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The development of the real number system represents both a milestone and a cornerstone in the founda-

tion of modern mathematics. We go further and suggest that the real number system should be completed to 
include the concept of direction. Some of this work has already been done by the invention of the complex 
numbers, quaternions, and vectors. What has been lacking, however, is a general geometric number system. In 
1878, William Kingdom Clifford invented his "geometric algebra", based upon the earlier work of Grassmann 
and Hamilton. Geometric algebra is the completion of the real number system to include new anticommuting 
square roots of plus and minus one, each such root representing an orthogonal direction in successively higher 
dimensions. All of the usual rules of the real number system remain valid, except that the commutative law of 
multiplication is no longer universally valid. The book, "New Foundations in Mathematics: The Geometric 
Concept of Number" in preparation by the author, represents an attempt to show at an undergraduate level 
how many ideas of modern mathematics can be developed within this new framework, including modular 
number systems, complex and hyperbolic numbers, geometric algebra of Euclidean and pseudo-Euclidean 
spaces, linear and multilinear algebra, Hermitian inner product spaces, the theory of special relativity, represen-
tations of the symmetric group, calculus and differential geometry of n-dimensional surfaces, Lie groups and 
Lie algebras, and other topics. 

 

1. What is Geometric Algebra? 

Geometric algebra is the completion of the real number sys-
tem to include new anticommuting square roots of plus and mi-
nus one, each such root representing an orthogonal direction in 
successively higher dimensions.  If one new square root 1i    
is included, we have the complex numbers. If, instead, one new 
square root 1u    is included, we have the hyperbolic num-
bers [1].  The complex and hyperbolic number systems are com-
mutative number systems, ab ba  for all complex or hyperbolic 
numbers ,a b .  However, the hyperbolic numbers have new in-
teresting properties unseen in the real or complex number sys-
tems.  For example, if we define  1 2u u    and  1 2u u   ,   

we find that 2u u  , 2u u  , 1u u   , and  0u u   .  We 

say that u and u are mutually annihilating idempotents, which 

partition unity.  The hyperbolic number plane has many analog-
ous properties to the complex number plane, replacing the unit 
circle with the 4-branched unit hyperbola. 

If three new anticommuting square roots 

 1i   ,    1j   ,    1k    (1) 

are introduced into the real number system, we arrive at Hamil-
ton’s famous quaternions.  Note that aside from the fact that the 
new square roots are anticommutative, all of the usual algebraic 
properties of the real numbers remain valid.  In the case of the 
hyperbolic numbers, we do have the existence of zero divisors, 

0u u   , when neither of the factors is equal to zero.  In general, 

the geometric product of geometric numbers obeys exactly the 
same algebraic rules as the addition and multiplication of square 
matrices of real numbers.  Indeed, this is no coincidence.  For 
each geometric algebra, one can find a corresponding algebra of 
square real matrices which have identical algebraic properties.  
The great advantage of geometric algebra is that the elements of 

the geometric algebra have an unambiguous geometric interpre-
tation which is sadly lacking in a square matrix of real numbers. 

2. The Inner and Outer Products 

To keep things simple, let us briefly explore the geometric al-
gebra  of the three dimensional Euclidean space of our physi-
cal World.  Starting with the real number system, we invent three 
new anticommuting square roots 1 2 3, ,e e e  of +1 which we choose 

to represent orthogonal unit vectors along the , ,x y z  axes of the 

Euclidean space 3R .  Thus, 2 2 2
1 2 3 1e e e    and ij i je e e   

j i jie e e    for 1 3i j   .  The ije  are given the geometric in-

terpretation of unit bivectors in the respective xy, yz, and xz 
planes.  Still to be accounted for is the unit trivector 123I e   

1 2 3e e e , which represents the 3-dimensional direction of an 

oriented unit cube.  The geometric numbers of space are pictured 
in Fig. 1. 
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Fig. 1.  Geometric Numbers of Space 
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Up until now we have only discussed the geometric product, 
its geometrical interpretation, and its algebraic properties.  We 
now discuss the inner and outer products which are defined in 
terms of the geometric product. 

Let i ia a e , i ib b e , i ic c e , where the sums are 

over 1,2,3i  , and the , ,i i ia b c  are real numbers, be three vectors 

in 3R .  The inner product of a and b is defined by 

  1 1 2 2 3 3
1
2

a b ab ba a b a b a b      , and the outer product is de-

fined by  1
^

2
a b ab ba Ia b    , where a b  is the ordinary 

cross product of Gibbs-Heaviside vector algebra.  The formulas for 
the inner and outer products follow from the rules obeyed by the 
basis vectors 1 2 3, ,e e e  given above, and should be derived by the 

serious reader.  From the definitions given above, it is clear that 
the geometric product of two vectors satisfies the basic identity 

^ab a b a b   .  It is this unification of the inner and outer prod-
ucts that give the geometric product the power that neither the 
inner nor the outer products have separately. 

Probably the most difficult part in mastering geometric alge-
bra is coming to grips with the definitions and identities satisfied 
by the inner and outer products of geometric numbers.  Nothing 
in this World is free, and the same thing is true for acquiring lan-
guage and mathematical skills.  Let us examine one more alge-
braic identity regarding the relationships between the inner and 
outer products.  We have 

        1
^ ^ ^

2
a b c a b c b c a a b c          

and        1
^ ^ ^ ^

2
a b c a b c b c a I a b c            

For the convenience of the reader, we have expressed the in-
ner and outer products of a vector and a bivector in terms of the 
better known Gibbs-Heaviside triple products.  Once again we 
find that      ^ ^ ^ ^a b c a b c a b c   , so the geometric product 

of a vector and a bivector is the sum of the inner and outer prod-
ucts of the vector a with the bivector ^b c . 

3. Geometric Calculus 

There are many geometric algebras, but all are obtained by in-
troducing new anticommuting square roots 1  into the real 
number system [2, 3].   Geometric algebra is deeply connected to 
linear and multilinear algebra, and indeed the subjects should be 
developed together.  Every finite dimensional geometric algebra 

,p qG  is the geometric algebra of a quadratic form of signature 

,p q , with p the number of anticommuting unit basis vectors 

which have square +1, and q the number of anticommuting unit 

basis vectors which have square -1.  The geometric algebra of 

spacetime 1,3G  is generated by one time-like vector 2
1 1e  , and 

three space-like vectors 2 2 2
2 3 4 1e e e     [4].  Each geometric 

algebra provides the algebraic framework for the development of 
a geometric calculus and differential geometry [2].  The funda-
mental theorem of calculus for a 2-dimensional surface S in the 

Euclidean space 3R , with bounding curve C, when represented 
in the geometric algebra 3G , takes the form 

 (2) x

S C

g dx f g dxf    

and includes Green’s and Stokes’ Theorems. 

4. Conclusion 

Geometric algebra offers new geometric tools for the study of 
vector calculus and differential geometry, representation theory 
of Lie algebras and Lie groups and many areas of mathematics, 
physics, and robotics.  The completion of the real number system  
to include the concept of direction provides a powerful geometric 
number system which is the foundation of a lot higher mathe-
matics where geometric concepts are involved.  As David Hes-
tenes told me as a graduate student in mathematics at Arizona 
State University in the 1960’s, 

“Algebra without geometry is blind, geometry without algebra 
is dumb”. 

The reader is referred to [5], where many additional links to 
geometric algebra and its applications can be found. In addition, 
[6] gives a link to my talk given to World Scientific Database 
which provided the basis for this paper.  I would like to thank 
the organizers of World Scientific Database for inviting me to 
contribute to these proceedings. 
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