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Abstract: Functional annotation of new gene sequences is an important 
challenge for computational biology systems. While much progress has been 
made towards improving experimental methods for functional assignment to 
putative genes, most current genomic annotation methods rely on 
computational solutions for homology modeling via sequence or structural 
similarity. With the increasing number of computer methods available for 
protein remote homologies detection, a comparative evaluation of the methods 
from biological prospective is warranted. This study uses benchmark SCOP 
dataset to test and compare the ability of five different computational methods 
for protein homologies detection. The results provide insight to biologist as to 
usage, value, and reliability of the numerous methods available. 
Keywords: Homology detection, hidden Marko model, protein classification, 
support vector machines 

 
 

1. INTRODUCTION 
The last decade has witnessed a consistent effort in sequence biological information 
retrieval, caused in part by technological breakthroughs in large-scale sequencing and the 
human genome project. The main challenge facing modern biology is to interpret this newly 
generated sequence data, and perhaps most significantly, in the short term, to assign function 
to many putative gene predictions. Many approaches have been presented for the protein 
classification problem, including methods based on pairwise similarity of sequences profiles 
for protein families (Gribskov, 1987), BLAST (Altshul et al. 1997), Fasta (Pearson & 
Lipman 1998), consensus patterns using motifs (Bairoch, 1991; Attwood, 1998) and hidden 
Markov models SAM (Hughey, 2000), (Krogh, 1994), (Jaakkola, 2000). Most of these 
methods are one of the following:  
 

• Generative approaches: the methodology involves building a model for a single 
protein family and then evaluating each candidate sequence to see how well it fits the 
model.  
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• Discriminative approaches take a different point of view: protein sequences are seen 
as a set of labeled examples {positive if they are in the family and negative 
otherwise} and a learning algorithm attempts to learn the distinction between the 
different classes.  Both positive and negative examples are used in training for a 
discriminative approach, while generative approaches can only make use of positive 
training examples. One of the most successful discriminative approaches to protein 
classification is the work of the fisher kernel method (Jaakkola et al. 1999) for 
detection of remote protein homologies. In this paper we use benchmark SCOP 
dataset to test and compare the ability of five different computational methods for 
protein homologies detection. 

 
2. PROTEIN HOMOLOGIES DETECTION METHODS 
Protein sequences are very difficult to understand and model due to their complex random 
length nature. Various statistical models have been developed to measure the similarity 
between two sequences. This has been driven by the goal of attempting to group proteins 
with similar function together. In this study five methods were included. Brief descriptions 
of each program are provided below: 
 
BLAST (Altschul, 1997), is an approach to rapid sequence comparison, basic local 
alignment search tool (BLAST), directly approximates alignments that optimize a measure 
of local similarity, the maximal segment pair (MSP) score. The basic algorithm is simple 
and robust; it can be implemented in a number of ways and applied in a variety of contexts 
including straightforward DNA and protein sequence database searches, motif searches, 
gene identification searches, and in the analysis of multiple regions of similarity in long 
DNA sequences. In addition to its flexibility and tractability to mathematical analysis, 
BLAST is an order of magnitude faster than existing sequence comparison tools of 
comparable sensitivity. 
 
HMMER (Eddy 1995), is an implementation of profile Hidden Markov Model (HMM) 
methods for sensitive database searches using multiple sequence alignments as queries. 
Basically, you give HMMER a multiple sequence alignment as input; it builds a statistical 
model called a "hidden Markov model" which you can then use as a query into a sequence 
database to find (and/or align) additional homologues of the sequence family. 
 
SAMT98, (Hughey 2000), is a linear HMM that implements the Baum-Welch algorithm. 
The estimated parameters are the transition and observation probabilities. Once the method 
converges, a multiple alignment can be created and the homologies detected. 
 
SVM- Fisher, (Jaakkola 2000), this method is mainly designed to find all the proteins which 
belong to a particular superfamily. A generative HMM is used as a way of extracting 
features from the variable length protein sequences. This HMM represents the super family 
of interest and is trained on sequences from that family. Positive and negative training 
sequences are then run through the model, and the feature vectors produced which represent 
the original protein sequences can then be modeled in Euclidean space. A general 
discriminate method in this case was Support Vector Machine SVM is then used to classify 
the data points into the super family of interest. Test sequences can then be run through the 
model and the discriminate method can then be used to classify the protein sequence. 
 
SVM-Motif (Logan, 2001), this method relies on combining probabilistic modeling and 
supervised learning in high dimensional feature spaces. The system uses a transformation 
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that converts protein domains to fixed-dimension representative feature vectors, where each 
feature records the sensitivity of each protein domain to a previously learned set of ‘protein 
motifs’ or ‘blocks.’ Subsequently, the system utilizes SVM classifiers to learn the 
boundaries between structural protein classes.  Several methods are not included in this 
study. We focused our study on state-of-art methods. 
 
3. NUMERICAL EXPERIMENTS 
In this test, remote homology is simulated by holding out all members of a target SCOP 
(Murzin, 1995) family from a given superfamily. SCOP is a publicly accessible database 
over the Internet, this database stores a hand classified set of protein sequences. We 
investigated the performance of homology detection method on the SCOP database version 
1.37 PDB90 (Murzin, 1995). The benchmark datasets used (Fig 1) is designed by Jaakkola 
et al (Jaakkola, Diekhans and Haussler, 2000). The training and testing sets used in this 
previous work are available online from: 
 http://www.cse.ucsc.edu/research/compbio/discriminative/.  
 
This data is organized so that each experiment had a positive testing and training set for each 
model and each superfamily had a common negative testing and training data. A file was 
also provided which lists all the experiments that can be performed. The SCOP 1.37 
Database was used, so all the identifiers refer to that version. A typical experiment would be 
the classification of the G proteins family which uses the training sequences from the 
nucleotide triphosphate hydrolases SCOP superfamily. Two other families were used to 
provide the positive training data, these were: - the Nucleotide and nucleoside Kinases 
family and the Nitrogenase iron protein-like family, so in the directory which relates to the G 
Protein family, there will be two models for each of the training families and corresponding 
training sequences for these two families. The test sequences for the two models will be the 
same and these are sequences from the G proteins family. In the directory below there are 
two sets of negative test and training sequences which are split up into two folds, this is to 
allow cross validation of the negative training data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 1: Layout of SCOP sets used 
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4. RESULTS  
We follow Jaakkola’s way to compare the results of all methods. Since each method 
produces a probability score on a different scale they cannot be directly compared, so the 
rate of false positive (RFP) is used. This is defined as the fraction of negative test sequences 
that score as high or better than, the positive sequence we are testing. So therefore a score of 
zero is very good. 
 
For the comparison of the overall performance for the five methods on the 33 test families, 
we computed the median RFP for the family, as shown in table 1. Values for the median 
RFP are shown on the Y-axis. On X-axis we plot the number of SCOP families, out of the 
33 families that we tested, for which the given method achieves that median RFP 
performance or better. We included results from all the methods (Table 1). These include the 
original experimental results from Jaakkola, HAMMER, SAM-T98 iterative HMM, SVM-
motif, and BLAST on the same data. To approximate a family-based homology detection 
method, BLAST is run using a randomly selected training set sequence for one iteration, 
with the positive training set as a database and a very low E-value inclusion threshold. The 
resulting matrix is then used to search the test set for a maximum of 20 iterations using the 
default E-value inclusion threshold. The results for all 33 SCOP families are summarized in 
(Table 1) and (Figure 2). Each series corresponds to one homology detection method. 
Qualitatively, the SAM-T98 and Fisher-SVM methods perform slightly better than the rest. 
However, if we evaluate the statistical significance of these differences using a two-tailed 
signed rank test (Heniko, 1997; Salzberg, 1997), including a Bonferroni adjustment for 
multiple comparisons only the SVM-Fisher method does better than any other method: 
SVM-Fisher's performance is better than that of BLAST with a p-value of 0:000045. The 
results show that the SVM-Fisher framework is a considerable superior over the previous 
methods, only 27 out of the 33 families had a better score for the maximum RFP over the 
SAM-T98 method and 32 had a better medium RFP over the SAM-T98 method. The SVM-
Fisher method classified all families better than using BLAST, HMMER., SAM-98, and 
SVM–motif methods. 
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Expt. SCOP Family HMMER BLAST SAM 

T98 
SVM 
MOT 

SVM 

1 Phycocyanins 0.471 0.391 0.450 0.528 0.364 
2 Long-chain cytokines 0.375 0.721 0.446 0.092 0.035 
3 Short-chain cytokines 0.386 0.407 0.109 0.035 0.002 
4 Interferons/interleukin-10 0.511 0.324 0.289 0.054 0.004 
5 Parvalbumin 0.000 0.000 0.000 0.000 0.000 
6 Calmodulin-like 0.808 0.023 0.000 0.000 0.000 
7 Immunoglobulin V dom 0.595 0.135 0.000 0.006 0.000 
8 Immunoglobulin C1 dom 0.738 0.033 0.000 0.110 0.000 
9 Immunoglobulin C2 dom 0.181 0.119 0.000 0.232 0.000 
10 Immunoglobulin I dom 0.680 0.007 0.000 0.135 0.000 
11 Immunoglobulin E dom 0.723 0.168 0.178 0.568 0.073 
12 Plastocyanin/azurin-like 0.885 0.016 0.039 0.753 0.013 
13 Multidomain cupredoxins 0.040 0.342 0.003 0.504 0.002 
14 Plant virus proteins 0.063 0.641 0.088 0.504 0.133 
15 Animal virus proteins 0.698 0.750 0.204 0.407 0.066 
16 Legume lectins 0.312 0.278 0.278 0.276 0.083 
17 Prokaryotic proteases 0.652 0.080 0.000 0.052 0.000 
18 Eukaryotic proteases 0.317 0.000 0.000 0.000 0.000 
19 Retroviral protease 0.394 0.238 0.012 0.029 0.003 
20 Retinol binding 0.281 0.475 0.165 0.169 0.051 
21 alpha-Amylases, N-term 0.095 0.630 0.007 0.086 0.000 
22 beta-glycanases 0.131 0.517 0.009 0.440 0.008 
23 type II chitinase 0.145 0.350 0.110 0.346 0.031 
24 Alcohol/glucose dehydro 0.465 0.041 0.019 0.022 0.008 
25 Rossmann-fold C-term 0.351 0.121 0.015 0.224 0.005 
26 Glyceraldehyde-3-phosphate 0.412 0.315 0.009 0.024 0.002 
27 Formate/glycerate 0.474 0.022 0.001 0.019 0.002 
28 Lactate&malate dehydro 0.362 0.530 0.024 0.002 0.002 
29 G proteins 0.359 0.378 0.007 0.001 0.000 
30 Thioltransferase 0.540 0.000 0.000 0.002 0.000 
31 Glutathione S-transfer 0.834 0.311 0.273 0.292 0.238 
32 Fungal lipases 0.210 0.044 0.000 0.014 0.000 
33 Transferrin 0.162 0.875 0.007 0.389 0.026 

 
Table 1: Rate of false positives for all 33 families, HMMER, BLAST, SAM-T98, SVM 
MOT (SVM-motif method), SVM (SVM-Fisher method). 
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Figure 2.  Comparison of the overall performance for the five methods on the 33 test families. For 
each family, we computed the median RFP for the family, as shown in table 1. Values for the median 
RFP are shown on the X-axis. On Y-axis we plot the number of SCOP families, out of the 33 
families that we tested, for which the given method achieves that median RFP performance or better. 
 
 
5. CONCLUSION AND FUTURE DIRECTIONS 
The purpose of this study is to fine the most reliable method for protein homologies 
detection currently available. While all methods analyzed were able to detect the protein 
homologies, methods based on Hidden Markov Model and the combination of generative 
and discriminative model such as support vector machines, were superior. Our study 
indicated that SVM-Fisher method (Jaakkola, 2000) is a superlative method currently 
available for homologies detection. One of our future researches is to look in depth on the 
methods based on discriminative model as they shown to be more reliable and efficient. The 
comparison will be based on the ability of those methods in protein sequences feature 
extraction.  Note that currently there are few new methods for protein homology detection 
show more successful results. Examples of these methods are Mismatch String Kernels 
(Christina 2002), SVM-Pairwise (Liao 2002) and SVM-String Kernel method (Zaki 2003). 
In the future all this methods will be compared and in depth analyzed. 
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