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“A Mechanical Test of the Equivalence Principle” [1] has not been successfully refuted in the 17+ years it has 
been in the public domain – in fact it has been mostly ignored – especially by orthodox physics.  It is only fair to 
say, however, that a satisfactory explanation of the anomalous ‘energy loss’ documented there has also not been 
completely explained either.  By way of a more straightforward physical experiment, the current paper seeks to 
demonstrate a possible explanation of the former experiment and also shed new light on the conventional clas-
sical laws of motion (non-relativistic and non-quantum).  Newton’s Second Law, as applied to linear accelera-
tion (where work is being performed by electromagnetic forces), is directly pitted against the acceleration of 
gravity.  The results leave little doubt that the cornerstone of General Relativity is incorrect; but more impor-
tantly, the results demonstrate that Newton’s Second Law, in this situation, is also incorrect by a significant 
amount (approx 3.0% of the projected inertial force of a test mass having work performed on it by a falling gravi-
tational mass, i.e., having its kinetic energy increased horizontally).  We cannot escape the conclusion that it is a 
grave error to always treat gravitational mass and inertial mass the same.                                  * From 2009 

 

Introduction 

The prime motivation for testing Newton’s well-established 
Second Law of motion (for non-relativistic speeds and non-
quantum sizes) came from the unanswered questions raised by 
[1], still unresolved 17 years later.  Chief among the questions is 
whether there exists a simpler way of demonstrating the ano-
malous energy loss suffered by the magnetic ‘Hover-Craft’ (HC) 
revolving through a circular magnetic field keeping it suspended 
vertically and being activated by the pseudo-gravity of a spin-
ning centrifuge which is equivalent to a constant vertical gravity 
field? Admittedly [1] contains some comparatively exotic (yet 
still rather simple) elements.   

Another motivating factor was the realization (after years of 
contemplation) that if [1] indeed showed Einstein’s Equivalence 
Principle to be untenable in a rather dramatic way, then classical 
mechanics was almost certainly being violated in some equally 
impressive way as well.  This conclusion was reached owing to 
the fact that neither relativity nor classical mechanics allows for 
any residual changes to mass - like increased internal energy - 
caused by acceleration of rigid bodies other than increasing or 
decreasing kinetic energy for low speed motion.  And by design 
(the Correspondence Principle), relativity essentially collapses to 
classical physics at low speeds and small amounts of gravitation.  
Consequently, if one is wrong at these slow speeds, the other will 
be also.   

So, the overall objective of the current experiment was to find 
a way to eliminate the more esoteric features of [1] yet accentuate 
the direct comparison of real (rather than pseudo) gravitational 
acceleration against linear (and horizontal) acceleration of rigid 
mass having real work being done on it by electromagnetic forces 
increasing its kinetic energy.  The critical point of the test, of 
course, was to see if any anomalous behavior, that would have to 
be considered non-classical, exhibited itself in the process.   

Basic Test Configuration 

Figure 1 shows the main features of the test apparatus.  This 
is in essence a quite straightforward setup commonly depicted in 
basic physics and/or mechanical engineering textbooks [3] to 
illustrate the interaction of gravitational versus linear (and hori-
zontal) acceleration.  One big difference between our test evalua-
tions and the textbook’ is that we could not assume massless and 
frictionless pulleys, bearings and connecting strings.  In fact, as 
we shall see, the devil is in these very details in order to gain a 
full understanding and do a comprehensive evaluation of the test 
results. 

The Activator mass, M1, is shown suspended vertically along 
the left side of Figure 1.  M1 is attached via a connecting wire 
over a pulley to the target mass or carriage, M2, shown sitting on 
a level runway extending horizontally across the drawing.  The 
carriage is supported with three industrial grade roller bearings 
(NTN corp., pn Z0009), one in front and two in back.  Using 3 
rollers instead of 4 insures that all the rollers are in constant con-
tact with the runway surface at all times.  The empty carriage 
was designed to be as close to a 1 kilogram mass as possible and 
allow for the addition of seven precision weights in increments 
of a half a kilogram; this yields a range of 1.0 – 4.5 kilograms of 
mass for M2.  Different activator masses were tried; but the pri-
mary one was a half a kilogram precision weight of the same 
kind as the seven used to load up the carriage.  The carriage de-
sign and other test considerations will be discussed in greater 
detail in the Detail Descriptions Section later in this paper. 
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Figure 1 – Test apparatus Overview 

The runway consists of a solid marble slab (14 mm   152 mm 
  1350 mm) supported by a wooden platform that facilitates 
easy attachment to the support structure (which is securely anc-
hored to the building) and manipulation of the ramp such as 
leveling.  The slab is smooth on the upper surface much like a 
ledge leading into a bathroom shower enclosure.  However, the 
clean dry mating surfaces of the marble and the outer casings of 
the roller bearings, (stainless steel), are sufficiently course to 
cause the bearings to roll uniformly as opposed to skidding 
along the smooth marble surface.  Were this not the case, the 
coefficient of friction would instantaneously change throughout 
a test run, changing the timing data in unpredictable ways.   

The release mechanism is mounted to the support platform at 
the far right of the runway.  The mounting holes are slotted to 
allow for fine-tuning of the drop length without moving the cap-
ture platform or changing the length of the connecting wire.  The 
function of the release mechanism is to retain the carriage as-
sembly until the start of a test run.  The mechanism contains a 
bell-crank that does two things when activated by a lever arm: 1) 
quickly pivot forward, up and away from the retaining clip 
mounted on the back of the carriage.  This ensures a clean release 
that does not interfere with the movement of the carriage.  2) The 
activated bell-crank also simultaneously trips a micro-switch that 
signals the timing device (shown in the middle of the runaway) 
to begin counting elapsed time in seconds (displayed to 6 decim-
al places).  The timer is stopped when the activator mass bottoms 
out at the capture platform, simultaneously activating another 
micro-switch.  A more detailed description of the test apparatus 
is included below that will hopefully answer any questions the 
reader may have. 

Design Objective 

The overall design objective was to find the cleanest and ea-
siest way to apply a constant acceleration to the test mass M2; 
then using the electronic timing device, specifically designed for 
this experiment by Cronos Engineering in Boca Raton, Florida, to 
accurately measure the time it takes for the activator mass, M1, to 
drop a predetermined vertical distance while, of course, pulling 
(via connecting wire and pulley) the target mass, M2, horizontal-
ly across the runway.  After knowing the time, the constant acce-
leration is easily determined by solving this familiar classical 
formula for a, [2, 3]: 

 / 0.5t d a   (1) 

where t is the time, d is the drop distance and a is the constant 

acceleration.  So, 2/ 0.5a d t .  Once the acceleration is known, 
the primary forces operating during any given test run can be 
easily obtained mainly because the acceleration value will be the 
same for both test masses, M1 and M2.  This is the case because 
the connecting wire has sufficient tensile strength to preclude 
any appreciable stretching during a test run.  The maximum ten-
sion the wire is exposed to during a test run is ≈ 4.5 Newtons.  
The connector of choice and the one most often used is a flexible 
24-gauge stranded/coated wire commonly used in electronic 
connecting circuits which has a tensile strength > 100 newtons.  
Other connecting wires were tried for comparison purposes and 
will be discussed in more detail below. 
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Other implementations were considered besides the one in 
Figure 1, but finally rejected for various reasons.  For example, a 
ballistic device with a known amount of explosive material could 
be mounted to the test mass that would accelerate it down the 
horizontal runway.  This was ruled out owing to the technical 
challenge of accurately determining the exact intensity and dura-
tion of the accelerating impulse and the exact friction produced 
in the process.  A coiled spring was also considered but ruled out 
for similar reasons; another problem with a spring is that the 
accelerating force is not constant and part of the spring gets acce-
lerated (for a time) along with the target mass making accurate 
calculations tedious if not impossible.   

The test configuration of Fig. 1 was settled on for several rea-
sons.  First, it does not suffer the technical difficulties of the ones 
mentioned above – it should be safe to assume a constant accele-
rating force provided the retarding forces are not variable in any 
appreciable way.  Again, this feature will be discussed more fully 
below.  Second, this configuration is quite familiar to most 
people and it is well documented in easily obtainable textbooks – 
with the exception of readily available descriptions of the retard-
ing forces.  Last, (and perhaps most importantly) this configura-
tion allows for the simultaneous measurement of gravitational 
and inertial acceleration for known masses – the major point of 
this entire exercise.   

Operational Formula 

The fundamental formula used in the experiment to describe 
the forces and resulting motion should be familiar to anyone ever 
exposed to a basic physics and/or mechanical engineering text-
book.  We actually use a slightly expanded formula which in-
cludes the key variables normally left out of textbooks for sim-
plicity’s sake.  The basic classical formula focuses on the main 
forces and is normally presented as follows: 

 1 2(1 / ) m g a g m a  (2) 

where 1m  is the vertical activator mass, g  is the acceleration of 

gravity, which at sea level is taken to approximately equal 9.8067 
m/s2 [2], 2m  is the horizontal test mass and a  is the constant 

acceleration common to both masses.  This formula basically says 
that the effective weight of m1, on the left side should just equal 
the inertial force of m2 (m2a) opposing the resulting acceleration 
on the right side of the equation as the motion proceeds (with no 
frictional losses).  A companion formula used in the texts calcu-
lates the predicted constant acceleration, which is a straight-
forward application of Newton’s Second Law f ma , or 

/a f m  in this case) [2]: 

 1 1 2( / ) a m g m m  (3) 

This says that the initial activating force (which equals the statio-
nary weight of 1m , which equals 1m g ) divided by the total 

amount of mass being accelerated gives an estimate of the mag-
nitude of the constant acceleration. 

Eq. (3) was rarely used - only in cases where a sanity test was 
needed to see what the acceleration classically should be with no 
frictional losses.  However, an expanded version of (2) was con-
stantly used throughout the experiment that goes as follows: 

 1 1 2( ) frictional losses 

                                     (pulley and roller bearings)

  m g m a ifi m a
    (4) 

What we have on the left side of (4) is simply another way of 
expressing the effective weight of the activator mass, m1.  This 
value is obtained by reducing the stationary weight, 1m g , of the 

activator mass, by the inertia of m1, m1a.  This makes perfect ma-
thematical sense when one realizes that as the actual acceleration 
goes to zero, the entire weight of the m1 mass is ‘felt’ and reflect-
ed as tension in the connecting wire.  If and when the actual acce-
leration equals g , the acceleration of gravity, there would be no 
force ‘felt’ as tension in the wire and m1 would be free-falling 
with nothing slowing it down.   

However, it should be noted at this point that it is highly 
questionable whether or not it is proper to refer to the factor, 
m1a, in the gravitational case as inertia because this term usually 
refers to the resistance of mass to being accelerated.  As everyone 
knows, one of the hallmarks of gravitational acceleration is the 
complete lack of resistance to being accelerated! This is one of the 
points that impressed Einstein so much about gravity. 

Nevertheless, by Newton’s Third Law, the activating force on 
the left must match all the forces of opposition on the right side 
of (4).  A couple of clarifying remarks are needed for the terms on 
the right side.  First, this is by no means a complete list of all re-
tarding variables, just the most important ones.  Air resistance, 
for example, is not included.  As explained below, it was consi-
dered such a small factor at the speeds we are dealing with that it 
was reasonable to ignore it.  Also not included is the angular 
acceleration of the pulley and rollers, which will naturally drain 
a small amount of the available energy.  However, the extremely 

small moments-of-inertia, 2mr , owing to the small radius being 
squared in both cases, made this factor virtually immeasurable, 
regardless of the normal frictional drag of the pulley and bear-
ings.  So, these values are simply included in the normal friction, 
independently measured prior to the test runs. 

Also excluded from (4) is the mass of the 24-gauge connecting 
wire.  This is justified as follows: The wire mass is 8 grams, 
representing a ratio ≈ .0053 when compared to the smallest total 
mass of 1500 grams when an ‘empty’ carriage is being tested; this 
ratio drops to .0016 when a fully loaded carriage is being tested.  
Furthermore, at the beginning of a test run, approximately 85% 
of the wire’s mass (6.8 grams) adds to the M2 load and approx-
imately 15% (1.2 grams) adds to the M1 activator mass (500 
grams).  However, for a full 1.0 meter drop, this situation is al-
most completely reversed as the wire goes over the pulley.  In 
any case, this omission is not a significant factor that would 
change the data appreciably and is well covered by the error 
margin assigned to the data.  This situation does argue, however, 
for selecting the lightest yet most flexible and strongest connect-
ing wire available. 

The reader will also notice that a modifying factor, (ifi), has 
been appended to the first term, the inertial force of m2.  This 
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factor stands for what became known as the “Inertial Force In-
dex.” The expectation was that if our measurements were consis-
tent with classical physics, this term would always equal 1.0, (or 
be extremely close to it), which doesn’t change the value of the 
right side of (4).  On the other hand, if a non-classical retarding 
factor is operating during the test, a value other than 1.0 would 
have to be assigned.  The whole experiment consists of setting up 
the test parameters, measuring the time elapsed between release 
and the bottoming out of M1 at the capture platform, converting 
this time to acceleration using (1) then solving (4) for the value of 
(ifi).  This process will be fully explored in the Test Results sec-
tion below.   

Technical Descriptions of Test Apparatus  

Some of the test apparatus and preliminary tests require fur-
ther elaboration.  However, the reader may choose to temporari-
ly skip this section to maintain better continuity. 

Runway construction is obviously one of the more critical 
design parameters.  The left end of the support platform is se-
cured to the vertical support structure (which is anchored to the 
building) with a 5/16” bolt.  This single bolt also performs the 
function of a pivot point that allows the right end of the platform 
to be easily raised or lowered in small increments for lengthwise 
leveling.  A backstop (with foam padding in front) shown in Fig-
ure 1 also serves a duel purpose - not only does it provide for a 
‘soft landing’ of the carriage at the end of a test run but also pro-
vides the means of leveling the platform assembly widthwise.  
The length of the connecting wire was always selected to ensure 
that M1 bottoms out before the M2 mass touches the padded 
backstop. 

The pulley assembly consists of a rugged ball bearing (out-
side diameter, OD ≈ 30mm), like those used in power tools, 
pressed onto a 10mm stainless steel shaft firmly secured in a 
hard plastic circular housing.  Actually, the bearing and housing 
were acquired by stripping down a battery powered Black & 
Decker hand drill.  A small groove is cut in the outer plastic cas-
ing of the pulley to provide for smooth tracking of the connecting 
wire.  The back of the pulley assembly is securely mounted to the 
vertical support structure just to the left of the runway platform 
and also supported in the front with a steel strap also secured to 
the runway platform.  The pulley assembly was carefully posi-
tioned to insure 3 things: 1) it was not touched by any moving 
parts other than the connecting wire.  2) the top of the pulley was 
at the same height as the connecting eyelet attached to the front 
of the carriage.  This ensured that the connecting wire was level 
with the runway.  3) the groove in the round plastic housing is 
located front to back to insure that the connecting wire and ulti-
mately the carriage is being pulled down the center of the run-
way.   

The pulley angular acceleration was determined to be a neg-
ligible factor.  With the radius of the pulley groove ≈ 22 mm (.022 
meters) and a mass ≈ 0.1 kilograms and conservatively placing 

all the mass at the radius, the moment-of-inertia, 2I mr  is still 

less than 55 10 , hardly a significant factor.  The roller bearing 
angular acceleration is even more negligible; with a radius of 
10mm and mass ≈ 10 grams, their moment-of-inertia is estimated at 
1 x 10-6. 

The pulley frictional drag was determined with a separate 
measurement: first, the initial force on the pulley was determined 
using the Pythagorean theorem for adding vectors, 

2 2
t 1 2 F F F .  For the initial case of a latched up carriage and 

suspended M1 mass, this becomes t 4.92 4.92  F  6.93 new-

tons of force pointing down at a 45º angle.  So, two weights hav-
ing approximately half this force were attached using the same 
connecting wire as in an actual test run, with the wire draped 
over the pulley.  Figure 2 depicts this setup.   
 
 
 
 
 
 
 
 
 
 
 
 

Since the weights are equal, no movement is initially seen.  
Small additional weights are then incrementally added to one of 
the masses until a point is reached where a slow motion im-
parted to the pair manually would cause the lighter weight to 
steadily move up and the heavier weight to steadily move down 
with neither of them experiencing acceleration.  This is the imba-
lanced point that exactly matchs the frictional force which in-
cludes the deformation/reformation of the connecting wire in 
quasi-static mode.  Now weighing the two masses separately and 
calculating the retarding force, we have, drag 1 2( ) F F F  when a 

force of 6.93 normal (perpendicular) to the pulley is applied.  The 
coefficient of friction is then 1 2 1 2| | | |   F F F F , which turned 

out to be .017 ± .001. 
Two things should be noted here.  First, this is a quite con-

servative approach to determining the coefficient of friction for 
the pulley because in a real test run, the connecting wire only 
gets deformed by 90º not 180º depicted in Figure 2.  So, the real 
coefficient is somewhat less than .017.  Nevertheless, we used the 
conservative value.  Second, when the carriage is released in an 
actual test run, the force on the pulley gets reduced by an 
amount depending on how much acceleration is generated – the 
greater the acceleration, the smaller the effective weight of M1 
and consequently the less force on the pulley.  In evaluating the 
data, the actual force on the pulley was calculated for each run 
scenario - the force varies from approximately 4.8 to 6.4 newtons 
for the 1.0 kilo to 4.5 kilo test cases which produces a range of 
drags ≈ .08 - 0.11 newtons.  Note: The initial and runtime forces 
at the pulley were verified using a precision force gauge from 
EXTECH corp., pn. 475040, mounted securely to the support 
structure. 

Determining the coefficient of friction for the roller bearings 
was much simpler.  Here, adding small weights attached to the 
carriage via fine sewing thread draped over the pulley, the 
weight that causes the carriage to continually move slowly with-
out accelerating defines the force necessary to overcome the fric-
tional drag for any given mass, M2.  The coefficient of friction is 

Figure 2.   

The pulley frictional force 
measurement 
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then determined for the combination of the 3 rollers as µ ≈ F1 ÷ 
F2 where F1 is the force dangling over the pulley and F2 is the 
force of M2 being applied normal to the runway or simply (M2 x 
g).  The measured value turns out to be .003 ± .0005 producing a 
carriage drag ≈ .03 - .13 newtons.  Therefore the total quasi-static 
drags used in (4) were .11 - .24 newtons over the range of M2 
masses used in the experiment. 

It should also be noted that the coefficients of friction do vary 
with ambient temperature.  However, this was a very small 
amount over the range of temperatures in the lab, 72º ± 2º F. 

Air resistance was determined to be a negligible factor early 
in the experiment.  This was really a side benefit of calibrating 
the time measuring technique used in the experiment.  To ac-
complish this, activator mass M1 was allowed to freefall vertical-
ly in earth’s gravitational field for a distance of 1 meter.  The 
measured time never varied from a value of .4516 seconds 
rounded to the 4th decimal place.  The calculated value from (1), 
with 9.8067g m/s2, is .4515996 seconds.  This was an indica-
tion that what little air resistance there was, reduced the time by 
less than 50 microseconds in a case where the peak speed of M1 
was ≈ 4.4287 m/s.  This represents a deviation of < .01%.  Also 
the peak speed for the fastest test case (1.0 kilogram M2 with M1 
dropping 1 meter) is ≈ 2.42 m/s.  Most test cases are considerably 
lower than this maximum and only a few even approach it.  So, 
this result said 2 things, 1) our measurement technique was solid.  
2) Air resistance played no significant role in the experiment. 

Basic carriage construction is depicted in Fig. 3.  The main 
body of the carriage is made out of a wooden block with width of 
90 mm, thickness of 38 mm, and length of 200 mm.  The base has 
seven round holes bored from the top approximately 20 mm 
deep with a diameter of 38 mm providing a snug fit for the preci-

sion weights to sit vertically ‘in’ their slots.  The lid of the car-
riage has the same dimensions as the base (accept thickness of 15 
mm).  The lid also has 7 round holes bored from the bottom to a 
depth of 10 mm and slightly smaller diameter than the ones in 
the base.  The lid fits over the top of the precision weights and is 
firmly secured with 4 ¼” stanchions coming up through the base 
and with each having a retaining nut on top.  The positioning of 
the retaining holes were selected to allow the use of any number 
of the 7 weights while still maintaining a balanced load on the 
carriage.  Four metal brackets were bolted to the four corners of 
the base to provide for mounting the 3 roller bearings.  The unth-
readed portion of a 5/16” bolt is almost exactly 8mm in diame-
ter, the size of the inner diameter of the bearings.  This ensured a 
tight fit preventing any appreciable wobble of the bearings when 
bolted in place.  The front axle was a one piece bolt with the 
bearing placed in the middle while the back bearing each had its 
own separate axle.  This arrangement facilitates easy alignment 
of the roller bearing to achieve clean straight runs across the 
runway.   

On the front of the carriage is an eyelet that has the same 
height as the top of the pulley to ensure the carriage is pulled in a 
level fashion by the connecting wire attached to the eyelet.  The 
retaining bracket on the rear of the carriage is also mounted at 
the same height as the eyelet to ensure that no lifting of the car-
riage was experienced during the time it is being retain by the 
release mechanism bell-crank.  Also shown in Fig. 3 is the activa-
tor mass with the connecting wire attached to another eyelet 
screwed into the top center of the mass and epoxied in place for 
added strength.   

 

 

 
 

Figure 3.  Basic carriage construction. 
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Test Procedure 

A typical test run consists of several steps: 
1) Load the carriage with desired amount of mass.   
2) Adjust apparatus for desired drop length (moving capture 
and release mechanisms). 
3) Connect the carriage to the release mechanism and verify 
desired drop length ± .5mm. 
4) Ensure that the carriage is aligned to make the same straight 
run each time. 
5) Allow time for all parts to stabilize, particularly m1 to be mo-
tionless (not swaying) 
6) Reset and ‘arm’ the timer making it ready to start counting. 
7) Rapidly activate the release mechanism lever. 
8) Observe each run for continual, smooth and straight accelera-
tion down the runway. 
9) Record the elapsed time from the timer. 
10) Repeat steps 1 – 9 as many times as desired. 
11) Analyze the times and determine the mean and variability* 
values.   

* Note: Variability of ±100 microseconds was considered ex-
cellent repeatability for a motion experiment of this kind.  Varia-
bility over ±300 microseconds was considered unacceptable and 
the test was repeated after searching for the source of excessive 
variability. 

Test Results 

A typical logbook entry for a series of test runs is shown in 
Fig. 4. 

The ‘Drag’ shown in Figure 4 is the total drag, which is the 
addition of the pulley and roller bearing drags.  As mentioned 
previously, the acceleration is calculated from (1).  The effective 
weight is obtained by setting the left side of (4) ( 1 1m g m a ) equal 

to it then solving for the weight.  The classical inertia of M2 is 
simply (m2 x  a).  The value of the Inertial Force Index (ifi) could 
now be calculated from (4).  The (ifi) values are nothing more 
than the degree to which the inertia of M2 has to be increased in 
order to make Newton’s Third Law work in these cases.  These 
measured values (repeatable to ± .005) provide a shorthand way 
of summarizing the test results for thousands of test runs taken 
over a period of 6 months.  This summary is shown in chart form 
in Fig. 5: 

Discussion 

The first column (of 6) in Figure 5 shows the 8 different val-
ues of the M2 target mass used in the experiment (activator mass, 
M1, always equaled ½ kilograms).  Again, these values were ob-
tained by incrementally adding one (of 7) ½ kilogram precision 
weights to the carriage.  So, for example, the ‘1.0 kilo’ row 
represents data for an ‘empty’ carriage.  The ‘4.5 kilo’ row 
represents a fully loaded carriage.  The second column shows the 

________________________________________________________ 
M2 m/s2   Drop length – meters   __ 
Kilo     1.0      .50      .25     .125 __ 
4.5 .91 1.039 (.67) 1.031 (.48) 1.030 (.34) 1.030 (.24) 
4.0 1.01 1.046 (.71) 1.032 (.50) 1.030 (.36) 1.030 (.25) 
3.5 1.21 1.054 (.75) 1.036 (.53) 1.033 (.38) 1.030 (.27) 
3.0 1.28 1.063 (.80) 1.043 (.57) 1.036 (.40) 1.032 (.29) 
2.5 1.51 1.071 (.86) 1.052 (.61) 1.041 (.44) 1.036 (.31) 
2.0 1.81 1.080 (.94) 1.061 (.67) 1.048 (.48) 1.043 (.34) 
1.5 2.24 1.097 (1.05) 1.071 (.75) 1.059 (.53) 1.050 (.38) 
1.0 2.99 1.118 (1.21) 1.095 (.86) 1.082 (.61) 1.065 (.44) 
 

Figure 5.  Inertial Force Index summary 

Monday 1-09-09 
 
Target mass, M2 = 4.5 kilos Activator mass, M1 = .5 kilos  Drop = .25 Meters 
         Drag = .24 Newtons 
Time/temp  run time  

12:14 pm/720 F. t1 = .7399 secs 
12:18 pm/720 F. t2 = .7396 secs 
12:22 pm/710 F. t3 = .7399 secs 

mean run time     = .7398 secs ±200 microseconds 
 
acceleration         -    effective weight of M1    -     inertia, m2a    -       ifi value 
 
.9136 m/s2                 4.4734 Newtons         4.1111 Newtons         1.030 

 

Figure 4.  Typical logbook entry 
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approximate acceleration achieved for each test case that remains 
relatively constant for the different drop lengths.  The last 4 col-
umns show the calculated (ifi) values for the 4 drop lengths, in 
meters, measured and calculated for each M1/M2 combination; 
the numbers in parentheses are the average speed for a run in 
m/s.   
Note: The reader is reminded at this point that the (ifi) calcula-
tions from (4) include the total drag of the pulley and roller bear-
ings which were independently measured in what the author 
calls ‘quasi-static’ mode, i.e., slow motion.  A fuller discussion of 
this measurement technique is included above under ‘Technical 
Descriptions.’ 

By far, the most salient feature of Figure 5 is that none of the 
entries are equal 1.0! The closest we come to this classical value is 
1.030.  So, something non-classical is definitely going on here.  
Before launching into a detail discussion, several other features 
of Figure 5 should be pointed out: For each of the 8 M1/M2 com-
binations, the (ifi) values depart from 1.0 by a wider margin as 
the drop length increases.  Also, for each drop length, (ifi) in-
creases as the target mass, M2, decreases.  It is not difficult to 
figure out that in both of these cases, higher speeds are naturally 
being achieved during the course of a test run - in the first case 
owing to the greater amount of time the mass is subjected to the 
acceleration.  In the second case, less mass is being pulled along 
by the activator weight; consequently, higher speeds are 
achieved.  So, clearly, speed has something to do with the 
skewed data presented. 

The two big questions that must be addressed regarding Fig-
ure 5 data are: 1) why do the index values depart further and 
further from 1.0 as the speed increases? 2) The real $64 question 
is why the index numbers converge on the value of 1.030, rather 
than 1.0, as the speeds decrease toward the quasi-static case? 

Let us address the simpler question #1first.  As pointed out 
earlier, the independently measured frictional drag of the pulley 
includes the deforming and subsequent straightening of the con-
necting wire as it goes over the pulley in slow motion.  So, we see 
little or no deviation from 1.030 for the lower speeds in Figure 5 - 
those in the upper-right quadrant.  Now, as the speeds increase, 
as we proceed to the left or downward in Figure 5, the pulley 
rotation rate must naturally increase in these cases.  The higher 
rates of the deforming/reforming of the wire will quite naturally 
increase the heat dissipation in the wire above the quasi-static 
value.  This, of course, represents a small energy loss for the 
higher speeds which causes the acceleration to slightly decrease 
as a test run proceeds resulting in a higher value of (ifi) being 
assigned.  There is nothing non-classical in such a view. 

This interpretation was corroborated by substituting the 24-
gauge stranded/coated wire-of-choice with an otherwise iden-
tical 18-gauge stranded/coated wire that is obviously stiffer ow-
ing to its larger diameter.  This substitution has the consequence 
of first of all increasing the quasi-static pulley drag independent-
ly measured and used in (4).  Secondly, in these cases, the (ifi) 
values are generally higher (than the 24-gauge values) for the 
higher speed cases but still converge on a value of 1.030 for the 
upper-quadrant of Figure 5 – the ones with speeds closest to the 
quasi-static value. 

Now, a closer look at Fig. 5 reveals that something other than 
sheer speed is causing the index values to depart further from 

the 1.030 value of the slower speeds.  For example, the values in 
parentheses represent the average speed in m/s for each test 
case; and we see for the 4.5 kilogram row that only with speeds 
greater than ≈ .5 m/s does the index value begin to slightly de-
part from 1.030 (starting with a .5 meter drop, the index value 
goes to 1.031).  However for the 2.0 kilogram case (dropping .25 
meters), this same average speed is achieved but the index value 
is quite a bit higher (1.048).  The author’s interpretation of this 
phenomenon is that any connecting wire flexible enough to easi-
ly bend around the pulley will have some degree of elasticity - 
however small, it can not be zero.  When the carriage is first re-
leased, it will instantaneously begin accelerating.  The resulting 
drop in wire tension will be felt first at the carriage end of the 
wire and almost immediately reduce the M2 acceleration by a 
small amount.  However, within a few microseconds, this re-
duced tension will be transmitted along the wire and the M1 
mass will also begin accelerating and soon retighten the wire 
tension and in turn increase the acceleration of M2 again.  This 
elasticity effect will no doubt form a small saw-tooth wave pat-
tern riding on the acceleration profile.  The frequency and ampli-
tude of the waveform would seem to be a function of the trans-
mission speed of the reducing or increasing tension along the 
wire and also the length of the wire.  Nevertheless, it seems 
probable that the average acceleration will be reduced slightly in 
the process even though the wave will most probably dampen 
out quickly with a reasonably stiff wire.  The data suggests that 
this effect is most pronounced for the lighter M2 masses, which 
naturally experience the greatest acceleration and is even evident 
for the shorter drop lengths for them which, of course, have ap-
proximately the same acceleration as the longer drops.  The flat-
ter index values for the 4.5 and 4.0 kilogram cases indicate that 
this saw-tooth phenomenon does not occur for them in any mea-
surable way owing to smaller accelerations.  Test results indicate 
that acceleration above 1.0 m/s2 is required to produce this effect 
in an appreciable way. 

It is also noted that the index entries in the lower-left qua-
drant are experiencing the greatest acceleration and drop 
lengths; so, subsequent higher accelerations and speeds, well 
above 1.0 m/s2 and .5 m/s respectively, are produced.  They are 
getting a double dose of the retardation effects described above 
and consequently all have index values well above 1.030. 

Conclusions 
The answers to the 2nd question posed above are the only 

‘new’ phenomenon addressed here and therefore represents the 
only really interesting conclusions of this paper – unfortunately 
these answers are not nearly so clear-cut.   

First, there appears to be no known explanation (classical or 
otherwise) for this strange phenomenon; consequently any ‘con-
clusions’ are necessarily partly speculative.  However, they are 
also evaluated in the light of [1] and presented below, followed 
by a few additional remarks. 

The behavior of the test masses, M2, requiring an additional 
force to achieve any given acceleration, is similar to the way 
charged particles react – however, we are not dealing with 
charged particles here.  This behavior is also somewhat reminis-
cent of the result that mass-increase has – more force than the 
normal inertia (ma) is increasingly required at greater speeds in 
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order to achieve a known acceleration (even starting with minute 
relative speeds well below that of light.) In our case, however, 
the additional force is required immediately and remains a con-
stant throughout each test run; besides, any mass-increase at 

such small speeds in the usual sense, 2
0( ) 1 m m , is far 

below our ability to even detect, much less accurately measure, 
so it was ignored. 

If the interpretation of question # 1 above is correct, and the 
dynamic increase in pulley drag (above the quasi-static values) 
could be somehow eliminated, along with the somewhat jerky 
early acceleration of the lighter weights, it seems entirely reason-
able to project that all Figure 5 entries would be an index value of 
1.030 ± .005 rather than the classical 1.0.  This basically says that 
the force of inertia is 3% higher for mass having work done on 
it than is predicted by Newton’s Second Law.   

There will be a strong tendency to deny the possibility of this 
surprising phenomenon by saying it violates the gravitational 
mass/inertial mass equivalence (often called the weak equiva-
lence principle, WEP) that has been so well verified experimen-
tally.  But this complaint would be fallacious for two reasons: 1) 
The above results actually have little to do with gravity.  Even 
though we are using a gravitational force as the activator in each 
case, the target mass, M2 has no way of detecting or ‘sensing’ 
that gravity is ultimately causing it to accelerate.  In essence, M2 
is simply reacting to the electromagnetic force being exerted by 
the connecting wire tension; and this force could in principle be 
coming from any electromagnetic source doing real work on M2.  
2) The experimental data most often cited for confirming the 
mass equivalency mentioned is the Hungarian Baron Loránd von 
Eötvös experiments (and those that followed, e.g. Dicke, et al.).  
These highly accurate experiments measured the earth’s (or the 
Sun’s) gravitational pull on a small mass versus the centrifugal 
force caused by earth’s rotation of a similar mass attached with a 
finely tuned torsion balance.  Since we are talking about an iner-
tial force in the case of centrifugal force, no work was being done 
on the test masses.  Therefore, the present experiment has no 
bearing on these results and leaves Galileo’s assertion completely 
intact that all mass falls at the same rate. 

In addition to testing Newton’s Second Law for cases where 
work is being done, it would be much more accurate to say that 
the present experiment tests Einstein’s stronger equivalence 
principle rather than the WEP.  Richard C. Tolman [4] expressed 
in plain language the basic gist of Einstein’s extension:  “To obtain 
a precise expression of the principle, we may first consider the hypothet-
ical limiting case of a non-accelerating observer in a perfectly uniform 
gravitational field, as contrasted with a uniformly accelerated observer 
in a region of free space where the gravitational field can be neglected.  
In this case the principle of equivalence makes the definite assertion that 
the results obtained by the two observers in performing any given phys-
ical experiment will be precisely identical . . . .”  

So, now, by simply placing all the test masses in Figure 5 
above aboard a rocket that is that constantly accelerating in a 
straight line at 1g in free space, we will have to conclude that the 
measured ‘weight’ of each test mass will be 3% greater than the 
same stationary mass on earth! Why? Simply because in the case 
of the rocket, work is being done on the test mass and in the sta-
tionary case it is not! 

Now, the author hastens to add (as done in [1]) that in no 
way is a new force in nature being proposed here or that the laws 
of thermodynamics are somehow being violated.  In fact, it is 
contended that the ‘missing’ energy (≈ 3%) simply increases the 
internal energy of the mass having work done on it rather than all 
the available energy being added to its kinetic energy directly in 
the classical sense, work = force   distance = kinetic energy increase.  
So, the familiar form of Newton’s Second Law for these situa-
tions, f ma , becomes f (1.030) ma .  Furthermore, these re-
sults are in perfect harmony with the conservation of 
mass/energy and even the spirit (if not the letter of) the Second 
Law of Thermodynamics (L.O.T.2).  Among many other things, 
L.O.T.2 says that when work is done on mass, the internal energy 
is naturally increased.  Of course, non-rigid systems such as sta-
tionary gas containers with movable pistons are normally being 
discussed when this assertion is made.  L.O.T.2 also states that 
energy conversions can never be performed in a completely effi-
cient manner – hence entropy (often in the form of internal ener-
gy) must increase.  The author’s interpretation in essence just 
extends L.O.T.2 to include rigid systems having work done on 
them: increasing their kinetic energy, increases their internal 
energy also. 

Note: The author also contends that the so-called ‘energy 
loss’ of the revolving permanent magnet in [1] is just another 
demonstration of the above principle.  Follow-on research after 
[1] was published definitely indicates that after a series of test 
runs, the revolving ‘Hover-Craft’ does in fact experience an in-
crease in its internal energy.  This increase was manifested by a 
reduced flying height for a given circular electromagnet coil cur-
rent.  Quantum theory tells us that a higher internal energy level 
for a magnet is a demagnetized state.  It is also interesting to note 
that once this happened in [1], the data collected became much 
more erratic, i.e., the variability from run to run greatly in-
creased.  This same phenomenon occurs in the current experi-
ment.  In fact, there seems to be a window-of-opportunity of ap-
proximately two to three hours per day when solid, repeatable 
data could be collected.  Continuing to make test runs after this 
window was rarely fruitful – the mean elapsed times did not 
change appreciably but the variability certainly increased to the 
point of making the data untrustworthy.  It is as though the acce-
lerated mass became saturated (or just plain tired) and would not 
recover until the next day.  No such anomalous behavior was 
noted for the activator mass, M1.   

Additional Remarks 

As to the most frequently asked question, “how could some-
thing so easily demonstrable, remain obscured for so long?” the author 
can only offer some speculative possibilities: First, measurement 
of time intervals in seconds to 6 decimal places and beyond, only 
became possible with the advent of modern electronics.  This 
observation is most definitely not meant to berate the ingenuity 
of investigators prior to the 20th century - quite the contrary.  It is 
just that measurement of time intervals for physical motion with 
modern-day accuracy is simply inconceivable using any kind of 
mechanical timing device. 

It also seems completely conceivable that if an accurate de-
termination of frictional losses is not separately cared out 
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through actual measurements apart from ‘live’ test runs of any 
configuration, the anomalous behavior noted in this paper could 
easily be obfuscated and simply written off as ‘normal’ frictional 
losses that were perhaps under estimated.  To do otherwise is to 
challenge a theory that has been extraordinarily successful for 
over 400 hundred years - notwithstanding modifications by rela-
tivity and quantum theory in their separate realms.  Researchers 
with reputations and future grants to protect cannot be blamed 
for giving Newton any possible benefit of the doubt. 

Another possibility is that given the spectacular success of 
Newton’s laws in the celestial realm, it seems like a natural ex-
tension to equate gravitational mass with inertial mass and use 
the same laws to describe both; gross observations certainly 
seemed to suggest that this was true.  Newton obviously could 
not show analytically (or experimentally other than with pendu-
lums) that this was the case and is said to have considered it a 
curiosity or lucky accident of nature and left it at that.  As time 
progressed, this notion became so entrenched, that to question 
one was to question the other, which, of course, was unthinkable.  
Until Albert that is! Einstein seemed willing to question any and 
everything classical.  However, rather than questioning the 
equating of the two masses, he further solidified the idea.  Not 
only did he say that it was more than a curiosity or lucky acci-
dent, he said it was a necessary consequence of the fact that grav-
ity and acceleration are one and the same thing!  This experiment 
and [1] argue otherwise. 

One last thought on this question is another question, “how 
could Aristotle’s intuitively obvious and logical - yet grievously 
incorrect - assertion that heavier bodies fall faster remain so firm-
ly entrenched for 2 thousand years, to the point of becoming 
dogma?” It took the great courage of Galileo to finally set the 
record straight and place us on the path of physically verifying 
principles, even our most sacred beliefs.   

The second most frequently asked question is, “how does this 
help us?” Well, predicting future ramifications of modifying fun-
damental physical theories becomes even more speculative – but, 
let us try it anyway.  If Einstein’s Equivalence Principle (EP) is 
invalid, most (if not all) of modern cosmology is truly up in the 
air.  This is the case because EP is the very cornerstone of the 
General Theory of Relativity, the heart and soul of modern-day 
celestial mechanics.  Consequences, from the Big Bang all the 
way down to the existence of Black Holes could very well be 

brought into question.  Also given the seminal nature of classical 
mechanics and its longevity, many areas of science use this mod-
el in one form or another – who knows where that degree of re-
thinking could one day lead.  The possibility this writer finds the 
most exciting is the prospect of this revelation pointing the way 
to new sources of cheap, clean and readily available energy 
which the world desperately needs to power the 21st century.  If, 
for example, we can increase the internal energy of mass without 
the need for adding prodigious amounts of heat energy, nuclear 
fusion (both hot and cold) could possibly be made more econom-
ically achievable.  The sky literally seems like the limit here. 
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