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A simple and rigorous proof of the Sagnac effect for the most general value of the synchronization pa-

rameter e1 is given. If in the final result one adopts the relativistic e1 one can see that the relativistic theory is in-
compatible with the experimental evidence. Only the theory with e1 = 0 predicts correctly the Sagnac effect. Of 
course the obtained results depend on the assumptions made, which look rather safe however. 

 

1. Introduction 

In the 1913 Sagnac experiment [1] a platform rotated uniform-
ly at a rate of 1-2 rot/sec. In an interferometer mounted on the 
platform, two interfering light beams, reflected by mirrors, prop-
agated in opposite directions along a closed horizontal circuit.  
The rotating system included also the luminous source and a 
photographic plate recording the interference fringes.  Sagnac 
observed a shift of the interference fringes every time rotation 
was modified. This shift depends on the relative time delay t , 
object of our calculations, with which the two light beams (better: 
localized light pulses) reach the detector. 

Authoritative attempts at explaining the Sagnac observations 
in terms of the relativistic theories were made by Langevin [2], 
Post [3] and Landau and Lifschitz [4], but they all found it im-
possible to carry through a purely deductive argument and add-
ed arbitrary additional assumptions with a big loss of generality.  
Almost a century after the 1913 discovery of the Sagnac effect no 
justification of it exists based on special and/or general relativity. 
Hasselbach and Nicklaus (1993) list about 20 different “explana-
tions” of the effect and comment: 

“This great variety (if not disparity) in the derivation of 
the Sagnac phase shift constitutes one of the several contro-
versies ... that have been surrounding the Sagnac effect since 
the earliest days of studying interferences in rotating frames 
of reference.” [5] 

In recent years the Sagnac effect finally received a complete 
explanation from a theory based on absolute simultaneity, weak 
relativity [6].  At the same time it became clear why the TSR is 
unable  to explain the effect, but very few people accept these 
conclusions.  At least partly there is a problem of clarity of the 
quoted paper and the present lines are directed at making the 
arguments of [6] as clear as possible. 

2. The First Six Assumptions 

1. An isotropic inertial frame 0S  exists such that relative to 0S  

the velocity of light is “c” in all directions. 

 In 0S  clocks are synchronized with the Einstein method; 

 one way velocities relative to 0S  can be measured. 

2. Space is homogeneous-isotropic and time homogeneous, at 
least for observers at rest in 0S . 

3. Considering a second inertial frame S we assume that the 
origin of S, observed from 0S , moves according to the equa-

tions 0 0x Vt , 0 0 0y z  . 

4. The Cartesian axes of S and 0S  coincide for 0 0t t  . 

We add two assumptions based on solid empirical evidence [6]: 

5. The two way velocity of light is the same in all directions and 
in all inertial frames. 

 2( )  c c   (1) 

6. Clock retardation takes place with the usual factor R if calcu-
lated with respect to 0S : 

 2 21R V c   . (2) 

It should be stressed that the TSR satisfies all these assump-
tions. Usually one takes for granted the validity of the first four. 
The two famous postulates of the TSR (relativity principle and 
invariance of light velocity) are here replaced by the weaker as-
sumptions 5 and 6. 

3. The Seventh Assumption 

A further assumption, often left implicit, is the so called “ac-
celeration hypothesis” (AH).  We use the AH for a rotating plat-
form, but its extension to any type of acceleration frame is 
straightforward.  It works in two ways, either one applies to the 
accelerated frame the physical properties of a corresponding in-
ertial frame, or one extends to the inertial frame the physics de-
veloped locally in the accelerated frame.  It is well known that 
Einstein developed the general theory of relativity by introduc-
ing an active role of acceleration via a conjectural “gravitational” 
potential of the fictitious forces [7].  Thus he contradicted the AH, 
which he had used in 1905 [8] in the case of the clock paradox. 
More recent results, especially those by Builder [9], Prokhovnik 
[10], Selleri [11] and Unnikrishnan [12], have however led to the 
conclusion that the conjectural gravitational potential of the ficti-
tious forces cannot have any effect on the time marked by the 
clocks. 

An assumption concerning the propagation of light relative to 
accelerated frames is clearly needed since a priori we have no 
information about this side of relativistic physics.  The empirical 
evidence shows that accelerations do not produce physical phe-
nomena.  For example, the CERN muon storage ring experiment 

[13] shows that an acceleration as large as 1810 g does not modify 
appreciably the muon lifetime.  In the same experiment was in-
stead very visible the effect of velocity, with an increase of the 
muon lifetime from   to 0  by a factor of about 28 according to 

 0 R   , (3) 
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where R is given by (2). This growth is exactly equal to the life-
time increase of a linear beam of muons having the speed v. It is 
evident that accelerations are no protagonists of the game of 
physics. One could half jokingly say that accelerations do not 
exist, as they are only velocity variations. 

Very different is the case of velocities, which are easily recog-
nized as cause of important phenomena.  In every small region 
  of the rotating platform one can imagine an associated accel-
erated frame A in which is constantly at rest, and a co-moving 

inertial frame I in which  is instantaneously at rest such that a 

statement about physics correct in  , thought  as a part of A  

must be correct also in I  and vice versa.  This is the AH. 

Velocity is space divided by time.  If the length of a rod and 
the rate of a clock are both not modified by acceleration, the AH 
must be correct when applied to a speed, such as the speed of 
light.  As far as the present author knows, a dependence of 
length on acceleration has never been proposed, so that, adding 
Einstein’s 1905 considerations on clock rate invariance under 
changes of acceleration, the invariance of velocities under chang-
es of acceleration seems a safe assumption.  Therefore let us con-
sider a concrete application of the AH to the velocity of light. 
According to the theory of relativity in an inertial system I  the 

velocity of light is c in all directions.  Therefore, using the AH, 
the velocity of light has to be c in all directions independently of 
disk rotation, also relative to A .  In this way, however, the two 

light pulses moving in opposite directions along the disk border 
cross a long set of   regions, all at speed c, and need the same 
time to complete the tour, so that the Sagnac effect goes to zero, 
contrary to empirical evidence. 

Having excluded the existence of direct consequences of ac-
celerations, we can extend the negative conclusions to indirect 
consequences.  In particular the resolution of the clock paradox 
offered by the TGR is invalid.  There is no gravitational potential 
of the fictitious forces.  As is well known, the general relativistic 
effect hypothesized by the TGR is not on the accelerating system, 
but on the other systems participating in the ideal experiment 
with a static role.  If this idea were correct there should be also an 
effect of the acceleration of the storage ring muons on other low 
energy muons eventually present in the laboratory.  But nothing 
of the type has ever been seen and the very proposal of such an 
idea idea makes it sound very unlikely. 

4. The Equivalent Transformations 

The first six assumptions determine the transformations of 
the space and time variables from 0S  to S to have the form of the 

“Equivalent Transformations” (ET) [6] 

 0 0 0 0 0 1 0 0x x vt R y y z z t Rt e x vt   
   
           (4) 

Reichenbach and Jammer believed that the parameter 1e  is 

free and can be fixed conventionally by synchronizing clocks in 
S.   Sometimes 1e  is called “synchronization parameter”. We will 

see, however, that far from being free 1e  must be zero. 

The one way velocity of light consequence of the ET is then: 

 
 1

1 1 cos
c c




 
  (5) 

where   is the angle between light propagation direction in S 
and absolute velocity of S.  The parameter is given by: 

  1
V

c e R
c

    (6) 

Of course in the TSR one must have 

  1 1 20
V

c c e
c R

        (7) 

The Eqs. (4) represent the set of theories “equivalent” to the 
TSR: if 1e  is varied different theories are obtained.  According to 

the Reichenbach-Jammer conjecture they should be equivalent 
for the explanation of experimental results. 

Most textbooks deduce the Sagnac formula in the laboratory, 
but say nothing about an observer on the rotating platform.  Spe-
cial relativity is self-contradictory, as it predicts a null effect on 
the platform, but a nonzero value if the platform rotation is stud-
ied from the laboratory.  Many other theories predict a wrong 
result.  Only the theory with 1 0e   gives the right answer. 

5. Laboratory / Disk Connections 

Consider a clock, marking time t, fixed in a point of the mov-
ing inertial system S.  Seen from 0S  it satisfies the equation 

 0 0 0x vt x   , (8) 

where 0x  gives the clock initial position.  Substituting 0x  into 

Eq. (4) we get 

 0x x R  (9) 

(giving the fixed x of the clock in S) and 

 0 1 0t Rt e x   . (10) 

Consider two events taking place at different times in the 
same point of S. Clearly we must write the previous equation 
twice, the first with and1 01  t t , the second with 2t  and 02t : 1 and 

2 distinguish the two events.  By subtracting these two equations 
side by side and defining 2 1t t t    and 0 02 01t t t    we get 

 0   t R t  . (11) 

Naturally, Eq. (11) is predicted by all ET theories, including 
the TSR, in case of uniform motion, as it is clear from the previ-
ous derivation.  Exactly here comes into play the idea that accel-
erations have no role in modifying the speed of light. 

Applying the acceleration hypothesis Eq. (11) is taken to hold 
also for a clock on the rim of a disk rotating with velocity v .  The 
general philosophy behind this assumption is that every small 
portion of the circumference of the rotating platform is instanta-
neously at rest in a co-moving inertial frame of reference locally 
“tangent” to the disk and must share its properties.  There is ex-
cellent experimental evidence that this assumption is correct, e.g. 
with the CERN muons [13]. 

A similar reasoning applies to the Lorentz contraction. Con-
sider a rod at rest on the x-axis of the inertial frame S.  Let x   

2 1x x  and 0 02 01x x x    describe the rod length with respect 

to the S and 0S  frames, respectively.  If Eq. (4) are written twice, 

with indices 1 and 2, we can subtract the two sets of equations 
from one another and get the transformation for space intervals. 
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 0x x R    (12) 

Applying once more the acceleration hypothesis, the validity 
of Eq. (12) can be shown to hold also for a curvilinear rod on the 
rim of a disk rotating with peripheral velocity v .  Moreover, if 
the curvilinear rod has length exactly the circumference along the 
platform rim, where we imagine the propagation of light to take 
place, we can set x L   and 0 0x L  , so that Eq. (12) becomes 

 0L L R  (13) 

This is the Lorentz contraction for the circular rim of the plat-
form. In words: the circumference length of the rotating platform 

0L , measured by co-rotating observers, equals the (contracted) 

circumference length L measured by observers at rest in the la-
boratory divided by the Lorentz contraction factor R. 

6. Sagnac Effect Seen from the Laboratory 

We are interested in the application of (11) and (13) to the 
Sagnac situation.  Consider a light source  , placed on the disk, 
emitting two pulses of light in opposite directions.  The descrip-
tion of light propagation given by the laboratory observers is the 
following:  two light flashes leave   at time 0 0t .  The first one 

propagates on a circumference, in the sense discordant from the 
platform rotation, and returns to  at time 01t after circling around 

the platform.  The second flash propagates on the same circum-
ference, in the sense concordant with the platform rotation, and 
comes back to   at time 02t  after circling around the platform. 

The circular path can be obtained by forcing light to propa-
gate tangentially to the internal surface of a cylindrical mirror. 
Most textbooks deduce the Sagnac formula (our Eq. (16) below) 
in the laboratory, but say nothing about the description of the 
phenomenon given by an observer on the rotating platform: we 
will see that the theory of special relativity predicts a null effect 
on the platform, while the inertial transformations give the right 
answer. For simplicity we will assume that the laboratory is at 
rest in the privileged frame. 

Pulse propagating in the direction opposite to rotation: the 
disk circumference length 0L  closes with velocity c v .  Then 

 0
01

L
t

c v



 (14) 

Pulse propagating in the rotational direction: the disk circum-
ference length 0L  closes with velocity c v .  Then 

 0
02

L
t

c v



 (15) 

From the two previous results it follows 

 0 0
0 02 01 2 2 2 2 2

2 2

1

L Lv v
t t t

c v c c R
    


 (16) 

This is essentially the Sagnac formula, very easily deduced in 
the laboratory (taken to coincide with the privileged system). It is 
in good agreement with the experimental results. 

7. The Sagnac Effect Seen from the Disk 

On the disk, we consider only cases of light moving parallel 
( 0  ) and antiparallel (  ) to the local absolute velocity. 

Then, the inverse velocities of light concordant and discordant 
with disk rotation have to satisfy Eq. (5) and are respectively 
given by 

 
   1 1

1 1 1 1
;

0c c c c
   

   (17) 

These formulae represent a second application of the accelera-
tion hypothesis: in all ET theories the inverse velocity of light is 
given by (17) independently of the acceleration of the platform 
frame. If the circumference length measured on the disk is L we 
have 

 
   1 2

1 1
;

0
L L

t t
c c 

   (18) 

Therefore 

 2 1
2L

t t t
c


     (19) 

This result, unlike (11) and (16), depends on   and then on 

1e . This is the reason why requiring the consistency of the equa-

tions (11) – (16) – (19) gives the right value of 1e . 

8. Comparison 

The comparison of 0t  and t  should of course take into ac-

count the laboratory/disk connection of Eq. (4).  By taking the 
ratio (19)/(16) we get 

 
2 2

0

2
2

L c R
R

c L v


  (20) 

or, if (20) is applied 

 11 0
c

e
v

     (21) 

This is the anticipated result: only absolute simultaneity al-
lows us to understand the Sagnac effect. 
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