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The goal of this work is to study the behavior of light reflection and provide a mechanical resemblance of this behavior. In a laboratory, we measured the time spent from the launch of a pulse of photons and their return to the location of the emitted pulse, after colliding against the surface of an atom. In the numerical analysis, we modeled photons and atoms as being spherical and non-homogeneous rigid bodies. Due to the non-uniform internal mass distribution, the centroid and the center of mass of the photons will be shifted. While the center of mass tends to describe a straight line, the centroid tends to describe a cycloid rotating around the center of mass. Due to the rotation of the photon, its time of return varies. The numerical results indicate times of return relatively similar to those achieved by experimental results.
1. Introduction

We model photons and atoms as spherical rigid bodies and reproduce numerically the mechanical (Newtonian) interactions between them. Our goal is to analyze how the frequency of the photon varies depending on its interaction with the atoms. In our work, we compare numerical results against experimental results obtained in laboratory. 

To analyze the frequency variation of each photon, we assume the photon as being a spherical rigid body within non-uniform internal mass distribution, so that the photon describes a cycloid, as can be seen in Figure 1. Thus, once describing cycloids, our rigid body presents mass, amplitude, frequency and phase, as well as the DeBroglie (1924) wave and becomes a mechanical framework for our study case. 

 To simulate this internal non-homogeneous mass distribution, we used a spherical rigid body within holes so that its centroid and its center of mass are not coincident. Thus, while the center of mass describes a straight line, the centroid describes a cycloid.
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Figure 1: Our proposed photon, a spherical rigid body containing a centroid (red line) rotating around the center of mass (black line), describing a cycloid.

In sections 2 and 3, we describe the model used to calculate the trajectory and collisions. In section 4, we describe the implementation of numerical solution. In section 5, we present experimental results. In section 6, we compare experimental and numerical results. In section 7, we present our conclusions.
2. Modeling the trajectories
We modeled a bidimensional collision system, where the rigid body is a sphere A containing inside a spherical hole B, where B is not centered at the same location of A. Figure 3 shows an example of the rigid body. By applying an impulse on the sphere surface, we achieve a cycloid, as shown on Figure 1.
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Figure 2: A hole into the sphere shifts its center of mass from its centroid

In this way, the center of mass location is described by: 
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and the centroid location is described by: 
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(2)

Figure 1 shows an example of the trajectory of the center of mass and the centroid of a rigid body describing a cycloid. For each increment, there is a collision test to locate precisely any collision point. In case of a collision, the system calculates the impulse received by the rigid body and recalculates the new trajectory.

3. Modeling the collisions
During the bidimensional collisions, the same hypotheses were considered: the energy and the magnitude of momentum of the thrown rigid body should be constant along the whole path. This means that all collisions were treated as perfectly elastic.

The dynamics of the rigid body was calculated based on the following hypotheses:

1. The collisions are perfectly elastic.

2. The impulse transmitted by the atom to the photon is orthogonal to the photon’s surface (thus, the direction of the impulse is given by the point of collision and the centroid).

Using a coordinate system x’y’ located at the point of contact on the atom surface, where x’ has the same direction of the impulse, we obtained the final constraints.
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Figure 3: Calculating linear and angular velocities after collision against the atom surface. The new coordinate system x’y’ helps to determine the magnitude of the impulse.

To simplify our numerical model, we assume that the atom is stuck into a grid and do not move after the collision. This simplification avoids problems concerning vibration of the grid of atoms. Based on the estimates of photon mass of Rodriguez and Spavieri (2007); Williams et al. (1971); Chernikov et al. (1992); Davis and Nieto (1975); Franken and Ampulski (1971); Accetta et al. (1985); Crandall  (1983); Lakes (1998); Fishbach et al. (1994); Schaefer (1999) and  Luo et al. (2003), which estimates photon masses among 10-51kg and on the periodic table, which indicates the atomic mass of gold among 10-26kg, we assume that the mass of a photon is 1025 smaller than the mass of the atom, which means that any movement of atom is negligible when compared with the movement of the photon. Thus the equations of conservation of Energy and Momentum are based (in this simplified model) just on the photon movement. Considering a perfectly elastic collision model, we obtain the magnitude of impulse through the methodology that follows.
Conservation of photon’s Energy and Momentum:
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and, therefore:                                                                                                                            
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Where:
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is a vector representing the impulse transferred by the 
atom to the photon.
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is a vector starting at the point of collision and ending in 
the center of mass of the photon.
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is a scalar representing the magnitude of vector  

      
is a scalar representing the magnitude of vector     
  M
is a scalar representing the mass of the photon.

  Izz
is a scalar representing the moment of inertia of the photon.

  V0x’is the linear velocity of the center of mass of the photon before collision in direction x’.

  V0y’
is the linear velocity of the center of mass of the photon before collision in direction y’.

  V1x’
is the linear velocity of the center of mass of the photon after collision in direction x’.

  V1y’
is the linear velocity of the center of mass of the photon after collision in direction y’.

    (0
is the angular velocity of the center of mass of the photon before collision.
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    (1
is the angular velocity of the center of mass of the photon after collision.

    (
is the trigonometric angle between vectors     and    
The direction of impulse is given by vector (the direction of impulse is orthogonal to the surface of photon). Once the magnitude of impulse was calculated, we obtained v1x’ , v1y’ and (1 from the constraint’s equations. Figures 4, 5 and 6 presents the result of elastic collisions between photons (represented in light blue) and atoms (represented in dark green). The red line indicates the trajectory of the center of mass of the photon and the dark blue line indicates the trajectory of the centroid of the photon.
Thus, due to collisions that happen inside the slit, the trajectory of each sphere has to be recalculated after each collision. The impulse transmitted by the atom to the sphere provokes changes on its linear and angular velocities. The changes on its angular velocity seem to provoke the Compton (1923) effect.
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Figure 4: A photon collides against the surface of an atom.
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Figure 5: A photon collides against the surface of an atom.
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Figure 6: In some cases, the sphere collides more than once.
The same incoming frequency produce different output frequencies. Figure 6 shows a case where the photon collides against two atoms (modeled here as two spherical rigid bodies). After collision the photon changes its frequency. The sum of all frequency changes represents the color of the surface.
In the next section, we present the main steps of the source code describing the collision’s model.
4. C/C++ Implementation
The source code is divided in the following blocks:

Includes, defines, prototypes and globals;

Main loop:

1. For each rigid body launched

2. Update its location

3. Check for possible collisions (against the atom’s geometry)

4. In case of collision, recalculate the trajectory.

5. In case the photon is far and away of the atom 
(and therefore already collided) 


5.1. Calculates its frequency (obtained after collision 
against 
the atoms).


5.2. Updates file containing the frequencies of all returning photons.

5.3. Calculates the time spent since its launch (to com
pare with quantum decay)


5.4. Updates file containing the spent time of each 
launched photons.


5.5. Create image file containing the whole trajectory 
(see figures 4, 5 and 6)


5.6. Return to 1.

6 Return to 2.

The source code can be found at:

http://www.deg.ee.ufrj.br/docentes/sauer/collisions/colors.c
5. Acquiring data to test the numerical model
We believe that light is ballistic and that its behavior of wave is caused by its non-homogeneous mass distribution, which generates cycloids and, consequently,  a wave behavior. What we want to demonstrate is that rigid bodies that are spherical and non-homogeneous can provide the same results provided by light. In order to test this mechanical model, we selected an experiment that measures the time spent on quantum decay.
In this experiment, a pulse of a laser is emitted against a sample. After colliding against the sample, the emitted light is reflected. A photodetector detects the reflected light in time slices. A computer receive the data concerning the light intensity accumulated in each time slice.
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Figure 7: Setting up apparatus to compare numerical model against experimental results.
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Figure 8: Time spent on quantum decay. Horizontal axis represents time and vertical axis represents the number of photons detected in each time slice. In our experiment, each time slice takes 100 picoseconds (100ps) and the total time mapped takes 1024 time slices (102ns).
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Figure 9: Setting up apparatus to compare numerical model against experimental results. Magnifying sample and lenses to photodetectors.
6. Results
In this section, we present the result of throwing spherical rigid bodies (photons) against a surface of spherical rigid bodies (atoms).  To estimate the response of the surfaces, we threw a large number of monochromatic photons, rotating at 428THz, against the surface (as seen in figures 4, 5 and 6). After colliding against the surface, the photons go to the photodetector.

Figure 10 shows the resulting wave pattern obtained numerically. In Figure 11, we compare numerical results against experimental results. To obtain Figure 11, we rescaled Figure 10 and verify that the experimental decay and the numerical decay look similar.

After comparing the experimental case against the numerical case, we noticed that the quantum decay, usually described as being an exponential decay, could be better described as being the tangent of the  angle of exit of the photon. 

In Figure 12, we present a graph comparing (1) the experimental result, (2) the exponential that best fits the experimental result and (3) the tangent that best fits the experimental results.
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Figure 10: Time spent on quantum decay obtained numerically. Horizontal axis represents time and vertical axis represents the number of photons detected in each time slice.

Combining both results (experimental and numerical) in a single graph, rescaling to the same time slices and number of photons, we obtained the results shown in Figure 11.
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Figure 11: The experimental results (Blue) compared with numerical results (Magenta). Numerical results were rescaled from Figure 10 to match the same timescale used in the experiment.
7. Conclusion
As can be seen in Figure 11, the time spent between the launch and the return of a spherical rigid body (assumed as representing a photon) presents a similar behavior as the quantum decay measured in the laboratory. 

We believe that light is ballistic and that its behavior of wave is caused by its non-homogeneous mass distribution, which generates cycloids and, consequently, a wave behavior. In order to test this model, we started to compare different behaviors of light. Recently (Sauerbronn et al., 2010), we tested this mechanical model of light against the single slit diffraction experiment and the numerical results were considered very similar to the experimental results. When testing this mechanical model of light to describe the behavior of colors (Sauerbronn et al., 2013) we found very interesting results.

When testing this mechanical model of light against the behavior known as quantum decay, we found once again results that look similar to experimental results. 

Considering that we do not know the physical properties of a photon, we are trying different values for volume, geometry, mass etc intending to achieve one combination that fits perfectly all experimental results. That is the point where we are now.

As a final remark, this work was inspired by the model of light of the atomist Lucretius (1992, 1995). Our contribution is in the proposal of a non-uniform distribution to the photon’s internal mass and in the implementation of a numerical model to test this proposal against experimental results achieved by a experiment involving quantum decay.
8. Future Work
We believe that the photon is a drop. It requires heat to be produced, arises from a source and accelerates until reach its final speed. The photons have a melting point. The Planck’s Law indicates the number of drops (on the vertical axis) and the kinetic energy levels of each drop (on the horizontal axis). As a future work, we intend to test these hypotheses. 

We also believe that nuclei of atoms are superconductors and that electrons are magnets. Instead of using orbitals, our chemical bonds are fully based on the Meissner effect where a network of magnets (electrons) connects the nuclei within a molecule. Each magnet (electron) connects two nuclei. As a second future work, we intend to test these hypotheses.
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