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Abstract: Protein sequences classification is an important problem in 
molecular biology, and it has long been a goal for scientists and researchers. 
This paper describes an approach to data-driven discovery of sequence motif-
based models using neural network classifier based on Dempster-Shafer 
Theory for assigning protein sequences to functional families. A training set of 
sequences with unknown functional family is used to capture regularities that 
are sufficient to assign the sequences to their respective families.  
       A new adaptive pattern classifier based on neural network and Dempster–
Shafer theory of evidence developed by Thierry Denoux1 is presented. This 
method uses reference patterns as items of evidence regarding the class 
membership of each input pattern under consideration. This evidence is 
represented by Basic Belief Assignments (BBA) and pooled using the 
Dempster’s rule of combination. This procedure can be implemented in a 
multilayer neural network with specific architecture consisting of one input 
layer, two hidden layers and one output layer. The weight vector, the receptive 
field and the class membership of each prototype are determined by 
minimizing the mean squared differences between the classifier outputs and 
target values. 
Keywords:  functional family, protein sequence, neural networks, Dempster-
Shafer theory. 

 
 

1. Introduction 
 

The last few years have witnessed consistent improvements in information retrieval, classification 
and analysis of the proteins and DNA sequences.2  Early work on protein pattern recognition3 suggested 
that subsequences of amino acids may be conserved in a protein family. 
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Using this observation, many approaches have been taken to discover these conserved regions and 
using them for protein function prediction.  Currently, using these tools several databases have been 
developed to store these motifs. Examples of such databases include: Prosite4, Pfam5, and Prints6 
databases.  One method for protein prediction is to query these databases to see if a protein contains any 
motifs in the database.  The database then returns a function corresponding to any motif found in the 
protein.  Sometimes a protein can contain several motifs.  So an alternative approach would be to look at 
the presence or absence of an arbitrary number of combinations of motifs to determine protein function. 
Unlike approaches that try to classify protein sequences based on detecting a single motif within the 
sequence. This research describes an approach to data-driven automated discovery for assigning protein 
sequences to functional families based on the motif composition of the sequences. 
 
 
2. Methodology 
 

The basic computational problem we seek to address is that, given a database or training set of 
amino acid sequences that code for proteins with known function, our goal is to induce a classifier that 
would be able to assign novel protein sequences to one of the protein families represented in the training 
set.  The basic approach is illustrated in Figure 1. 
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Figure 1: Protein sequences with known functions are divided into a training dataset and a testing dataset, 
respectively. Belief Neural Network algorithm is used to build a classifier using the training dataset. Classification 
accuracy of the belief neural network is determined using the testing dataset. Finally, the classifier will be used to 
assign novel protein sequences to known functional families based on the proteins’ motif compositions. 
 



2.1 Data Preparation 
 

The Prosite database contains over 1100 entries.  Each entry describes a function shared by some 
proteins.  In this paper, one Prosite documentation entry corresponds to a protein class. The protein 
classes considered in this study are shown in Table 1, for clarity of presentation, the Prosite 
documentation ID, i.e., the PDOCxxxxx number, was used to represent that class.  Similarly, the Prosite 
access number, i.e., the PSxxxxx number, was used to represent that motif pattern or profile.  In the 
Prosite database, a protein motif can be a regular expression (defined over the 20 amino acid alphabet), 
called pattern, or a weighted matrix (built on alignment of multiple protein sequences), called profile.  
 
Table 1: The training sets of the protein classes considered in this study.  
 
Accession Number  Family Document Class 
PS00847, PS50051 PDOC 00662 Class of DNA or RNA associated proteins 
PS 00066, PS 00318 
PS 01192, PS 50065 

PDOC 00064 Class of oxidoreductases) 

PS 00862 PDOC 00670 Class of transverses 
PS 50007, PS 50008 PDOC 50007 Class of hydrolase’s 
PS 00170, PS 50072 PDOC 00154 Class of isomerase’s 
PS 00411, PS 50067 PDOC 00343 Class of structural proteins 
PS 00652, PS 50050 PDOC 00561 Class of receptors 
PS 00251, PS 50049 PDOC 00224 Class of cytokines and growth factors 
PS 00299, PS 50053 PDOC 00271 Class included in the catch-all "Others" category 

 
 

Each protein class can be characterized by one or more characteristic motif patterns and/or profiles. 
For example, class PDOC00670 has two characteristic motifs, PS00856 a pattern and PS50052 a profile. 
Protein sequences containing any of the characteristic motifs of a functional class were collected and 
labeled as belonging to that class.  Each collected protein was then processed by the profileScan program 
to determine its motif composition. Only the motifs that were identified as significant matches by 
profileScan were chosen. This analysis identified additional motifs in the sequences besides the ones 
designated as the characteristic motifs for the family associated with each sequence. Thus, each protein 
sequence was represented using binary attributes with each attribute denoting the presence or absence of 
the corresponding motif in the sequence.  The presence of a known motif is presented by 1 or 0 otherwise 
(see Figure 1).  Experiments in this paper were carried out mainly with proteins in this data set. 
 
2.3 Denoeux Beliefs Neural Network Pattern Classifiers 
 

An adaptive version of this evidence-theoretic classification rule is proposed.  In this approach, 
computing distances to a limited number of prototypes, resulting in faster classification and lower storage 
requirements, makes the assignment of a pattern to a class.  Based on these distances and on the degree of 
membership of prototypes to each class, BBAs is computed and combined using Dempster’s rule. This 
rule can be implemented in a multilayer neural network with specific architecture consisting of one input 
layer, two hidden layers and one output layer. The weight vector, the receptive field and the class 
membership of each prototype are determined by minimizing the mean squared differences between the 
classifier outputs and target values. 

Denoeux Belief Neural Network DBNN is a classifier based on the Dempster-Shafer theory of 
evidence. It uses training patterns as items of evidence for the class membership of each test pattern under 
consideration Figure 2.  The evidence is represented by basic belief assignments (BBAs) and combined 
using the Dempster’s rule.  It is implemented in a multilayer neural network with one input layer, two 



hidden layers (activation and combination layers) and one output layer. 
 

im1

:
:

im2

i
Mm

i
Mm 1+

1
1m

:
:

1
2m

1
Mm

1
1+Mm

2
1m

:
:

2
2m

2
Mm

2
1+Mm

3
1m

:
:

3
2m

3
Mm

3
1+Mm

2
1h∑

:
:

2
2h∑

2
Mh∑

2
1+∑ Mh

∏

∏

∏

∏

∏

∏

∏

∏

∏

∏

∏

∏

∏

∏

∏

∏

∏

∏

∏

∏

3
1h∑

:
:

3
2h∑

3
Mh∑

3
1+∑ Mh

1
1

−∑ ih

:
:

1
2
−∑ ih

1−∑ i
Mh

1
1

−
+∑ i

Mh

ih1∑

:
:

ih2∑

i
Mh∑

i
Mh 1+∑

∏

∏

∏

∏

∏

∏

∏

∏

∏

∏

:
:

Output
Layer

1x

2x

yx

:
:

1s

:
:

2s

is

3x
3s

1

1

1

1

iu2

iu1

i
Mu

1−

1−

3
2u3

1u

3
Mu

1−

2
1u

2
2u

2
Mu

1
1u 1

2u

1
Mu

1−

1
1p

2
1p

3
1p

ip1

3
2p

ip2

2
2p

1
2p

3
3p

ip3

2
3p

1
3p

3
yp

i
yp

2
yp

1
yp

Input
Layer

Activation
Layer

BBA Combination Layer

 
Figure 2.  Denoeux Belief Neural Network (DBNN) Architecture 

 
• x: input to the network (test input or training input). 
• y: number of input nodes. 
• p: prototype, representing a number of k nearest previously trained input to the current tested input. 

− Prototypes are the representation of the k-nearest neighbors of the trained input to the test 
input in a simpler form to avoid computational complexity. These nearest neighbors are 
selected from the entire collection of the trained data. Where k is the number of nearest 
neighbors we want. However, in this network we need not set the value of k because it is not 
used since the neighbors are already represented by the prototypes, instead we set the number 
of prototypes we want. During training, p is adjusted to minimize the output error. 

• i: number of prototypes for each input node (we set this value). 
− There are a total of i x y number of prototypes in the network. The value of i must be less than 

the number of available training samples. The higher the value of i, the easier it is for the 
network to converge, but the accuracy of test input classification may be affected. 

• j: current prototype number under consideration, as in pj. 
• s: the activation function. 

− For 1 ≤ j ≤ i:   ))()(exp( 22 jjjj ds ηα −=

where, 
η: a parameter which is adjusted to minimize the output error during training. 
d: the distance between the tested input, x to the prototype, p 
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α: a parameter which is adjusted using ξ during training to minimize the output error. 

)exp(1
1

j
j

ξ
α

−+
=  
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where, 
β: a parameter which is adjusted during training to minimize the output error. 

• : the BBA mass. j
qm

− It is the product of weight, u  and activation function, sj. j
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• The normalized output of the network, oq is denoted by, 
− for 1 ≤ q ≤ M: 
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− The class q with the highest oq value is selected as the prediction output. 



• Output error for the training sample, z is given by, 
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where, 
Tq: the target output for class q. 
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• Mean output error for N number of training samples is given by, 
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− E is minimized with respect to p, η, ξ and β. The derivatives of E with respect to the 
parameters are provided in reference 7. Convergence to a local minimum of the error function 
can be ensured using iterative gradient-based optimization procedures described in reference 
8. 

 
3. Experiment and Results 
 

In addition, a set of 73 proteins collected from another five classes was also used in one experiment 
(Table 2).  Using a procedure similar to the one described above for the data set with 9 protein families, 
each of the 73 protein sequences was represented using 9 binary attributes with each attribute denoting 
the presence or absence of a motif. Performance compared to existing statistical and neural network 
techniques. It has proved extremely robust to strong changes in the distribution of input data. This 
advantage is extremely useful in the protein function prediction problem as the input data is volatile. 
Furthermore, it can reject the pattern under consideration if the associated uncertainty is too high, thus 
allowing implementing efficient novelty detection procedures. 
 
Table 2: The training sets of the 5 protein classes considered in this study. 
 

Family Document Class 
PDOC00360 Poly [ADP-Ribose] Polymerase, PPZF 
PDOC00295 DNA Ligase, LIGASE 
PDOC00605 Guanine Releasing Factor, GRF 
PDCO50003 Cytoskeletal protein, CYTO 
PDOC00463 Yeast Transcription activator, ACT 

 
 
Five hundred and eighty five proteins belonging to one of the 10 classes (the false positive proteins 

from all of the 10 protein classes) were used in this experiment.  Subsets of proteins were randomly 
picked from the 585-protein pool as the training samples. The sizes of the training sample sets were 11, 
20,29,58,117,175,234,294,351, and 585 proteins.  For a given training set size, the experiment was 
repeated three times using a different randomly sampled training set in each case.  After DBNN classifier 
was built using a training set, all 585 proteins were used as the test set to determine classification 
accuracy of the resulting DBNN.  The results shown in Figure 3 indicate that with only 10% of the total 
protein samples, DBNN could be constructed to classify proteins with an accuracy of 95%.  
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Figure 3:  Effect of training set size on classification accuracy. 

  
Each protein class, defined according to a Prosite documentation entry, it represented by one 

or more characteristic motifs.  On the other hand, each motif is associated with a unique 
documentation entry, i.e., a protein class.  Analysis of the DBNN used in this experiment indicated 
that the characteristic motifs of a protein class played a critical role in classification. On the surface, 
this might raise the question as to whether DBNN offer anything beyond a simple query of the 
Prosite database with the characteristic motif.  However, a closer examination of the DBNN used by 
the algorithm indicates that there are situations in which the combinations of motifs that are used by 
the DBNN for separating the various families are different from the documented characteristic 
motifs for the corresponding families.  Furthermore, the false positives generated by the DBNN are 
significantly fewer than those resulting from a Prosite search using the characteristic motif for each 
family. There were totally 11 false positive proteins from the 9 classes based on querying the 
Prosite database. The number of false positives resulting from the use of the DBNN trained using 
training sets of different sizes is shown in Figure 4. 
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Figure 4: The number of false positives resulting from the use of the DBNN trained using training sets of 
different sizes. 
 

The results show that the number of false positive classifications using DBNN falls below that 
resulting from Prosite search using characteristic motifs for training set sizes greater than or equal 
40% of the data set.  The number of false positives approaches zero as the fraction of the data set 
used for training approaches 100%.  This suggests that DBNN program in fact discovers regularities 
among protein sequences that belong to a functional family that are not captured explicitly by their 
characteristic motifs as documented in the Prosite database. 

To further explore this issue, a second data set of 73 protein sequences drawn from five 
classes (see Materials and Methods section for details) were used to build a DBNN classifier. The 
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protein classes were chosen such that there were significant overlaps among the families in terms of 
their motif composition. For example, motif PS50010 (GRF_DBL) is present in proteins belonging 
to both classes PDOC00605 (GRF) and PDOC00360 (PPZF).  In this scenario, querying the Prosite 
database with a single characteristic motif would result in a high rate of false positives.  However, 
the DBNN classifier built by using randomly sampled training instances from this data set resulted 
in highly accurate assignment of sequences to the data set, the classification exceeded 96% when 
the size of the training set was greater than or equal to 22 (Figure 5).  When the classifier was 
trained with 58 or more sequences (representing 80% or more of the data set) every sequence in the 
data set was correctly assigned to the corresponding functional family by the resulting sample 
DBNN constructed using a training set of size 58 is shown in Figure 3.  DBNN distinguishes 
proteins belonging to class PDOC00360 from those belonging to class PDOC00605 based on the 
presence of PS50064 (PARP_ZN_FINGER_2) motif in the former but not in the latter although 
both families contain the PS50010 (GRF) motif. 
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Figure 5.  Result of classifying proteins containing common motifs. 

 
The previous experiments demonstrate the effectiveness of the proposed approach in 

constructing fairly accurate models that capture regularities that help to accurately classify 
sequences belonging to different functional families. The extracted regularities are in form of 
combinations of motifs that are present or absent in the respective sequences.  The accuracy of the 
resulting classifier exceeds that obtained by querying the Prosite database with the characteristic 
motif for each family.  However, the real utility of the data-driven approach to building classifiers 
for functional classification of protein sequences would be in assigning novel sequences (with 
unknown function) to one of the known functional families.  Conclusive demonstration of this 
would entail verifying the predictions of the classifier through biological experiments.  However, 
we can assess the usefulness of the proposed approach in this context by systematic computational 
experiments where the predictions given by DBNN are compared with the (known) correct 
classifications on a part of the data set that is not used in training.  

 
 

4. Discussion and Future Directions 
 

Translating the recent advances in high throughput data acquisition technologies in biological 
sciences into fundamental gains in scientific understanding of biological processes calls for the 
development of sophisticated computational tools for characterization and prediction of 
macromolecular structure-function relationships. In this paper, we have presented an application of 
the DBNN learning algorithm for building protein sequence classifiers for assigning protein 
sequences to one of several functional families using a training set of sequences that are labeled 
with their corresponding functional families. The experimental results presented in this paper show 

 8



 9

that resulting DBNN classifiers are able to generalize well on test sequences that were not part of 
the training set. Furthermore, DBNN provides more accurate models of protein functional families 
than those based on characteristic motifs for some of the families documented in the Prosite 
database. Examination of the resulting DBNN indicates that the algorithm is able to discover from 
the data, the presence or absence of combinations of subsets of motifs that distinguish sequences 
belonging to each functional family from sequences belonging to other functional families 
represented in the training data. In particular, DBNN is able to identify interactions among motifs 
that can be quite far apart from each other with respect to their positions in the sequence. Such 
interactions might have a critical influence on the 3-dimensional structure and function of the 
protein. 

Like any data driven technique, the proposed approach relies on the availability of 
representative sequences corresponding to proteins with known function for building the classifier. 
When such data is available, the proposed approach can be quite effective in assigning putative 
functions to novel sequences.  This can serve as a useful source of information for guiding focused 
biological experiments.  

Future work involves incorporating biological information into the model. Another direction 
for the future work involves systematic comparison of different machine learning algorithms for 
building predictors of protein function from sequence data; evaluation of the effectiveness of 
alternative approaches to motif detection in conjunction with different learning algorithms for 
building such predictors; and integration of the resulting tools with visualization routines for 
exploratory analysis of macro-molecular structure-function relationships. 
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