system. 
The same is valid for the differential d. A division of d by c gives another invariant: 

 ( )
2

2 2 2 2
1 2 32 2

1 1 vd dt dx dx dx dt 1 d
c c c

= − + + = − = τ  (1.40) 

This is the time dilatation known of special relativity. For the differential of an event 
vector  we also have 

 d cdt idxi= + ⋅  (1.41) 

and we find the well-known relativistic four-velocity  as: 

 
2 2

2 2

d c iv
d v v1 1

c c

i ⋅
= = +

τ
− −


  , (1.42) 

where v  is the velocity between two relatively moving inertial systems. The magnitude 
of the relativistic four-velocity is known to be always equal to speed of light c. 

 c=  (1.43) 

 
From (1.42) we find the well-known factors from special relativity: 

 
2 2 2

2 2
2 2 22

2

1 v 1 v1
c cv1

c

, , γ −
γ = γ − = γ =

γ
−

 , (1.44)a, b, c 

Now we build the total time differential of an event vector  and we get another, differ-
ent non-relativistic four-velocity (coordination velocity)  

 d c iv
dt

i= = + ⋅


  (1.45) 

which is connected to the relativistic four-velocity according to 

 = γ   (1.46) 

 
The addition of two velocities 1 and 2 shall further comply with equation (1.43): 

 ( )1 2 1 2 1 2+ = c + 2c v vi⇒ ≠ + ⋅ +     (1.47) 

In next section we drive the law of velocity addition. 
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The Lorentz transformation in bi-quaternion form 
The relativistic four-velocity  is especially helpful for the formulation of coordination 
transformation between relative moving systems S’ and S (see Appendix B). Shall 

c iui= + ⋅  be the relative velocity between S and S’, then we have: 

 
c

*γ′ =    (1.48) 

And inversely we have 

 
c
γ ′=   (1.49) 

And solved: 

 v xct ct
c
⋅⎛ ⎞′ = γ −⎜ ⎟

⎝ ⎠
,     ( )x x vt′ = γ −  (1.50)a, b 

 v xct ct
c
⋅⎛ ⎞′= γ +⎜ ⎟

⎝ ⎠
,     ( )x x vt′= γ +  (1.51)a, b 

 
The four-velocities  and * are the operators to transform a bi-quaternion (four-vector) 
from one inertial system into another relative moving inertial system. The general form 
of the transformation operator of values in inertial system S and S’ with the relative 
velocity c iui= + ⋅  is: 

 
c

*γ′ =… …  (1.52) 

 
c
γ ′=… …  (1.53) 

Beside the normal way via the differentials (1.50) or (1.51), the theorem of velocity 
addition can be derived with above transformation equations. 

We have the systems S and S’ moving against each other with relative velocity . A 
body moves in S’ with the velocity c ivi′ ′= + ⋅ . Then we have 

 ( )uvc i u v
c c

i′
′γ ⎛ ⎞′′ ′= = γ + + γ ⋅ +⎜ ⎟

⎝ ⎠
  (1.54) 

The scalar part in four velocity  must always be equal to speed of light c. This we 
achieve in (1.54) with a division by 0′′  

 
0

2 2

c 1 1 u vc i
uv uv1 1
c c

i
′+′′ ′′= = = + ⋅′ ′′′ γ + +

  


 (1.55) 

and thereof 

 
2

u vv
uv1
c

′+
= ′

+
 (1.56) 

 c′+ =U V  (1.57) 

The „normalisation“ with 0
′′  has it’s origin in the „designation“ of velocity ’ outside 

of S’. It’s impossible to measure primed velocity  ’ in un-primed system S directly. 
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Bi-quaternion electrodynamics for linear & isotropic medium 
(vacuum) 

The bi-quaternion electric and magnetic field 
Analogue to the velocity we define the bi-quaternion potentials with the components 
ϕ [V] and A  [Vs / m]: 

 iA
c

iϕ
≡ + ⋅  (2.1) 

or with 

 2A v
c
ϕ

=  (2.2) 

also 

 ( )2 2 c iv
c c

iϕ ϕ
≡ = + ⋅   (2.3) 

Then we have for the derivation of the bi-quaternion potentials (2.1): 

 ( )2

1 i AA A
t c tc

i∇ =
⎡ ⎤⎛ ⎞∂ϕ ∂⎛ ⎞+∇ ⋅ + ⋅ ∇ϕ+ − ∇×⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦

  (2.4) 

We use the substitutions 

 2

1 A
tc

s = −
∂ϕ

−∇ ⋅
∂

,        qF AE
q t

∂
= = −∇ϕ−

∂
,        B A= ∇×  (2.5)a, b, c 

and find the equation for the electric force field  [V / m]: 

 ( )c c iE c Bs i∇ = += − + ⋅      or ( )iE cBi= +⋅  with s=0 (2.6) 

and the equation for the magnetic induction  [Vs / m2]: 

 i i E
c
1i Bs i∇ = −

⎛ ⎞= − + ⋅⎜ ⎟
⎝ ⎠

     or i E
1B
c

i= −
⎛ ⎞⋅⎜ ⎟
⎝ ⎠

  with s=0 (2.7) 

and find thereof 

 ic= −  ,       i
c

=   (2.8) 

Now we look closer to the real scalar term s. It is 

 ( )2 2

1 1 dv
t dtc c

s = ∂ϕ ϕ⎡ ⎤∇ ⋅ = − − +∇ ⋅ ϕ = −⎢ ⎥∂⎣ ⎦
  (2.9) 

s is known as the LORENTZ condition (s = 0). Thus the LORENTZ condition is a demand 
for a source-free bi-quaternion potential , because we have 

 ( )2

10 A 0 v 0
t tc

s = ∂ϕ ∂ϕ
− ∇⋅ = → +∇⋅ = → +∇⋅ ϕ =

∂ ∂
  (2.10) 

It shows, that the LORENTZ condition is a demand for conservation of scalar potentials ϕ; 
i.e. the LORENTZ condition is a conservation law. From (2.9) we find further and inde-
pendently of s also the general LORENTZ condition: 

 2

1 d 0
dtc
ϕ
+∇⋅ =  (2.11) 
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The bi-quaternion potential density 
Analogue to the potentials we define the bi-quaternion charge- and current density 
with the components ρ [ As / m3] and J  [A / m2]: 

 c iJi≡ ρ+ ⋅  (2.12) 

or with 

 0J v v= ρ = γρ  (2.13) 

also 
 0 c i vi≡ ρ = ρ = ρ+ ⋅ ρ    (2.14) 

 
Then we have for the derivation of the current density (2.12) 

 
( )1 JJ i c J

t c t
i∇ =
⎡ ⎤⎛ ⎞∂ρ ∂

+∇ ⋅ + ⋅ ∇ρ+ − ∇×⎢ ⎥⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦


 (2.15) 

Introducing the substitutions 

 
J

t
= −

∂ρ
σ −∇⋅

∂ ,        

JA c
c t
μ ∂

= −μ ∇ρ−
∂ ,        J J= ∇×  (2.16)a, b 

we get the equations for a volume current density  [A / m3]: 

 
i i i J A

1i= − ∇ = σ −
⎛ ⎞

+ ⋅⎜ ⎟μ⎝ ⎠
 

 (2.17) 

and for a potential density  [Vs / m4]: 

 ( )iA Ji= −μ∇ = μσ +μ+ ⋅ 
 (2.18) 

and find thereof 

 i= − μ  ,     i
=
μ

   (2.19) 

 
Looking more closely to the real scalar term σ we find 

 ( ) 2

1 dv
t dtc

=
∂ρ ρ

∇ ⋅ = −σ − −∇ ⋅ ρ = −
∂

  (2.20) 

σ is known from charge conservation (σ = 0). Thus the charge conservation law is the 
demand for a source-free bi-quaternion potential density , because we have 

 ( )0 J 0 v 0
t t

=
∂ρ ∂ρ

−σ μ∇ ⋅ = → +∇⋅ = → +∇⋅ ρ =
∂ ∂

  (2.21) 

This conservation law is analogue to conservation of electric scalar potential ϕ. With 
(2.21) we get for the bi-quaternion potential density and volume current density: 

 ( )A iJi= +⋅ ,     i A
1Ji= −

⎛ ⎞
⋅⎜ ⎟μ⎝ ⎠

  (2.22) 
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MAXWELL‘s equations for free charge und free current densities 
The following equation directly leads to Maxwell’s equations in bi-quaternion form: 

 1 i
c

* * *− ∇ = ∇ = ∇ ∇ = Δ = μ      (2.23) 

or expanded: 

 2

1 1 E 1 BE i B i B E
c t t c tc

s i s
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞μ = ∇ ⋅ − − ∇ ⋅ + ⋅ ∇× − +∇ − +∇×⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

  (2.24) 

respectively 

 
2

E Bc 0 1 ti i 1 E0 J c B BE tct

s

s

∂⎛ ⎞ ⎛ ⎞∇ ⋅ − −∇ ⋅⎜ ⎟μ ρ⎛ ⎞ ⎛ ⎞ ∂ ⎜ ⎟⎜ ⎟μ = + = +⎜ ⎟ ⎜ ⎟ ∂⎜ ⎟μ ∂⎜ ⎟ ∇× − +∇⎝ ⎠ ⎝ ⎠ ⎜ ⎟+∇×⎜ ⎟ ∂⎝ ⎠∂⎝ ⎠

  (2.25) 

Similar equations have been published by HONIG[8]. Using (2.25) we can print Maxwell’s 
equations in differential form straight forward: 
 

 B 0∇⋅ =  (2.26) 

AMPERE‘s law B E 0
t

∂
+∇× =

∂
 (2.27) 

Extended COULOMB law E
t
s∂ ρ

∇ ⋅ − =
∂ ε

 (2.28) 

Extended FARADAY law 2

1 EB J
tc

s∂
∇× − +∇ = μ

∂
 (2.29) 

 
With conservation of electric scalar potential (2.10) , the last two equations reduce to  

COULOMB‘s law Eε∇ ⋅ = ρ  (2.30) 

FARADAY‘s law 2

1 EB J
tc

∂
∇× − = μ

∂
 (2.31) 

 
 
From (2.23) we find also the relation between the electric field and current density  

 1 c
c

* *= − ∇ = −ε ∇
μ

    (2.32) 
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The wave equations of potentials and force fields 
To derive Maxwell’s equations we applied the d’Alembert operator to the electric 
potentials. This is explicitly: 

 
2 2

2 2
2 2 2 2

1 1 1 Ai A
c c t c t

i
⎛ ⎞⎛ ⎞∂ ϕ ∂

Δ = −∇ ϕ + ⋅ −∇ = μ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
   (2.33) 

This leads to the wave equations for electric potentials 

 
2

2
2 2

1
c t

∂ ϕ ρ
−∇ ϕ =

ε∂
 (2.34) 

 
2

2
2 2

1 A A J
c t

∂
−∇ = μ

∂
 (2.35) 

 
 
 
Applying the derivative to (2.23), we find 
 i i* =∇∇ = Δ μ∇    (2.36) 

and thereof 

 

( )

2 2 2
2 2 2

2 2 2 2 2 2

i E
E

1 1 1 Bs B
cc t c t c t

1 JJ i c J
t c t

s i

i

+
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂

− −∇ − ⋅ −∇ −∇ =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞∂ρ ∂⎛ ⎞μ +∇ ⋅ + ⋅μ ∇ρ+ − ∇×⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦

 

and finally the wave equations of force fields 

 
2

2
2 2

1 s J 0
tc t

s∂ ∂ρ⎛ ⎞−∇ = −μ +∇ ⋅ =⎜ ⎟∂∂ ⎝ ⎠
 (2.37) 

 
2

2 2
2 2

E
E

1 Jc
tc t

⎛ ⎞∂ ∂
−∇ = −μ ∇ρ+⎜ ⎟∂∂ ⎝ ⎠

 (2.38) 

 
2

2
2 2

1 B B J
c t

∂
−∇ = μ∇×

∂
 (2.39) 
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Bi-quaternion LORENTZ force density and LORENTZ force 
We define the bi-quaternion power- and force density with the components P [W / m3] 
and F  [N / m3] , and get 

 1 P iF
c

i≡ + ⋅  (2.40) 

Then we choose the bi-quaternion identities  

 1 di
c dt

= = − = − ∇ = −ρ ∇ = −ρ


        (2.41) 

and use the substitutions (2.10) and (2.13) to get the force density on a charge density ρ, 
which moves with velocity  in an external potential field  as 

 
2

2

P 0 v E c v B1 1i i
0 Fc c c B v E v B E v

s
s

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ρ ⋅ + ρ −ρ ⋅
= + = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ρ −ρ × ρ × +ρ + ρ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (2.42) 

We have finally 

 v B 0ρ ⋅ =  (2.43) 

 2

v E B
c
× =  (2.44) 

extended power density ( )2v E c Psρ ⋅ + =  (2.45) 

extended LORENTZ force density ( )v B E v Fsρ × + + =  (2.46) 

Notable is also J B 0⋅ =   and thereof   P⋅ =   (2.47)a, b 

 
With conservation of electric scalar potentials (2.10), above equations (2.45) and (2.46) 
reduce to 

Power density (s=0) v E Pρ ⋅ =  (2.48) 

LORENTZ force density (s=0) ( )v B E Fρ × + =  (2.49) 

 
 
For a point charge q in potential field  we find analogue to (2.40) and (2.41) 

 i dP F q q
c dt

i≡ + ⋅ = − ∇ = −


    (2.50) 

extended Power density ( )2q v E c Ps⋅ + =  (2.51) 

extended LORENTZ force ( )q v B E v Fs× + + =  (2.52) 

an wit the conservation of electric scalar potential (2.10)  

Power density (s=0) qv E P⋅ =  (2.53) 

LORENTZ force (s=0) ( )q v B E F× + =  (2.54) 
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Bi-quaternion Poynting theorem (energy flow density) 
First we define the bi-quaternion energy flow density  with the components of energy 
density w [J / m3] and energy flow density S  [Js / m4] as 

 1w S
c

i≡ + ⋅  (2.55) 

Now we consider a current density J and a potential field  (MAXWELL equations) 
caused by this current density. We find the equilibrium of both field’s force densities by 
multiplications of bi-quaternion MAXWELL equation (2.23) on both sides with ∇ . 
Then, by using (2.41) we get: 

      ( ) ( )1 1 0Δ ∇ = ∇ ⇒ Δ ∇ + =
μ μ

        (2.56) 

 
The calculation (Appendix C) shows for the scalar part: 

 ( )
2 2 2

21 E B 1 E B E E J c 0
2 t t t

s s s
⎛ ⎞∂ ∂ ∂
ε + μ +μ +∇ ⋅ × − + ⋅ + ρ =⎜ ⎟∂ ∂ ∂ μ⎝ ⎠

 (2.57) 

Now we insert the substitutions for the energy density w and the energy flow density S  

 21 1 1w E E B B
2

s⎛ ⎞
= ε ⋅ + ⋅ +⎜ ⎟μ μ⎝ ⎠

,     1S E B Es⎛ ⎞
= × −⎜ ⎟μ⎝ ⎠

 (2.58)a, b 

into (2.57) and use (2.45). Then we get the well known Poynting theorem 

 w S P 0
t

∂
+∇ ⋅ + =

∂
 (2.59) 

Or with (2.59) and (2.55) follows the expanded Poynting theorem (with s≠0) 
 c 0∇ ⋅ + ⋅ =    (2.60) 

 
Incidentally we may also write for the energy density w (1.28) 

 1w
2

*= ε ⋅   (2.61) 

 
Inserting (2.32) into (2.41), we find also 

 ( )1
c

*= = −ε ∇     (2.62) 

 
 
The imaginary vector term is (Appendix C) 

 ( ) ( ) ( ) ( )2 2 2

1 1 1E E B B E E E B E B F 0
tc c c

s s∂
∇ ⋅ + ∇× × + ∇× × − × + +∇× − =

∂
 (2.63) 

There the first three terms correspond to the divergence of Maxwell stress tensor : 

 ( ) ( ) ( )2 2

1 1E E B B E E
c c

∇⋅ = ∇ ⋅ + ∇× × + ∇× ×  (2.64) 

followed by the partial time derivative of expanded Poynting vector. 
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Bi-quaternion Lorentz transformation of electromagnetic fields 
In (2.14) we have used the relation  
 0= ρ = γρ    (2.65) 

In relativistic case we have explicitly for the transformation of charge and current densi-
ties 

 0ρ = γρ    und    0 0v J J vρ = = γ = γρ  (2.66) 

 
 
The Lorentz transformation of bi-quaternion potentials  is: 

 2

u A u AiA iA i u
c c c c cc

*i i
⎡ ⎤⎛ ⎞′ϕ γ ϕ ⋅ ϕ ×′ ′+ ⋅ = = = γ − + ⋅ − −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

    (2.67) 

and with comparison of coefficients we find: 

 ( )A u′ϕ = γ ϕ− ⋅  (2.68) 

 2A A u
c
ϕ⎛ ⎞′ = γ −⎜ ⎟

⎝ ⎠
 (2.69) 

 
 
The  Lorentz transformation of bi-quaternion current density  is: 

 ( ) u J u Jc iJ c iJ c iJ i u
c c c c

* *' i ' i i
⎡ ⎤⎛ ⎞γ γ ⋅ ×′ρ + ⋅ = = = ρ+ ⋅ = γ ρ − + ⋅ − ρ −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

     

and again with comparison of coefficients we find: 

 2

J u
c

⎛ ⎞⋅′ρ = γ ρ −⎜ ⎟
⎝ ⎠

 (2.70) 

 ( )J J u′ = γ −ρ  (2.71) 

 
For the Lorentz transformation of force fields E  and B  we have: 

 
( ) 2

c
u uc iE cB c E iu B iE iu B cB E i u
c c

*

s i s i s

γ′ =

⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′+ ⋅ + = γ − ⋅ + ⋅ + ⋅ + × + − × −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

  

 

and thereof 

 2

E u
c

s s
⎛ ⎞⋅′ = γ −⎜ ⎟
⎝ ⎠

 (2.72) 

 ( )E E u B us′ = γ + × −  (2.73) 

 2

uB B E
c

⎛ ⎞′ = γ − ×⎜ ⎟
⎝ ⎠

 (2.74) 
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Dynamics & Kinematics 

The bi-quaternion gravity field 
In this section we describe the dynamics of moving bodies analogue to previous formulas 
used for electrodynamics. As a starting point we need two fields, whereof the deeper 
meaning shall not be discussed now: 

U (X): Velocity field (analogue to A ) [m / s] 
 φ (X): Gravity potential (analogue to ϕ) [m2 / s2] 

 
These fields form the kinematic bi-quaternion potential field (velocity field) 

 iU
c

iφ
= + ⋅  (3.1) 

Then we have for the derivation of  

 ( )2

1 i UU U
t c tc

i∇ =
⎡ ⎤⎛ ⎞∂φ ∂⎛ ⎞+∇ ⋅ + ⋅ ∇φ+ − ∇×⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦

  (3.2) 

 
Defining the following substitutions: 

 m 2

1 U
tc

s = −
∂φ

−∇ ⋅
∂

,        mF UG
m t

∂
= = −∇φ−

∂
,     T U= ∇×  (3.3)a, b, c 

with 
F m: Force on a point mass m (test mass) [N] = [kg m / s2] 
G : Gravity field, acceleration field [m / s2] 
T : Rotations field, dynamic induction [1 / s] 

 
whereas the gravity field consists of two (established) parts: 

 GG = −∇φ           and            T
UG
t

∂
= −

∂
 (3.4)a, b 

G G: Gravity field of a gravity potential [m / s2] 
G T: Acceleration field, induced gravity field [m / s2] 

 
Then we find for the bi-quaternion gravity field  [m / s2] on a test mass m  

 ( )mc c iG c Ts i∇ = += − + ⋅   (3.5) 

and for the dynamic induction  [s-1] we have: 

 m
1

i i i GT
c

s i∇ = −
⎛ ⎞= − + ⋅⎜ ⎟
⎝ ⎠

   (3.6) 

Thereof we find 

 ic= −  ,       i
c

=   (3.7) 

The scalar term of (3.2) is – if nullified – again a conservation law: 

 ( )m 2

10 U 0 U 0
t tc

s =
∂φ ∂φ

− ∇⋅ = → +∇⋅ = → +∇⋅ φ =
∂ ∂

  (3.8) 
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Bi-quaternion momentum density 
Analogue to charge- and current density of electrodynamics we define the bi-quaternion 
mass- and momentum density m with the components m [kg / m3] and mp [kg / sm2]: 

 m mc m ipi≡ + ⋅  (3.9) 

or with 

 m 0p mv m v= = γ  (3.10) 

also 
 m m mc imvi≡ = + ⋅   (3.11) 

Then we have for the derivation of the momentum density [kg / sm3]: 

 ( )m
m m m

pm 1p i c m p
t c t

i∇ =
⎡ ∂ ⎤⎛ ⎞∂

+∇ ⋅ + ⋅ ∇ + − ∇×⎢ ⎥⎜ ⎟
∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

  (3.12) 

Within scalar part we identify the continuity equation of mass density and the conserva-
tion law of mass respectively. 

 m
m p 0
t

∂
+∇ ⋅ =

∂
 

 
Instead of mass density cm we could also use the energy density wm/c. Equation (3.9) 
changes then to: 

 m
m m

w
ip

c
i= + ⋅  (3.13) 

 
 
Using point masses instead of mass densities we also have 

 m
m

W ip
c

i= + ⋅  (3.14) 

The relativistic momentum m of a point mass m with bi-quaternion velocity  is  

 m 0m= γ   (3.15) 

This contemplation is analogue to (3.59) and corresponds with the total self-energy or 
self-momentum of a mass (or charge, respectively). From (3.15) we find immediately 

 
4

2 2 2
m 0 0 0 0 2

1 3 vW m c m c m v m
2 8 c

= γ ≅ + + +…  (3.16) 
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Field equations of dynamics 
Equipped with the bi-quaternion momentum density m and the potential field  we 
could start again analogue to electrodynamics (2.23): 

 m2

1 gi
c c

* * *− ∇ = ∇ = ∇ ∇ = Δ =      (3.17) 

where g is the gravity constant with 6.67·10-11 [N m2 / kg2]. From (3.17) we have 
 

m
m m2 2

g 1 1 G 1 TG i T i T G
c t t c tc c

s
i s
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞= ∇ ⋅ − − ∇ ⋅ + ⋅ ∇× − +∇ − +∇×⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

  (3.18) 

 
respectively 

 

m

m2 2
m2

G T0cmg g 1 ti i 1 Gp0 cc c T TG tct

s

s

∂⎛ ⎞ ⎛ ⎞∇ ⋅ − −∇ ⋅⎜ ⎟⎡ ⎤⎛ ⎞⎛ ⎞ ∂ ⎜ ⎟⎜ ⎟= + = +⎢ ⎥⎜ ⎟⎜ ⎟ ∂⎜ ⎟⎜ ⎟∂ ∇× − +∇⎝ ⎠⎢ ⎥⎝ ⎠ ⎜ ⎟⎣ ⎦ +∇×⎜ ⎟ ∂⎝ ⎠∂⎝ ⎠

  (3.19) 

 
Thereof we extract the „Maxwell“ equations of dynamics: 

 T 0∇⋅ =  (3.20) 

„AMPERE‘s law“ T G 0
t

∂
+∇× =

∂
 (3.21) 

Expanded „COULOMB law“ mG gm
t
s∂

∇⋅ − =
∂

 (3.22) 

Expanded „FARADAY law“ m2 2

1 G gT p
tc c

s∂
∇× − +∇ =

∂
 (3.23) 

 
With the conservation of gravity potential (3.8), the last two equations reduce to 

„COULOMB‘s law“ 1 G m
g
∇⋅ =  (3.24) 

„FARADAY‘s law“ 2 2

1 G gT p
tc c

∂
∇× − =

∂
 (3.25) 

 
 
From (3.17) we also find the relation between the gravity field  and the momentum 
density m   

 m
c
g

*= − ∇   (3.26) 
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The wave equations of the potentials 
To derive above equations we implicitly applied the d’Alembert operator to the poten-
tials. Explicitly this is: 

 
2 2

2 2
m2 2 2 2 2

1 1 1 U gi U
c c t c t c

i
⎛ ⎞⎛ ⎞∂ φ ∂

Δ = −∇ φ + ⋅ −∇ =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
   (3.27) 

Thereof follows the wave equations of the potentials 

 
2

2
2 2

1 gm
c t

∂ φ
−∇ φ =

∂
 (3.28) 

 
2

2
2 2 2

1 U gU p
c t c

∂
−∇ =

∂
 (3.29) 

 
 
 
With the derivation of (3.17) we find 

 m2

gi i
c

* =∇∇ = Δ ∇    (3.30) 

and thereof 

 

( )

2 2 2
2 2 2m

m2 2 2 2 2 2

2 2

i G
G

1 1 1 T T
cc t c t c t

pg m g 1p i c m p
t c tc c

s
s i

i

+
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂

− −∇ − ⋅ −∇ −∇ =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ∂ ⎤⎛ ⎞∂⎛ ⎞+∇ ⋅ + ⋅ ∇ + − ∇×⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦

 

And finally we have the wave equations for the force fields 

 
2

2m
m2 2 2

1 g m p 0
tc t c

s
s

∂ ∂⎛ ⎞−∇ = − +∇ ⋅ =⎜ ⎟∂∂ ⎝ ⎠
 (3.31) 

 
2

2
2 2 2

G
G

p1 1g m
tc t c

∂⎛ ⎞∂
−∇ = − ∇ +⎜ ⎟

∂∂ ⎝ ⎠
 (3.32) 

 
2

2
2 2 2

1 T gT p
c t c

∂
−∇ = ∇×

∂
 (3.33) 

Analogue to electrodynamics without charge- and current densities, these equations des-
cribe a transverse‚ gravity wave in the absence of mass densities, having the propagation 
velocity equal to the speed of light c. 

 
2

2
2 2

G
G

1 0
c t

∂
−∇ =

∂
 (3.34) 

 
2

2
2 2

1 T T 0
c t

∂
−∇ =

∂
 (3.35) 
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The bi-quaternion force density and inertia (reaction force) 
With (2.40) we use again the bi-quaternion power- and force density  with the compo-
nents P [W / m3] and F  [N / m3]  

 1 P iF
c

i≡ + ⋅   

and choose the bi-quaternion equation  

 m m m
1 di m m
c dt

= = − = − ∇ = − ∇ = −


          (3.36) 

Using the substitutions (3.8) and (3.10), we find the force density on a mass density m, 
which is moving with velocity  in an external potential field  according to 

 
2

m

2
m

mv TP 0 mv G mc1 1i i
0 Fc c mv T mG mvmc T mv G

s

s

⎛ ⎞⎛ ⎞ − ⋅⋅ +⎛ ⎞ ⎛ ⎞
= + = + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟× + +− ×⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (3.37) 

and finally 

 mv T 0⋅ =  (3.38) 

 2

v G T
c
× =  (3.39) 

Expanded power density ( )2
mm v G c Ps⋅ + =  (3.40) 

Expanded reaction force density ( )mm v T G v Fs× + + =  (3.41) 

Notable is also p T 0⋅ =    and thus    m P⋅ =   (3.42)a, b 

 
With conservation of gravity potential (3.8), equations (3.40) and (3.41) reduce to  

Power density (sm=0) mv G P⋅ =  (3.43) 

Reaction force density (sm=0) ( )m v T G F× + =  (3.44) 

 
 
Analogue to (2.40) and (3.36) we find for a point mass m in a potential field  

 i dP F m m
c dt

i≡ + ⋅ = − ∇ = −


    (3.45) 

Expanded power  ( )2
mm v G c Ps⋅ + =  (3.46) 

Expanded reaction force ( )mm v T G v Fs× + + =  (3.47) 

and with the conservation of gravity potential (3.8) this reduces to 

Power (sm=0) mv G P⋅ =  (3.48) 

Reaktions-Kraft (sm=0) ( )m v T G F× + =  (3.49) 
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Bi-quaternion acceleration and inertia (action force) 
The action force to accelerate a point mass m is opposite to inertia force (reaction force) 
(3.45). The external velocity field  is replaced by the coordinate velocity  and we 
have the equation 

 m
dm m m
dt

= = = ∇


     (3.50) 

The calculation of  yields: 

 
( )

( ) ( )
2

2

v v v vve 0 tcc i c i v0 a v v v v v vv ttc

∂⎛ ⎞ ⎛ ⎞− ⋅ ∇×∇ ⋅ + ⋅⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎜ ⎟∂⎜ ⎟= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂∂⎜ ⎟⎝ ⎠ ⎝ ⎠ + ∇ ⋅ − × ∇×⎜ ⎟∇× − ×⎜ ⎟ ∂⎝ ⎠∂⎝ ⎠

  (3.51) 

 
and thereof 

 ( )v v 0⋅ ∇× =  (3.52) 

 2

v v v
tc

∂
× = ∇×
∂

 (3.53) 

Flow rate e [s-1]: 2

v vv e
tc

∂
∇ ⋅ + ⋅ =

∂
 (3.54) 

Acceleration [m / s2]: ( ) ( )v v v v v a
t

∂
+ ∇ ⋅ − × ∇× =

∂
 (3.55)a 

or ( )
2v v v v a

t 2
⎛ ⎞∂

+∇ − × ∇× =⎜ ⎟∂ ⎝ ⎠
 (3.55)b 

or ( )v v v v v a
t

∂
+ ⋅∇ − ×∇ × =

∂
 (3.55)c 

Equation (3.55)b is known from fluid mechanics. Additionally we have newly found an 
equation for the flow rate e with the unit s-1. 

 
To find the force equations, we multiply (3.49) with a point mass m or a mass density 

m. For example we find for a point mass m 

Action force: F ma=  (3.56) 

Power: 2 2
2

v vP mc e mc v
tc

∂⎛ ⎞= = ∇ ⋅ + ⋅⎜ ⎟∂⎝ ⎠
 (3.57) 
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Bi-quaternion self-energy density and mass density 
Calculating the scalar product between bi-quaternion current density  and of associated 
bi-quaternion potential field , we find the self-energy density  as: 

 2c
ϕ

= ⋅ = ρ ⋅      (3.58) 

With the bi-quaternion momentum density  of a mass density m: 

 m=   (3.59) 

we find 
 = ⋅ = ⋅      (3.60) 

Thereof and with (2.34) follows for a mass density and for static case (∂ϕ/∂t=0) only: 

 2 2m
c c
ϕ ε

= ρ = − ϕΔϕ  (3.61) 

The integration over the whole volume V is 

 ( )2
2 2 2m m dV dV dV E E dV

c c c
ε ε ε

= = − ϕΔϕ = ∇ϕ = ⋅∫ ∫ ∫ ∫  (3.62) 

For a spherical potential field this becomes 

 
2 2

2 2 2
mmr

q 1 q 1m dr
r4 c r 4 c

∞

= =
πε πε∫  (3.63) 

 
With the elementary charge q=1.602·10-19 [As] and the electron mass me=9.11·10-31 [kg] 
we find for example the following value for the electron radius re: 

 [ ]
2

15
e 2

e

q 1r 2 818 10 m
m4 c

. −= = ⋅
πε

 (3.64) 

 
From (3.62) and with ∂ϕ/∂t=0 we also find the relation 

 ( )2c m dV E E dV= ε ⋅∫ ∫  (3.65) 
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Summary 
All important basic equations of electrodynamics can be cast in a very compact form by 
using bi-quaternions. Beside the known text-book equations we find some possible 
expansions to Maxwell’s equations and other fundamental equations of electrodynamics. 
This expanded equations reduce to classical form if the LORENTZ condition s=0 is 
applied.   

An interpretation of the scalar field s beyond the interpretation as pure LORENTZ con-
dition shall be discussed at another place. 

Beside electrodynamics, bi-quaternions are also very useful for application in other 
disciplines of physics as for example in mechanics (dynamics) or – as only indicated in  
the appendix – in quantum mechanics. 
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Appendix A 
We have a bi-quaternion field  = (), where  is a function of space and time, and 
we have   = ((t, x1, x2, x3)). The total time derivation of  is then: 

 ( )d d dt d dt d
t t

⎛ ⎞
⎜ ⎟
⎝ ⎠

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= = + = − +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

x x
x x

         
 

    
  (A.1) 

with 

 ∇=
∂
∂
X

    and    ∇=
∂
∂
x

  (A.2) 

Now we expand the operator in first term of (A.1) and get 

 dt ic dt
t t

i
∂ ∂ ∂

= + ⋅∇
∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠




  (A.3) 

The operator in second term of (A.1) has the following expansion: 

 

{ }
( )[ ]

( ){ }

1 2 3 1 1 2 2 3 3

1 2 3

1 2 3
1 2 3

1 2 3

1 2 3

d d

e e e ct i x e x e x e
x x x

dx dx dx
x x x

1
idx idx idx i

c t x x x

i
dx

c t

i j k

i

i i

i

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= ⋅ + +

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= ⋅ + + + ⋅ + +

∂ ∂ ∂ ∂

∂
= ⋅

∂

⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
⎡ ⎤⎛ ⎞

⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

x x
x x



 

  



  





( )( )idx i

i
dx dx dx

c t

i i

i

+ ⋅ ⋅ ∇

∂
= ⋅∇ + ⋅ − ×∇

∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

   

and finally 

 id d d d
c t

i∂ ∂ ∂⎛ ⎞= ⋅∇ + ⋅ − ×∇⎜ ⎟∂ ∂ ∂⎝ ⎠
x x x x

x



 (A.4) 

The addition of (A.3) and (A.4) and the afterwards division by dt gives the total time 
differential in bi-quaternion form: 

 ( )d
i c

dt t c t
i

∂ ∂
= + ⋅∇ + ⋅ ∇ + − ×∇

∂ ∂

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

v
v v   (A.5) 

The special multiplication symbol ° indicates, that on applying this operator the scalar 
multiplication must be used for the scalar part and the cross product must be used for the 
vector part. 
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Appendix B 
We start with the transformation: 

 ( )v1 i ct ix
c c

* i iγ ⎛ ⎞′ = = γ − ⋅ + ⋅⎜ ⎟
⎝ ⎠

    (B.1) 

and derive 

 ( ) v x v xct ix ct c ix ivt
c c

i i⎡ ⋅ × ⎤⎛ ⎞ ⎛ ⎞′ ′+ ⋅ = γ − + ⋅ − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (B.2) 

With comparison of coefficients we find: 

 v xct ct
c
⋅⎛ ⎞′ = γ −⎜ ⎟

⎝ ⎠
 (B.3) 

 ( )x x vt′ = γ −  (B.4) 

The first equation (B.3) is well-known and corresponds to Lorentz transformation of time 
in vector form. The following derivation shows, that this is also valid for equation (B.4): 

 

[ ]
( )

( )

2

2

v x vt v x v t

1 v x v x v t

v v xv x vt 1
v v

⋅ γ − = γ ⋅ − γ

= γ − ⋅ + ⋅ − γ

⋅⎡ ⎤= ⋅ − γ + γ −⎢ ⎥⎣ ⎦

 

In many text-books the last term in square brackets is described as Lorentz transforma-
tion of position vector x . By comparison of both terms in square brackets we find the 
identity 

 ( ) ( ) v v xx vt x vt 1
v v

⋅
γ − = − γ + γ −  (B.5) 

This proves, that (B.4) is indeed the Lorentz transformation of x . If v is collinear to x , 
both equations reduce to the well-known one-dimensional transformation equations 

 2

vxt t
c

⎛ ⎞′ = γ −⎜ ⎟
⎝ ⎠

 (B.6) 

 ( )x x vt′ = γ −  (B.7) 
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Appendix C 
We start with  

 ( ) ( )1 0Δ ∇ = ∇ ⇒ − Δ ∇ −μ =
μ

        (C.1) 

Therein we have the terms: 

 i
E

1 B
c c

s i +
⎛ ⎞−∇ = = + ⋅⎜ ⎟
⎝ ⎠

   (C.2) 

 2

1 1 E 1 BE i B i B E
c t t c tc

s i s
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞Δ = ∇ ⋅ − − ∇ ⋅ + ⋅ ∇× − +∇ − +∇×⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

  (C.3) 

 ( ) ( )2 21 1v E c iv B iv B iE iv c B v E
c c

s i s⎧ ⎫⎡ ⎤−μ = −μρ ⋅ + − ⋅ + ⋅ × + + + − ×⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
  (C.4) 

Equations (C.4) is already the second term in (C.1). Therefore we need to calculate the 
first term only: 

 ( )
2

i
E

1 E i B
c t

B1 E 1 Bi B E c
t c tc

s
s

i
i s

+

⎧ ∂ ⎫⎛ ⎞∇ ⋅ − − ∇ ⋅ + +⎜ ⎟⎪ ⎪ ⎧ ⎫∂⎝ ⎠⎪ ⎪ ⎪ ⎪− Δ ∇ = ⎨ ⎬ ⎨ ⎬⎛ ⎞⎡ ⎤ ⋅⎛ ⎞ ⎛ ⎞∂ ∂ ⎜ ⎟⎪ ⎪ ⎪ ⎪⋅ ∇× − +∇ − +∇×⎢ ⎥ ⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎩ ⎭⎪ ⎪∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

   (C.5) 

 
Imaginary scalar term 
We find for the imaginary scalar term of (C.5): 

( ) ( ) ( )2 2 2
0

0 0 0E B

0

1 1 B 1 EB B B E E E B B B B 0
t tc c c

` ` s

s s
=

=−∇× =∇× +∇

∂ ∂
− ∇ ⋅ − ⋅ ∇× + ⋅ ∇× + ⋅ + ⋅ − ⋅∇ = ⋅ ∇× =

∂ ∂
 

Together with the imaginary scalar term of (C.4) we get: -μρv⋅B = -μJ⋅B in (C.1): 

  J B 0μ ⋅ =  (C.6) 

  
Real scalar term 
Calculating the real scalar term of (C.5) we find 

 ( ) ( ) ( )2

1 1 E BE E B E E B B E
c t t tc

ss s s
⎧ ⎫∂ ∂ ∂

∇ ⋅ − + ⋅ ∇× − ⋅ + ⋅∇ + ⋅ + ⋅ ∇×⎨ ⎬
∂ ∂ ∂⎩ ⎭

 (C.7) 

And expanded: 

 
( ) ( ) ( )

( ) ( )
2

1 E BE E B E E B B E1 t t tc
c 2E B 2E B

ss s s
⎧ ⎫∂ ∂ ∂

∇ ⋅ − + ⋅ ∇× − ⋅ + ⋅∇ + ⋅ + ⋅ ∇×⎪ ⎪∂ ∂ ∂⎨ ⎬
⎪ ⎪+ ⋅ ∇× − ⋅ ∇×⎩ ⎭

 (C.8) 

Using FARADAY’s law 

 2

1 EB J
tc

s∂
∇× = +μ −∇

∂
  

we get 
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( ) ( ) ( )

( )

2

2

1 E BE E B E E B B E
1 t t tc
c 2 EE 2 E J 2E 2E B

tc

ss s s

s

⎧ ⎫∂ ∂ ∂
∇ ⋅ − + ⋅ ∇× − ⋅ + ⋅∇ + ⋅ + ⋅ ∇×⎪ ⎪⎪ ⎪∂ ∂ ∂

⎨ ⎬
∂⎪ ⎪+ ⋅ + μ ⋅ − ⋅∇ − ⋅ ∇×⎪ ⎪∂⎩ ⎭

 (C.9) 

or 

 ( ) ( )
( )

( )2

E B

1 1 E BE B B E E B 2 E J E E
c t t tc

ss s s

∇⋅ ×

⎧ ⎫
⎪ ⎪∂ ∂ ∂

⋅ + ⋅ + ⋅ ∇× − ⋅ ∇× + μ ⋅ − ⋅∇ + ∇ ⋅ −⎨ ⎬
∂ ∂ ∂⎪ ⎪

⎩ ⎭

 

Then, with 

 E
t
sρ ∂

∇⋅ = +
ε ∂

 

follows 

 ( )2

1 1 E BE B E B 2 E J E
c t tc

s s
⎧ ⎫∂ ∂ ρ

⋅ + ⋅ +∇ ⋅ × + μ ⋅ − ⋅∇ +⎨ ⎬
∂ ∂ ε⎩ ⎭

 (C.10) 

Inserting the real scalar part of (C.4):  

 ( ){ }21 iv E c J E
c c

s s ρ⎧ ⎫μρ ⋅ + = μ ⋅ +⎨ ⎬ε⎩ ⎭
  

and (C.9) in (C.1), we get finally Poynting’s theorem in different notations 

 ( ) ( )2

1 E BE B E B E J 0
t tc

s∂ ∂
⋅ + ⋅ +∇ ⋅ × + ⋅ μ −∇ =
∂ ∂

 (C.11) 

 ( ) ( )
2 2

2

1 1 E B E B E J 0
2 t tc

s
⎛ ⎞∂ ∂

+ +∇ ⋅ × + ⋅ μ −∇ =⎜ ⎟∂ ∂⎝ ⎠
 (C.12) 

 
2 21 E B B 1E E J 0

2 t t
s

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ε ∂
+ +∇ ⋅ × + ⋅ − ∇ =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ μ μ μ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (C.13) 

 ( )
2 21 E H 1E H E J 0

2 t t
s

⎛ ⎞ ⎛ ⎞∂ ∂
ε + μ +∇ ⋅ × + ⋅ − ∇ =⎜ ⎟ ⎜ ⎟∂ ∂ μ⎝ ⎠⎝ ⎠

 (C.14) 

Inserting Maxwell’s equation 

 ( ) ( )0 E E E
t t
s ss s s s s∂ ρ ∂ ρ⎛ ⎞= ∇ ⋅ − − = ∇ ⋅ − ∇ ⋅ − −⎜ ⎟∂ ε ∂ ε⎝ ⎠

 

in (C.12), we further find 

 ( )
2 2 2

2

1 1 E B E B E E J 0
2 t t tc

s s s
⎛ ⎞∂ ∂ ∂ ρ

+ + +∇ ⋅ × − + ⋅ + =⎜ ⎟∂ ∂ ∂ ε⎝ ⎠
 (C.15) 
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Imaginary vector term 
We find for the imaginary vector term of (C.5): 

 
( ) ( ) ( )

( ) ( )

2 2

2 2 2 2

E 1 EB B B B B B
t tc c

1 B 1 1 1B E E E E E E
t tc c c c

ss s s

ss

∂ ∂
− ∇ ⋅ + ∇× − + ∇ + ∇× × − ×

∂ ∂
∂ ∂

+∇ × − × − ∇× × − + ∇ ⋅
∂ ∂

 (C.16) 

We take the bi-quaternion MAXWELL equations 

B 0∇⋅ =     und    2

1 EB J
tc

s∂
∇× = +μ −∇

∂
 

to reduce (C.16) to 

 ( ) ( ) ( )2 2 2 2 2

1 E 1 B 1 1 1J B B B B E E E E E E
t t tc c c c c

ss s∂ ∂ ∂
μ + ∇× × − × +∇ × − × − ∇× × − + ∇ ⋅

∂ ∂ ∂
 

or 

 ( ) ( ) ( )2 2 2 2

1 1 1 E B 1E E B B E E B E E B J
t t tc c c c

s s s
⎡ ⎤∂ ∂ ∂

∇ ⋅ + ∇× × − ∇× × − × + × − +∇ × + μ⎢ ⎥∂ ∂ ∂⎣ ⎦
 

To change the sign of third term, we add the last term 

( ) ( ) ( ) ( )
2

2 2 2 2 2 2

1
c

1 1 1 E 1 B 1 2E E B B E E B E E B J E E
t t tc c c c c c

`

s s s

∇

∂ ∂ ∂
∇ ⋅ + ∇× × + ∇× × − × − × − +∇ × + μ − ∇× ×

∂ ∂ ∂
T

 

use AMPERE’s law BE
t

∂
∇× = −

∂
 

and get 
 ( ) ( ) ( )

2

2 2 2 2 2

1
c

1 1 1 E 1 B 1E E B B E E B E E B J
t t tc c c c c

`

s s s

∇

∂ ∂ ∂
∇ ⋅ + ∇× × + ∇× × − × + × − +∇ × + μ

∂ ∂ ∂
T

 

Therof we have 
 ( ) ( ) ( )

( )2

2 2 2 2

1
E Bc t

1 1 1 E B 1E E B B E E B E E B J
t t tc c c c

s s s

∂∇ ×
∂

⎡ ⎤∂ ∂ ∂
∇⋅ + ∇× × + ∇× × − × + × − +∇ × + μ⎢ ⎥∂ ∂ ∂⎣ ⎦

T

 (C.17) 

With two vector identities and with the FARADAY equation, multiplied by s 

( ) EE E
t t t
s s s∂ ∂ ∂

= −
∂ ∂ ∂

,  ( ) ( ) ( )B B Bs s s∇ × = ∇× − ∇× , 2

1 E0 B J
tc

s
⎛ ⎞∂

= −∇× +μ⎜ ⎟∂⎝ ⎠
 

equations (C.17) becomes 

 ( ) ( ) ( ) ( )2 2 2

1 1 1E E B B E E E B E B
tc c c

s s∂
∇ ⋅ + ∇× × + ∇× × − × + +∇×

∂
 (C.18) 

Inserting (C.18) and the imaginary vector term of (C.4) 

 ( )E v B v E J B Ji s i s⎡ ⎤ ⎡ ⎤μρ ⋅ + × + = μ ⋅ ρ + × +⎣ ⎦⎣ ⎦   

into (C.1), we finally get 

 
( ) ( ) ( )

( )
2 2

2

1 1E E B B E E
c c

1 E B E B E J B J
tc

s s s

∇⋅ + ∇× × + ∇× ×

∂
− × + +∇× = μρ +μ × +μ

∂

 (C.19) 
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Appendix D: Quantum mechanics 

Relativistic wave equation 
In 1937 CONWAY[3] has shown a possible notation for the relativistic wave equation, if 
the Hamilton‘ian units are used as pre- and post factors in his formulas. In this section we 
derive the relativistic wave equation with the bi-quaternion notation used already in 
previous chapters. We start with the momentum law: 
 m m=   (4.1) 

and with the definition of total energy of a mass 
 E c≡   (4.2) 

we can derive EINSTEIN‘s formula by using (1.24) with k = 1..3: 

 2 2 4 2 2
k

k
E m c c p= + ∑  (4.3) 

Until this point we have used a scalar value representing the energy, which for example 
takes a constant value for a resting body. But quantum physics (experiments) have 
shown, that this is not quite correct but that energy is merely an oscillating phenomenon 
and therefore must satisfy a wave equation. Therefore equation (4.3) can be seen as a 
‚static average‘ equation of a collection of many „energy oscillators“. But for a single 
particle the oscillatory behavior of its energy can clearly be observed. 

Equation (4.3) is already in a quadratic form as this is the case also for the differential 
operators of a wave equation. To find the wave equation behind the energy equation, we 
use the established substitutions for the differentials as known in quantum mechanics: 

 E
ic t

∂
→ −

∂
      und      k

k

p
i x

∂
→

∂
 , (4.4)a, b 

where  is PLANCK‘s constant divided by 2π. Now this differentials must be applied to a 
new, unknown function. This is nothing else than the (dimensionless) wave function Ψ. 
This wave function is again a bi-quaternion: 

 0 kiiψ + ⋅ ψΨ =  (4.5) 

By inserting (4.5) into (4.3) we get directly DIRAC’s relativistic wave equation: 

 
2 2

2 2 2

1 m c 0
c t

∂
Δ + =

∂
Ψ
− Ψ Ψ  (4.6) 

 

Particle without external potential fields 
DIRAC has solved the energy equation (4.3) 

 2 2 2
k

k

E c m c p= ± +∑  (4.7) 

by taking the square root with the introduction of 4x4 matrixes. On the other side equa-
tion (4.2) offers an other possible derivation without taking a square root, if directly 
taking the quaternion momentum. But the sign of the quaternion momentum should not 
change. This can be achieved with a modification of equation (4.2): 

 c≡ ±         then it is   E c= = ±   (4.8) 
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The two possible sign for the energy state in (4.7) and (4.8) has motivated DIRAC to 
postulate the existence of anti-particles – especially the positron. By inserting of the 
substitutions (4.4) into (4.8) another DIRAC equation ca be obtained: 

 
1 2 3

1 mc 0
x x x c t

i j k
⎛ ⎞∂ ∂ ∂ ∂

+ + + − =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

Ψ Ψ Ψ Ψ
Ψ  , (4.9) 

On a first glance this equation differs form the original DIRAC equation because no 
matrixes are used. But the HAMILTON‘ian units can also be written as matrixes (see 
Appendix E). The multiplication of (4.9) with this HAMILTON’ian matrixes gives the 
following equation system: 

 

0 31 2
0

1 2 3

0 31 2
1

1 2 3

3 02 1
2

1 2 3

3 02 1
3

1 2 3

mc 0
c t i x x x

mc i 0
c t x x x

mc i 0
c t x x x

mc i 0
c t x x x

⎛ ⎞∂ψ ∂ψ∂ψ ∂ψ
− ψ − + + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ψ ∂ψ∂ψ ∂ψ
− ψ + − + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ψ ∂ψ∂ψ ∂ψ
− ψ + + − =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ψ ∂ψ∂ψ ∂ψ
− ψ − − − =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 , (4.10) 

This system contains four equations for a particle without external fields as originally 
proposed by DIRAC. Now, in an analogue way the equation for a particle within external 
fields can be described. 

 

Particle within external potential field 
The momentum on a charged particle changes with an external potential field. If the 
momentum of an external field on a charged particle q is defined as 

 q q= −   (4.11) 

then it follows for its energy 

 q qE c cq≡ = −   (4.12) 

and 
 q cq= ∓  (4.13) 

The total energy is then 

 ( )qc q= ±  ∓  (4.14) 

Again the extended DIRAC equation follows with the substitution of energy and momen-
tum to: 

1 2 3
1 2 3

1qA qA qA mc q 0
x x x c t c

i j k
⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ϕ⎪ ⎪ ⎛ ⎞− + − + − + − + =⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

Ψ Ψ   (4.15) 

Again quaternions can be used instead of matrixes. 
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Appendix E: Matrices in quaternion form 
According Arthur CAYLEY, complex numbers can be expressed with matrices: 

 
a

a ib
b
⎛ ⎞

+ = ⎜ ⎟
⎝ ⎠

     with     
0 1

i
1 0

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (4.16) 

Example: 

 2 0 1 0 1 1 0
i ii 1

1 0 1 0 0 1
− − −⎛ ⎞⎛ ⎞ ⎛ ⎞

= = = = −⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠
 (4.17) 

The HAMILTON‘ian units of a quaternion build together with the numbers 1 and –1 a non 
ABEL‘ian group of eighth order. Its first four positive elements are: 

 
i 0
0 i

i ⎛ ⎞
= ⎜ ⎟−⎝ ⎠

       
0 1
1 0

j ⎛ ⎞
= ⎜ ⎟−⎝ ⎠

       
0 i
i 0

k ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

      
1 0

1
0 1
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (4.18) 

Replacing the imaginary unit i with the corresponding matrix (4.16) gives: 

 

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

-

i

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

   

0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0

j

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

 

 

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

k

−⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

   

1 0 0 0
0 1 0 0

1
0 0 1 0
0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.19) 

The square of this matrixes always return the value –1 as requested by the definition of 
the HAMILTON‘ian unit vectors (1.2). 
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