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The paper discusses in detail the fundamental assumptions that are necessary for the derivation of special 

relativity theory and in particular for the derivation of Lorentz coordinate transformation. It is shown that the 
usual postulate of the constancy of speed of light is not needed. This is a generalization that is useful for study-
ing the space-times with gravitational fields present in them, including the space-time of the Universe, since it 
is well known that the gravitational potential affects not only the clock rates but also the speed of light. 

 

1. Introduction 
There have been many books published since 1905 when 

Einstein introduced his Special Relativity Theory (SRT) [1] with 
various explanations and derivations that are attempting to clari-
fy the concept and teach it to interested scientist. In this paper 
SRT will be derived from the point of view of fundamental laws 
of physic that are believed to be firmly established and undisput-
able rather than using the standard methods that are typically 
taught in courses on the relativity theory. The approach chosen 
in this paper will thus use more practical and direct path that can 
justify the theory more clearly. It will be accepted that the theory 
is correct, since it has been verified by many experiments, so it is 
only the interpretation that is sometimes not clear and creates 
confusion. To make this point the article will rely on the thought 
experiments that are not often found in the standard text books. 
In any case the motivation for this work originates in the author’s 
desire for more clarification in SRT derivation and in strengthen-
ing the conviction that the theory is correct including some subtle 
points that the author wants to share with the interested readers, 
in particular the elimination of the need for the postulate of the 
constancy of speed of light. 

2. The Lorentz Length Contraction 

The length contraction of moving bodies is one of the key 
conclusions of SRT. In this section this effect will be derived first 
based on the Maxwell’s theory of electromagnetic (EM) fields. In 
order to accomplish this let’s consider a setup described below in 
Fig. 1. In this drawing two insulating plates of length L and 
width W (W is perpendicular to the drawing plane) are posi-
tioned parallel to each other and charged by charge mq  and 

mq  respectively. Charge is embedded into the plates and can-

not move relative to them. The bottom plate has a small slit open-
ing in it with a fast electronic shutter that can close after n  pho-
tons have been injected into the space between the plates. The 
plate’s inner surfaces, including the shutter surface, are highly 
reflective, so that the injected photons can bounce between the 
upper plate and the closed shutter indefinitely. Since the plates 
are charged they will be attracted to each other by the electrostat-
ic force calculated from the Maxwell’s field equations according 
to the following formula: 
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where 0  is the vacuum dielectric constant. The field peripheral 

effects at the edges of the plates can be for the purposes of this 

derivation neglected.  The injected photons exert a repulsive 
force on the plates that can be calculated from the Newton iner-
tial force equation as follows: 
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The change in momentum after the photon collisions with the 
plate or the shutter is equal to: 02 /p hf c   and the time be-

tween collisions at one plate is equal to: 2 /t d c  . The final 
formula for the photon force is thus: 
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It will be further considered that the number of injected photons 
between the plates is just enough to exactly compensate for the 
attractive electrostatic force. 
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Fig. 1.  Testing setup consists of two parallel plates fabricated from 
an insulating material and charged by charge mq  and mq  re-

spectively. Bottom plate has an opening in it equipped with a fast 
electronic shutter that allows a certain number of photons to be in-
jected from the Laser Gun into the space between the plates. The 
inner surfaces of the plates and the shutter are highly reflective. 
The plate area is equal to A LW and the plate spacing is d . 

The forces will be equal and the setup balanced with the 
plates kept at the constant distance d when the following condi-
tion is satisfied: 
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where S is the famous Sommerfeld fine structure constant, c  

the vacuum speed of light, and 0 the wavelength of the injected 

photons. The photon wavelength is determined from the well 
known relation: 0 0f c  . 
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Fig. 2.  The same testing setup as in Fig. 1, but with the plates mov-

ing relative to the laboratory coordinate system. The Laser Gun, 
however, is stationary. The shutter is timed such that when pass-
ing the beam from the Laser Gun it opens and lets n  photons be 

injected between the plates. The photons are injected under angle 
 so that their drift speed matches the plate’s velocity v . 

Let’s consider further that the same setup is now moving rela-
tive to the laboratory observer. This is shown in a more detail in 
Fig. 2.  Since the plates are moving it is necessary to aim the laser 
gun to the opening of the shutter at a certain angle   and the 
shutter needs to also be opened with a slightly wider aperture so 
that enough photons can pass through. The drift velocity of pho-
tons between the plates is matched with the velocity of the plates 
so that the photons are again confined between the plate and the 
shutter and do not escape. Since the charged plates are moving 
the electrostatic force must be modified and the Lorentz force 
component added to it. The resulting formula for the EM force, 
as explained in more detail in the Appendix, is thus as follows: 
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Here it was assumed that the length of the plates may depend 
on velocity. There are other choices such as charge or the plate’s 
width being dependent on velocity, but the length seems the 
most natural since it is in the direction of the velocity vector. Si-
milarly as in the previous case the photon force will be derived 
from the Newton inertial force law. However, the photons must 
now travel a longer distance between the plates so their travel 

time 2 22 /t d c v    is longer and the force derived from their 
momentum change reduced by the cosine of the impact angle . 

 
2

2
cos

1p
nhf v

F
d c


   (6) 

where for the cos  it holds: 2 2cos 1 /v c   . In order to 

compensate for the reduction in the transversal momentum due 
to the impact angle and keeping the photon number the same the 
frequency needs to be increased as follows: 0 /cosf f  , since 

this would be the frequency required if the plates were stationary 
and the laser gun aimed at them at an angle. The required change 
in the photon frequency can be related to the different time rates 
in the moving and stationary coordinate systems, as will be dis-
cussed later. The final formula for the photon force is: 
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Again, to keep the forces in equilibrium and the plates at a con-
stant distance the following condition needs to be satisfied: 
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From this result it is clear that the length of the plates in the 
direction of motion must be shortened. This is the famous Lo-
rentz length contraction effect. Up to this point all the considera-
tions were made relative to the laboratory coordinate system. If 
we now associate a primed coordinate system with the moving 
plates and want to assign to a certain point along the x direction 
both the primed and unprimed coordinates it is necessary to con-
sider that the length of the measuring stick in the primed coordi-
nate system is now also contracted. The distance to the fixed 
point measured in the moving, primed, coordinate system and 
referenced to that system will therefore have to be divided by the 
contraction factor of the measuring stick and thus the following 
relation must hold: 
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This is the Lorentz coordinate transformation for the x  coor-
dinate. However, it is also necessary to understand that the ob-
server placed in the moving, primed, coordinate system does not 
actually notice any change in the object’s length or distances 
within his coordinate system when moving. This is because all 
the objects that were previously stationary and are measured by 
him are now contracted as well as his measuring stick. This also 
includes his body. The length contraction is observed only from 
the laboratory coordinate system. No change in length of moving 
objects can be internally detected. So, sometimes claims appear in 
the literature that SRT length contraction is only an illusion. This 
is not so, the Lorentz length contraction is real as derived above. 
If there were events that do not obey the causality principle, 
where the cause and effect are delayed by the propagation time 
derived from the speed of light, then the Lorentz contraction 
could be internally detectable. Experimental setups that might 
possibly be investigated for this purpose are the setups used in 
quantum entanglement experiments. However, as long as all the 
macroscopic objects at our disposal are held together by the EM 
forces, then we are stuck with the impossibility to internally 
detect the Lorentz contraction by simple length measurements 
using the measuring sticks and thus internally detect the inertial 
motion. This is one of the important axioms of SRT. 

3. Time Dilation 

The time dilation effect will be derived from the assumption 
that for the inverse transform of the distance the same formula as 
given in Eq. (9) should apply. It will be also considered that the 
speed of light in the primed coordinate system is not necessarily 
equal to the speed of light in the unprimed coordinate system 
and that a more general linear relationship / '/ 'v c v c   be-
tween the velocities is valid. It should therefore hold that: 
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By substituting for x  from Eq. (10) into Eq. (9) the results for 
the forward and inverse time transformations are: 
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There is no need to introduce any clock synchronization proce-
dures as is typically discussed in the standard derivations. From 
Eq. (9) and Eq. (12) it is then possible to recover the length con-
traction effect by differentiating Eq. (9) while keeping 't constant. 
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This is a view from the laboratory coordinate system. After 
rearrangement and including for completeness also the differen-
tials of x  with 't and t  kept constant the results become: 
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For the time differentials from Eq. (10) and Eq. (11) it follows that 
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This is the famous time dilation effect. The formulas in Eq. 
(16) can be derived directly by considering that the light bounc-
ing between the moving plates as shown in Fig. 2 represents a 
clock. The relation for the time intervals between two collisions 
observed in the laboratory coordinate system is then as follows: 
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It is also interesting to derive the inverse expressions for the time 
differential for an observer in a moving coordinate system. 
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This result follows from differentiating Eq. (12) and will be 
needed later. However, again, the observer moving with the 
clocks in the primed coordinate system will not internally notice 
any change in the time rate, since all the processes in his system 
will be slowed down in the same proportion. The time dilation 
effect is only observable from the other coordinate system not 
within the system itself. 

The formulas were derived here by using the following three 
propositions that are presumed valid: the Maxwell EM field equ-
ations including the Lorentz force equation, the photon force 
equation, and the group property of existence of an identical in-
verse transform. The crucial and questionable assumption, typi-
cally used in the traditional derivations, is the assumption of 
constancy of speed of light. As is apparent from the above deri-
vation this assumption is not necessary and its relaxation results 
only in the additional factors of '/c c or / 'c c appearing in front 
of the corresponding time transformation equations. The con-
stancy of speed of light is not satisfied in reality, since in the 
space around Earth, the Sun, any other star, or the entire Un-
iverse, the gravitational potential is not constant as is well 
known, and this affects the speed of light. This fact would limit 
the usefulness and range of applications of standard LCT. It is 
therefore important to know how LCT changes if the assumption 
of constancy of speed of light is relaxed. However, before the 
next steps in the derivation of the generalized LCT are addressed 
it is interesting to establish the metric line element of the labora-
tory coordinate system and investigate its behavior during the 
transformation to the moving coordinate system. 

For the following choice of metric, called the Minkowski 
space-time metric, it can be easily shown using Eq. (10) and Eq. 
(12) that: 

 2 2 2 2 2 2 2 2' ' ' 'ds c dt dx c dt dx ds       (19) 

As can be seen this metric line element is an invariant under 
LCT. This fact alone is giving us a certain degree of confidence 
that SRT and the Minkowski space-time are describing reality 
correctly since this metric line element signature is identical with 
the signature of a wave equation:  
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The general solutions of Eq. (20) are equal to:  n n ct x    and 

thus related to the propagation delay between cause and effect. 

4. The Group Property of LCT 

Since the Galilean Coordinate Transformations (GCT) form a 
group [2] under the simple velocity composition rule it is reason-
able to expect that the LCT should also form a group since GCT 
should be a limiting case of LCT for v c . However, it cannot 
be expected that the classical velocity addition will also hold for 
LCT. In this paragraph the LCT group characteristics will be con-
firmed and the velocity composition rule found.  

The existence of the identity element is obvious by simply 
substituting 0v   for the velocity into the transformation equa-
tions. The existence of the inverse element as a member of the 
group has already been established and used for finding the 
transform for the time coordinate. It is now only necessary to 
find whether the composition of two consecutive transformations 
belongs to the group resulting in the same transformation equa-
tions and what condition the corresponding velocities must satis-
fy. Assume we have two moving coordinate systems, primed and 
double primed, with different velocities relative to the laboratory 
coordinate system that have the following LCT transformations. 
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By eliminating x and t  from this system of equations and find-
ing expression for the double prime coordinate "x  as function of 
the single primed coordinate the result is: 

 
2 2

2 2

' " ' "
1 '

' " "" ' '
' "' " 11 1 ' "

' "

v v c v
v

c c cx x t
v vv v
c c

c c

   
  

     

 (25) 

This result is simplified by introducing the formula for composi-
tion of velocities: 

 

" '
' " '

' "' 1
' "

v v
u c c

v vc
c c


 


 (26) 

with the result: 
2 2

' ' '
"

1 ' / '

x u t
x

u c





 (27) 

Similarly, using the same velocity composition formula the trans-
formation for the time coordinate becomes: 
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The group property of LCT is therefore established without 
the necessity to postulate that the speed of light must be identical 
in moving and laboratory coordinate systems.  

It is interesting to verify the group property of LCT by yet 
another way. It is possible to consider that the laboratory coordi-
nate system was not originally at rest but was actually moving 
relative to another coordinate system with a velocity v . This 
means that for the primed and the double primed velocities ac-
cording to Eq. (26) holds: 
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Substituting these values into Eq. (26) the result becomes as fol-
lows: 
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The relative velocity of double primed coordinate system in 
reference to the single primed coordinate system does not change 
with respect to the motion status of the original laboratory coor-
dinate system. It is therefore possible to select any coordinate 
system, moving or not, as a reference and evaluate motion of 
remaining objects relative to this system with the same results. 
This is the essence of relativity. However, the fact that the inertial 
motion cannot be internally detected within the particular coor-
dinate system does not mean that there is no absolute reference 
frame. Perhaps other testing methods, not based on the inertial 
motion, can be developed to detect it. From Eq. (26) it is also im-
portant to realize that nothing can be added or subtracted from 
the speed of light. So, if it is considered that light moves in a me-
dium that facilitates its propagation, the speed of light measured 
by an observer that moves relative to this medium will still be c . 

This effect, however, disappears on rotating platforms where 
the Lorentz circumference length contraction is exactly compen-
sated by the centrifugal force and the reaction of the disc atomic 
matter to it causing the circumference length dilation. The simple 
possible elastic disc expansion, however, is not considered in 
these derivations. This result leads to the Sagnac effect where the 
standard GCT can be used for the circumference velocities addi-
tion [3]. 

Finally, an important point to notice is that the formulas con-
tain only the ratios of velocities to the local speed of light. It is 
therefore clear that time in each coordinate system cannot be 
determined without knowing the speed of light in that system. It 
thus seems that the speed is the primary physical quantity, not 
the time, and that the perception of time is determined by com-
paring the particular time measuring process speed or any sens-
ing process speed to the local speed of light. 

5. Application to Space-Times with a Gravita-
tional Field 

The fact that LCT can be obtained without the constancy of 
speed of light postulate allows now to use it in the space-times 
that have a gravitational field in them. A typical example is the 
space-time with the gravitational field of the centrally gravitating 
body. The general metric line element for this space-time is as 
follows: 

    22 2 2 2 2sintt rrds g cdt g dr g d d        (32) 

However, the coordinates used in this metric line element are 
referenced to the center of the gravitating body, so it is necessary 
to perform a transformation to apply LCT to this case. The sim-
plest way is to place an observer at a certain distance from the 
center at the coordinates 0r  and 0t  and evaluate the motion of a 

test body that falls in the radial direction relative to this observer. 
The motion of the freely falling test body in the radial direction is 
described by the Lagrangian derived from the metric: 
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The first integrals of equations of motion resulting from this 
Lagrangian are as follows: 
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where ds cd  and where the condition 1rr ttg g   was also 

used. The time differential at the observer’s place is obtained 
from the equation: 

 0 ttd dt g   (36) 

The local radial speed of light at the observer’s place 

0 0/c dr dt is found by setting the metric line element ds  in Eq. 

(32) to zero. This results in the following: 
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To proceed further it is necessary to find the relation between the 
time differentials of the stationary and the moving objects. This 

can be found from the relation 0 ttd dt g   for the stationary 

object and ttd dt g  for the moving object. The result is: 

 0 ttdt dt g  (38) 

After the substitution into Eq. (37) the result for the speed of 
light at the observer’s location becomes: 

 0 ttc c g  (39) 

Using this result in Eq. (35) and defining the radial speed of the 
test body relative to the observer as: 0 0/v dr dt  we can write: 
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For the moving object  't t  in relation to the stationary ob-

server when both are located in the gravitational field then fol-
lows from Eq. (38) and Eq. (40) that: 

 2 2
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In case that the observer is removed from the gravitational field 
the relation between the time differentials will be: 
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Substituting for ttg using Eq. (39), it becomes clear that for the 

time differential of the falling coordinate system in a radial direc-
tion in a gravitational field and the time differential of the statio-
nary observer removed from the gravitational field it is: 
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This result is identical with the relation derived in Eq. (16). This 
also demonstrates the compatibility between the generalized LCT 
and the curved space-time metric approach in describing the 
geometry of the space-time with a gravitational field of a central-
ly gravitating body.           
 From these results and also according to Eq. (18) it is interest-
ing to find that for the time differential of the falling observer in a 

radial direction and the time differential of the laboratory coor-
dinate system removed from the gravitational filed the LCT ex-
actly compensates the effect of gravity: 
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The gravitational field is removing the inverse time transfor-
mation symmetry of LCT, while the ct  product group transfor-
mation symmetry is maintained. Except for the Doppler Effect 
when measuring frequencies the time differentials are identical. 
The Doppler Effect needs to be added, since during the deriva-
tion of the Lorentz coordinate transformation formulas the vary-
ing signal propagation delay from the moving object to the ob-
server was not included. However, to measure the effect result-
ing from Eq. (44) alone it is necessary to understand in detail 
how the particular time interval generating device is constructed 
and affected by the gravity and velocity. In general, it seems that 
the free fall does always compensate for all the effects of gravity 
and no other effect except the Doppler shift can be observed. This 
finding has a significant consequence in cosmology where, if 
assumed that the receding galaxies are in a free fall falling away 
from Earth, no effect caused by the cosmological gravitational 
potential can be detected as was found elsewhere [4]. The time 
rate everywhere in the entire Universe on the large scale appears 
to be the same. This confirms again the complete symmetry (rela-
tivity) between the observer looking at Earth from the depths of 
the Universe and an observer on Earth looking back into the far 
distances even if the Universe is not flat. 

From the metric in Eq. (32) also follows equation for the radial 
speed of light rc  relative to the centrally gravitating mass coor-

dinate system. By setting the metric line element ds  to zero this 
becomes: 
 r ttc cg  (45) 

By using this result together with Eq. (34) in Eq. (35) and defining 
the radial speed of a test body as /rv dr dt  it follows that: 
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Finally, by comparing Eq. (46) and Eq. (40) it is clear that the fol-
lowing equality must hold: 
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This is confirming the previously used relation between veloci-
ties of generalized LCT. 

From Eq. (35) it is also possible to derive the expressions for 
forces governing the free fall of a test body in the gravitation 
field of the centrally gravitating mass. By differentiating Eq. (35) 
with respect to   the result is: 
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Multiplying Eq. (48) by the rest mass 0m  of the test body and 

realizing that 0( )dt d   in Eq. (42), it is possible to write: 
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 (49) 
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where the index standing by the velocities was due to the validi-
ty of Eq. (47) omitted. From this result it is then clear that for the 
inertial and the gravitational mass of the test body it must hold 
the following: 

 0
2 21 /

i
tt

m
m

g v c



 (50) 

 2 2
0 1 /g ttm m g v c   (51) 

This conclusion is a direct consequence of the generalized LCT 
and the curved space-time metric that describes the free fall mo-
tion of a test body as is defined by the Lagrangian in Eq. (33). 

Finally from Eq. (48) it also directly follows that since the left 
hand side is a contravariant geometrical object the right hand 
side must also be a contravariant geometrical object, it is thus 
necessary knowing that the gradient of a potential is a covariant 
quantity that the following relation must hold: 
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 (52) 

The solution of this equation is simple to find assuming the flat 
space at infinity with the result: 

 
22 /n c

ttg e   (53) 

where n  is the Newton gravitational potential [5] . 

6. Conclusion 

In this article it was shown that the Lorentz coordinate trans-
formation can be generalized and derived from the three funda-
mental assumptions: Maxwell-Lorentz equations, the photon 
force equation, and the assumption that LCTs form a group. The 
postulate of the constancy of speed of light was not necessary. 
Furthermore it was shown that the primary physical quantity is 
the velocity rather than time and that time is a derived parameter 
that results from a comparison of a particular process speed to 
the local speed of light. The validity of the generalized LCT was 
confirmed by applying it to the curved space-time of the central-
ly gravitating body, which also allowed finding the dependence 
of the inertial and gravitational masses of the free falling test 
body on the metric coefficient ttg and on velocity. Finally by ap-

plying the generalized LCT to the entire Universe it was found 
that the time on the large scale appears to run everywhere with 
the same rate. 
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Appendix 
The attractive force observed between the two charged non-

conductive moving plates can be calculated by considering that 
in addition to the electrostatic force attracting the plates there is 
also a force based on the Biot-Savart law acting between the cur-

rents, which the moving plates now also represent. To calculate 
this force it is useful to first find the magnetic field H existing in 
the space between the plates. For the selected configuration the 
simplest way is to use the integral form of Maxwell’s equation: 

 H ds I 
   (A1) 

where the integration path and the current flow are illustrated in 
a drawing in Fig. 3. The magnetic field intensity between the 
plates up to their internal surfaces is then equal to: 
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H v
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  (A2) 

Similarly for the electric field from the Gauss law: 

 D dS Q 


  (A3) 

where the integrating surface S encloses one of the plates, it fol-
lows that: 
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Both, the magnetic field as well as the electric field intensities are, 
of course, zero on the external surfaces of the plates, but through 
the plate’s thickness increase linearly from zero to the full value 
found between the plates. This is the consequence of the original 
assumption that the embedded charge distribution within the 
plates’ volume is uniform. The formula for the force is obtained 
from the Lorentz force equation: 

  F Q E v B  
  

 (A5) 

which must be integrated over the plate’s thickness pz .  
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After completion of integration in Eq.A6 where the substitutions 

for the parameters: Q mq , 0D E
 

, 0B H
 

, and 2
0 0 1 /c    

were also made, the result becomes:  
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This formula is used in Eq. (5). 
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Fig. 3.  Orientation of current I generated by the moving charged 
plates and of the resulting electric and magnetic fields. The mag-
netic field integration path s  used in Eq. (A1) is also indicated. 


