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We introduce for the purpose of discussion and experimental testing a new so-called resonance formula 

for the spectrum of hydrogen. It is more general than the Balmer-Rydberg formula.  It should be noted that this 
new formula is derived in accordance with the laws of classical mechanics.  It contains a larger number of se-
ries, and also many more spectral lines in each series.  The starting point is a planetary model of the atom and 
the concept that electrons move in classical elliptical orbits, and that all parameters of its motion (coordinates, 
momentum, energy, speed, etc.) appear as continuous functions of time.  The distinct lines in the spectrum is 
are explained by the condition of resonance between the speed with which the electron moves in its orbit and 
the speed of precession. 

 

1. Introduction 

Historically, a considerable problem in science has been the 
explanation of the discrete atomic emission spectra.  Attempts to 
solve this particular problem from a classical mechanics point of 
view have been largely unsuccessful until now. It was in this 
context that quantum mechanics emerged as a means of explain-
ing these results. It is from quantum mechanics that the ideas of 
photons of energy, the dualism between waves and particles, and 
other concepts arose which violate some of the most important 
laws of classical physics. 

In our view, the solution to the problem of the discrete nature 
of atomic emission spectra can be found in a more fundamental 
consideration of the interaction between the atomic nucleus and 
the electrons in the shell.  In our first work on the subject [1], we 
solved the problem of atoms’ size and stability, based on that 
concept.  Let us remind the reader that this problem has been 
subject to heated discussions in the past; although that article 
was submitted to several reputable physics journals, it was re-
jected.  This serves as a demonstration of how deeply rooted into 
modern physics is the illusion that all difficulties from the past 
had been definitely overcome and can be solved by questionable 
innovations. 

We here propose a more general formula for the calculation of 
the hydrogen emission spectrum than the Balmer-Rydberg for-
mula.  This new formula also has a larger number of series and 
many more spectral lines in each series.  It contains the spectral 
lines of molecular hydrogen as well.  This results from an atomic 
model that uses precessing, elliptical orbits, as discussed below. 

2. Resonance Formula 

Using normal classical mechanics to solve the hydrogen prob-
lem [2-5], we arrived at the following resonance formula for the 
spectral lines of atomic and molecular hydrogen, which we ad-
vanced for discussion and experimental verification: 
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where the minimum wavelength of  is 0 1 R  n=1,2,3,… and 

m=2,3,4,… are the quantum numbers such that m1=n+1, and R is 
the Rydberg constant. 

Eq. (1) is based on the planetary model of the atom and the 
concept of the electron circling around the atom along a classic 
elliptical orbit whereby all motion parameters (coordinates, mo-
mentum, energy, speed, etc.) are represented as continuous func-
tions of time.  According to our theory [4, 5], when an atom emits 
light, the electron orbits along a precessing elliptical trajectory 
with an angular speed 
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It is in turn the sum of two components or pr     
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The condition of emission of certain spectral line occurs when 
there is a resonance between the speed of the electron traveling 
along the orbit, and the precession speed. For this to happen, the 
ratio or pr  must be a ratio of integers.  And this is so when the 

radical equals 

  21 b m m n    (3) 

The principal quantum number n defines the number of the 
series.  At the same time, it has physical significance because it 
gives the number of revolutions needed for the perihelion to 
reach a resonance.  For instance, at n=1 the resonance will be 
achieved after one full revolution of the perihelion to 360.  At 
n=5, the resonance will be achieved after five full revolutions of 
the perihelion, or to an angle of 1800, etc. 

The azimuthal quantum number m is related to the polariza-
tion.  It defines the directions of propagation for certain spectral 
lines.  In [4, 5] we derived the angle   of the perihelion shift 
during one full revolution of the electron along the orbit, 
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and therefore, taking into account Eq. (3), it yields 
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where m defines the directions of propagation for the spectral 
line in question, emitted while the perihelion revolves to an angle 
of 2 n . 

3. Spectral Series’ Limits 

The theoretical limits of the separate series of spectral lines 
are listed in Table 1.  As regards the lower limit of each series, it 
should be kept in mind that this limit will be approached when 
m  .  Hence, it will be always narrower than the predominant 
lines.  In addition, when approaching the lower limit, the elec-
tron will need to make more revolutions until a resonance is 
reached.  That is why the intensity of these spectral lines will 
decrease and they will be difficult to discern. 

It must be remembered also, that when m increases, the shift 
angle   in Eq. (4) decreases, and consequently the lines will 
converge and the line spectrum will be transformed (degenerate) 
into a spectral band.  In order for these spectral lines to appear, a 
greater energy is necessary; i.e. the hydrogen gas should have a 
higher temperature. 

 

n   - upper limit   - lower limit 
1 1367 911 
2 3039 1822 
3 4786 2736 
4 6563 3647 
5 8357 4561 
6 10159 5437 
7 13777 7299 

Table 1.   Wavelength  in A


 

4. Is It Really Necessary to Separate the Atomic 
and Molecular Spectra? 

When considering the hydrogen spectrum, the Balmer- Ryd-
berg formula comes first.  For this reason, in our previous works 
[2-5], our goal was to demonstrate that, after the substitution 

2 2 21 1b n m   , our theory complied with that formula. 

It turned out however, that our theory is capable of predicting 
many more resonances and a greater number of series and spec-
tral lines than the Balmer-Rydberg formula can. This triggered 
our interest to examine the spectrum of molecular hydrogen.  We 
have been fortunate enough to stumble upon some older spectral 
tables [6, 7] featuring the atomic and molecular hydrogen spec-
tral lines simultaneously.  It is quite interesting that newer tables 
[8, 9] do not feature any spectral lines of molecular hydrogen – 
does this mean that they are trying to conceal something? 

After establishing that our theory is capable of predicting 
most of the spectral lines of molecular hydrogen as well as atom-
ic hydrogen, we asked ourselves: What is the possible reason to 
put forward separate theories and separate spectral tables for 
atomic and molecular hydrogen?  And why this is done only for 
hydrogen?  Considering that the hydrogen spectrum is observed 
in gas discharge tubes (Geisslers), doesn’t it become  difficult to 
discern which spectral lines come from atomic and which one 
from  molecular hydrogen? 

Our opinion is that both spectra – the atomic one and the so-
called molecular one – are electronic in nature, and depend on 
the electron’s motion.  Therefore they should be explained by one 
theory and all data be given in a single table. Thus we suggest 
that the reader observe Fig. 1.  It shows a photograph of hydro-
gen spectrum taken at low resolution of the spectrometer.  The 
brighter spectral lines from Balmer series ( H and H ) are seen 

on a colored background - red and blue, respectively.  However, 
if the observation is made in a spectrometer with higher resolu-
tion, the reader will notice that the background in fact consists of 
closely located spectral lines.  There are two theories explaining 
the situation shown on the photograph.  First, the distinctive 
spectral lines ( H and H ) are explained by the Balmer-

Rydberg's formula and interpreted as atomic hydrogen spec-
trum. Second, the spectral lines from the background are ex-
plained by a completely different theory and interpreted as mo-
lecular hydrogen spectrum. 

 

Fig. 1.  Observed emission spectrum of hydrogen 

From the point of view of our theory, this distinction is not 
necessary:  the spectral lines in the separate series overlap (see 
Table 1). The exact succession of spectral lines belonging to dif-
ferent series can be established if they are presented in one table.  
Selected parts of such table, created in Excel, for the sectors sur-
rounding spectral lines H ,H ,H    of the Balmer’s series, are 

shown in Table 2.  They have different colors in order to make a 
distinction between the overlapping series.  It is seen, that H  

line is being emitted in three series simultaneously and 
lines H and H  - in two series.  This explains why these specif-

ic spectral lines have greater intensity and are clearly discernible 
on the background of densely packed spectral lines of lesser 
intensity formed by the carrier series. 

 

H 6562.8   H 4861.33   H 4101.75   

  N m   n m   n m 
6565.06 7 242 4873.99 5 72 4148.89 4 29 
6564.3 7 243 4869.65 5 73 4132.13 4 30 
6563.54 7 244 4865.43 5 74 4116.45 4 31 
6562.8 4 5 4861.33 4 12 4101.75 3 6 
6562.8 6 30 4861.33 5 75 4101.75 4 32 
6562.8 7 245 4857.33 5 76 4087.93 4 33 
6562.06 7 246 4853.44 5 77 4074.94 4 34 
6561.32 7 247 4849.64 5 78 4062.68 4 35 

Table 2.   Wavelength  in A


 

Table 2 was created with the following assumptions in mind: 
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 minimum wavelength is 0 1 911.5R    

 module of 400. This means that each one of the series has 
x 400n  spectral lines; i.e. the azimuthal quantum number 

m has values in the range 1 x 400n m n   . 

Presumably, the Balmer-Rydberg formula accounts only for 
lines with greater intensity and these prominent lines are inter-
preted as the atomic spectrum.  Later on, when the lesser intensi-
ty lines were observed, it became difficult to explain them by the 
already created theory and therefore they were attributed to the 
so-called molecular spectrum. 

5. Mechanics of the Hydrogen Atom and the 
Discrete Emission Spectrum 

The currently prevailing theory explains the discrete nature of 
the atomic emission spectrum via the so-called “electronic transi-
tions”.  However, with regard to the exact mechanism governing 
these transitions, everything is uncertain and covered by the haze 
of quantum mechanics.  The atoms are regarded as kind of 
“black boxes”, which in some incredible way emit and absorb 
some even more incredible particles – photons. 

In contrast, the theory presented here makes everything clear 
- from the beginning to the end.  The reference point is the plane-
tary model of the atom and the assumption that the electron is 
moving along a classical elliptical orbit with all parameters of 
motion (coordinates, angular momentum, energy, speeds, etc.) 
being continuous functions of time.  The discontinuous, discrete 
emission spectrum of the atom is explained with the event of a 
resonance between the electron orbiting speed and the precession 
speed of the orbit. 

As mentioned already, the key to solving the problem of two 
separate spectra is to adopt a more fundamental approach re-
garding the precise interaction between the atomic nucleus and 
the electrons in the shell.  In other words, the key is contained in 
the force function (potential) of the nucleus, which in the case of 
hydrogen is [1]: 
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where e is the electric charge, r the current orbit radius, r  the 
radial speed, c the speed of light and  the fine structure con-
stant. 

We have shown [2-5] that based on this potential, a differen-
tial equation of the electron trajectory can be derived as follows: 
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having the solution 
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where 1 r  , p is the focal parameter of the orbit, em  is the 

electron mass, M is the angular momentum,  is orbit’s eccentrici-
ty and  is the angle of phase shift. 
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Fig. 2.  Changes in the mechanical parameters of the movement of  
electrons as a function of the parameter b. Point O corresponds to 
the ground state of the atom.  a) energy E  b) momentum M, an-
gular velocity  and focal parameter p.  The symbols 2x, 4x, 6x... 
mean 2M   , 0=2 , 02p r , where 0 0 and 0r  are re-

spectively angular velocity and orbital radius of a ground state of 
the atom. 

There is no need to repeat all the calculations from my pre-
vious work now.  Fig. 2 shows how the electron parameters will 
change as a function of the parameter b during orbiting, where 
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minE  and maxE  are the limits in order to observe an emission of 

the spectral line.  Here   is Planck’s constant, and 0r  and 0E  are 

the radius and energy of the atom in the base state respectively.  
These limits are in line with two conditions: 

1. orbit eccentricity  satisfies 0 1  , where 
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2. the orbit is preserved as a whole. 

It can be seen from the graphs that all these parameters are 
continuous functions of the parameter b and, consequently conti-
nuous functions of time.  Neither energy quanta nor angular 
momentum quanta are needed at all.  Consequently, there are no 
photons! 

Here, the most important mechanical parameter is the angu-
lar momentum M.  It defines the absolute angular speed in Eq. 
(2) and the ratio between the angular speed of the orbiting elec-
tron and the angular speed of precession.  That ratio is crucial for 
occurrence of the resonance when light is emitted.  Therefore, a 
spectral line will be emitted only when the angular momentum is 
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Our theory then concludes that the discrete event is occurring 
continuously! 
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6. Conclusion 

We have here presented evidence which better explains the 
discrete nature of atomic emission spectra from a classical me-
chanics point of view.  A new resonance formula has been de-
rived.  As a consequence, and in line with our open letter [10], 
there exists a strong challenge to Einstein’s relativism as well as 
quantum mechanics.  Both have been challenged for some time, 
and this adds one more challenge to the list. 
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