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This paper looks in detail at the situation that develops with Maxwell’s coupled field equations when the
initial condition constitutes a pair of field pulses, in E and B, with finite total energy, such as would be needed
to plausibly model a light signal for SRT, or a photon for QM.  What emerges from the analysis is that, during
propagation, the initial pulses always tend to spread longitudinally into complex waveforms exhibiting oscilla-
tion.  So ‘light in flight’ is never a simple pair of pulses.  It is a pair of spread-out waveforms, with maxima in
the middle and long oscillating tails fore and aft.  The waveform centroid may be said to travel at light speed c,
but that fact alone does not at all adequately characterize light signals for SRT, or photons for QM.

1.  Introduction

Despite centuries of investigation, light propagation remains
to this day a mysterious business.  Many of us in the NPA have
long believed that Einstein’s Second Postulate for Special Relativ-
ity Theory (SRT), asserting constant light speed c, is not right,
and have sought to identify what about it is wrong, and what
remedy should be applied.  This author has talked and written
about her own struggles with this problem many times in NPA
meetings and publications.  The present paper continues in this
vein, with a potentially devastating problem finally uncovered.

Einstein’s Second Postulate [1,2] is generally believed to cap-
ture the essence of Maxwell’s electromagnetic theory (EMT) as it
pertains to light.  This paper argues that this belief is entirely
wrong. Einstein’s Second Postulate is in fact a violation of Max-
well’s coupled field equations.

The paper looks in detail at the situation that develops with
Maxwell’s differential equations when the initial condition con-
stitutes a pair of field pulses, in  E  and  B , with finite total en-
ergy.  Such a pair of energy-limited pulses would be needed to
plausibly model a light signal for SRT, or a photon for QM.

What emerges from this analysis is that, during propagation,
the initial pulses always tend to spread longitudinally into com-
plex waveforms exhibiting oscillation.  So ‘light in flight’ is never
a simple pair of pulses.  It is a pair of spread-out waveforms,
with maxima in the middle and long oscillating tails fore and aft.

The waveform centroid may be said to travel at light speed c,
but that fact alone does not at all adequately characterize light
signals for SRT, or photons for QM.  Thus both SRT and QM are
founded on an inaccurate appraisal of Maxwell, and for that rea-
son they very well deserve to be revisited.

2. Maxwell’s Propagation Process

This Section looks in detail at the situation that develops with
Maxwell’s differential equations for fields when the initial condi-
tion constitutes E and B field pulses with finite total energy.

Both electromagnetic signaling and quantum emission of
light are usually rather laser-like, with multiple photons coming
from a system of multiple atoms and traveling in a fairly well
defined direction.  So consider propagation along direction  x ,

fore or aft across this page.  Use the coordinate frame indicated
by the drawings

   

y

↑


z 
→ x

 ( z  out of the page)  ,

and, in another view,

 

z

↑
⊗
y

→ x
 ( y  into the page)   .

Let the Poynting vector  P = E × B  of any radiation be nomi-
nally along the  x  direction. Let the electric field  E  be in the  y
direction, and let the magnetic field be  B  along the  z  direction.

It is generally expected that launching pulses in both  E  and

 B  together results in travel of both pulses.  The mechanism for
this has to reside to Maxwell’s equations.  Maxwell’s equations in
free space, in differential form, in modern notation, and in Gaus-
sian units, are [3]:

    

∇iE = 0   , ∇ × E + 1
c
∂B / ∂t = 0   ,

∇iB = 0   , ∇ × B − c∂E / ∂t = 0   .

 . (2.1)

Observe that  E  and  B  couple through Maxwell’s Equations:
a curl in one field creates a time derivative in the other field:

   
∂E / ∂t = 1

c
∇ × B    ,    ∂B / ∂t = −c∇ × E (2.2)

This kind of coupling situation is familiar in engineering system
design.  In the language of that discipline, we have a classic
‘feedback loop’ in which a six-dimensional ‘state vector’

   E(t), B(t)  is operated upon by a ‘system function’ involving dif-
ferential and integral operators to generate an update that modi-
fies the state vector.  Figure 2.1 shows this in the way engineers
would likely display it.
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E(t),B(t) → − − − − ⊕ − − − − − − − − − − − − − − − − − − − − − − − − − −− → E(t + Δt),B(t + Δt)
                   ΔB ↑↑ ΔE                                     B ↓                E ↓

                        dt∫                                        
1
c
∇ ×          

 
 
c∇ ×

                         ↑↑                                   ∂E / ∂t  ↓      ∂B / ∂t ↓
                                                                                                   

Figure 2.1.  Maxwell’s coupled field equations as a classic feedback loop.

The feedback and coupling between  E  and  B  can be shown
to cause travel of an input pair of pulses   E(0),B(0) .  Consider
what happens to the  E  pulse because of the feedback and cou-
pling.  Given the definition ∇ =     x̂∂ / ∂x + ŷ∂ / ∂y + ẑ∂ / ∂z , we
have

   

∇ × B = x̂ ∂Bz / ∂y − ∂By / ∂z⎡
⎣

⎤
⎦

                               + ŷ ∂Bx / ∂z − ∂Bz / ∂x⎡⎣ ⎤⎦
                                                    +ẑ ∂By / ∂x − ∂Bx / ∂y⎡

⎣
⎤
⎦

and given 
  
Bx = By = 0 , we have

   
∇ × B = x̂ ∂Bz / ∂y⎡⎣ ⎤⎦ + ŷ −∂Bz / ∂x⎡⎣ ⎤⎦ (2.3)

So 
  
∂Ey / ∂t = 1

c
−∂Bz / ∂x⎡⎣ ⎤⎦ .  Therefore the 

 
Ey  pulse grows on

the leading side, and declines on the trailing side.  (Note that if

 
Bz  is limited in  y , as it must be, there also exists 

  
∂Ex / ∂t .  I

will return to this point.)
Similarly, consider what happens to the  B  pulse because of

the feedback and coupling.  We have

   

∇ × E = x̂ ∂Ez / ∂y − ∂Ey / ∂z⎡
⎣

⎤
⎦

                              +ŷ ∂Ex / ∂z − ∂Ez / ∂x⎡⎣ ⎤⎦
                                                  +ẑ ∂Ey / ∂x − ∂Ex / ∂y⎡

⎣
⎤
⎦

and given 
  
Ex = Ez = 0 , we have

   
∇ × E = x̂ −∂Ey / ∂z⎡

⎣
⎤
⎦ + ẑ ∂Ey / ∂x⎡

⎣
⎤
⎦ (2.4)

So 
  
∂Bz / ∂t = −c −∂Ey / ∂x⎡

⎣
⎤
⎦ = c ∂Ey / ∂x .  Therefore the 

 
Bz

pulse grows on the leading side, and declines on the trailing side.

(Note that if 
 
Ey  is limited in  z , as it must be, there also exists

  
∂Bx / ∂t .  I will return to this point.)

What we have so far is the first essential part of the propaga-
tion story:  Any pulse has sides, and the existence of the sides
means there is curl in that field.  A curl in one field causes a time
derivative in the other field.  The time derivatives make the back-
sides of the pulses shrink and the front sides of pulses grow.
This amounts to overall displacement along  x , or travel.  The

speed of the travel is the only speed there is in Maxwell EMT: the
‘speed of light’,  c .

But there is also an interesting little wrinkle: a bit of 
 
Ex  and a

bit of 
 
Bx  has developed.  Such ‘longitudinal fields‘ (fields point-

ing in the nominal propagation direction  x ) constitute a much-
discussed and controversial subject. [4]  The subject should never
have been so controversial.  There exists a very familiar phe-
nomenon that mandates the presence of longitudinal field com-
ponents: diffraction.  It is well known that light emanating from a
finite aperture cannot be focused to a point; it is limited to a finite
Airy spot, with rings around it.  Light arriving to slightly off-axis
locations implies propagation in directions slightly off the nomi-
nal direction,  x , and that in turn implies Poynting vectors point-
ing slightly off the nominal propagation direction  x , and that in
turn implies components of  E  and/or  B  in the nominal prop a-

gation direction, i.e. 
 
Ex  and/or 

 
Bx .

Diffraction amounts to waveform spreading in directions
transverse to the nominal propagation direction  x , arising from
initial waveform limitation in the  y  and  z  directions transverse
to  x .  Diffraction is a part of the story of waveform spreading
that is already very well known.  Its ubiquity invites one to ask
the so-far neglected complementary question: What about possi-
ble waveform spreading along the nominal propagation direction

 x , occasioned by initial limitation along  x , which is necessary to
define a light signal pulse or a quantum photon with finite total
energy?  That kind of waveform spreading is the second, and
previously neglected, part of the propagation story, and it is to be
developed in the following Sections.

3.  Waveform Development – Pictorial Model

Signal travel or photon travel is often at first imagined to pro-
ceed simply as in Fig. 3.1:

   

Ey            

    
− →x           

        
−  − →x       

           
−  − − →x    

               
−  − − − →x

   along with   

   

Bz            

    
− ⊗→x           

        
− ⊗ − →x       

           
− ⊗ − − →x    

               
− ⊗ − − − →x

Figure 3.1.  Naïve idea of signal or photon travel.
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But that is not quite possible, because  B  is a solenoidal field.  So

the initial 
 
Bz  has to be at least a doublet of the form 

  

     
−⊗→


. And

then to match that, the initial 
 
Ey  has to be a doublet of the form

  

     
−→


.  But to make both 
 
Ey  and 

 
Bz  symmetric about the ori-

gin, like the impossible singlet pair imagined initially, let 
 
Ey  be

a triplet of the form 

   

     

− →x

     

 and let 
 
Bz  be a triplet of the form

   

     

− ⊗→x

     

.  Starting from these initial 
 
Ey  and 

 
Bz  triplets, the

subsequent process must go as follows: The triplet 
 
Ey  and 

 
Bz

must induce quadruplet 
  
∂Bz / ∂t  and 

  
∂Ey / ∂t , leading to quad-

ruplet field increments 
 
ΔBz  and 

 
ΔEy .  And so on from there.

That is, the induction process works to increase the number of
peaks.  Every quarter cycle adds another peak.  What was origi-
nally an input pulse starts to look like a wave train.

In addition to the phenomenon of increasing pulse count,
there is also a phenomenon of general spreading.  Observe that

 
Ey  and 

 
Bz  are in phase, as are 

 
ΔEy  and 

 
ΔBz , so the matched

vector cross products 
  
Ey × Bz  and 

  
ΔEy × ΔBz  both point in the

positive  x  direction, together make a steady of Poynting vector,
which one can consider a standard unit for comparison.  But the

  
Ey  and 

  
ΔBz  are a quarter cycle out of phase, as are the 

  
ΔEy

and 
  
Bz , so the mixed cross products 

  
Ey × ΔBz  and 

  
ΔEy × Bz

are each oscillatory in time, like 
  
1

2
cos(ωt)sin(ωt)  

  
= 1

4
sin(2ωt) ,

and over a quarter cycle each mixed cross product has root mean

square magnitude of 
 
1

8
 unit of Poynting vector.  And the mixed

cross products occur both fore and aft on the initial waveform,
and they point forward on the fore side and back on the aft side;
i.e. both point away from the waveform centroid.  So they provide
an on-going mechanism for waveform spreading. Over a quarter

cycle, 
  
Ey × ΔBz  and 

  
ΔEy × Bz  will spread the initial waveform

by 
 
1

8
+ 1

8
= 1

4
 pulse width, and over a full cycle, they will spread

the initial waveform by a full pulse width.
To better focus on the waveform-spreading phenomenon

alone, without the complication of waveform travel, let us con-

sider a single pulse in 
 
Ey  alone.  The initial 

 
Ey  singlet 

   

    
− →x

induces 
  
∂Bz / ∂t  of the doublet form 

   

     
−⊗→x



, leading to 
 
Bz  of

that same doublet form a quarter cycle later, which then induces

  
∂Ey / ∂t  of the triplet form 

   

    
−→x

   

, leading to 
 
Ey  of that same

triplet form a quarter cycle later, and so on.  The 
 
Ey  waveform

starts and remains symmetric about the  x  origin.  The 
 
Bz  wave-

form emerges anti-symmetric about the  x  origin and remains so.
More and more peaks emerge, but the energy centroid of the
waveform goes nowhere.

Similarly, if we start with a triplet pulse in 
 
Bz  alone, then the

 
Bz  waveform starts and remains symmetric about the  x  origin,

and the 
 
Ey  waveform emerges anti-symmetric about the  x  ori-

gin and remains so.  More and more peaks emerge, but the en-
ergy centroid of the waveform goes nowhere.

With only a single field waveform launched, waveform
spreading happens, but waveform travel does not happen.
Waveform travel can be avoided by launching just one field
pulse alone, not both together.  But waveform spreading cannot
be avoided, no matter what.  So the conventional idea of a light
signal pulse or a quantum photon as a ‘bullet’ is not viable with
Maxwell’s coupled field equations.  It becomes viable only when
the coupled field equations are reduced to wave equations, by
substituting one field equation into another.  That procedure ob-
scures the coupling mathematically, and thereby seems to allow a
solution with behavior that is not in fact physically possible;
namely, the hypothetical ‘bullet’ that does not spread longitudi-
nally.

4.  Waveform Regression

Maxwell’s equations generally admit conjugate pairs of solu-
tions, in one of which the temporal evolution goes one way
(think of it as  +t ), and in the other of which the temporal evolu-
tion goes the opposite way (think of it as  −t , but not really).
Thus for each of the waveform-developing solutions mentioned
above, there exists a conjugate solution that exhibits waveform
regression; i.e. contraction back to a pulse.

The idea of ‘contracting’ solutions is somewhat reminiscent of
‘advanced’ solutions going backwards in time, which were in-
troduced many times in the early 20th century, but particularly
popularized in the mid 20th century by Wheeler and Feynman
[5,6], who were looking to time symmetry as the basis for an elec-
tromagnetic generalization of instantaneous (Newtonian) gravi-
tational interaction.  There are important differences between the
contracting waveforms introduced above and such advanced
solutions:  1) Wheeler and Feynman were looking at interactions
between essentially point sources and receivers, and so had to be
looking at spherically expanding retarded solutions and spheri-
cally contracting advanced solutions, not at essentially one-
dimensional expanding and contracting beams.  2) The Wheeler-
Feynman expansion or contraction is related to the spherical area
of a wave front, not the waveform in the radial propagation di-
rection.  3) A lengthy discussion of the paradox of advanced ac-
tions is necessitated in the Wheeler-Feynman work, whereas the
‘contracting’ solutions introduced here are not in fact ‘advanced’
at all; they are just contracting, in real time, in the longitudinal
direction.
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The main similarity between the present work and the
Wheeler-Feynman work is this: both involve two parts to make a
full problem description.  The Wheeler-Feynman work used re-
tarded solutions and advanced solutions simultaneously to de-
scribe inter-particle interaction.  The present work uses an ex-
panding solution and a contracting solution in sequence to de-
scribe launching and delivery of an electromagnetic signal pulse
or a quantum photon.

One big problem about advanced solutions in the Wheeler-
Feynman context of spherical waves is the establishment of initial
conditions.  It seems impossible to imagine how initial conditions
could occur correctly everywhere all over a big sphere.  This
problem disappears in the present context of a transversely lim-
ited laser-like light signal pulse or quantum photon.  The ex-
panding solution automatically sets up the initial conditions for
the subsequent contracting solution: the field spatial profiles of
the expanding solution are the same as the field spatial profiles of
the contracting solution.

5.  Two Step Light

At the beginning of the 20th century, attention was focused on
the solutions to the wave equations derived from Maxwell’s cou-
pled field equations, and on their single parameter, light speed

 c .  Now in the 21st century, it is appropriate to exploit to the
solutions provided directly by Maxwell’s original coupled field
equations.  The representation of the delivery of an electromag-
netic signal pulse as the sequence of an expanding solution fol-
lowed by a contracting solution has been called ‘Two Step Light’
(TSL) [7].

The moment of switch from the solution expanding from the
source to the solution contracting to the receiver involves at most
two changes, each of which is totally non-traumatic, as follows.

The first thing only possibly changes.  It is the frequency of os-
cillations.  The frequency changes if, and only if, the receiver is
moving relative to the source.  The frequency change occurs be-
cause the reference for light speed  c  changes from the source to
the receiver.  If the receiver is moving at speed  V  relative to the
source, then the light speed ‘ c  relative to the source’ was ‘ c −V
relative to the receiver’.  Upon chance of reference, that situation
changes to ‘ c  relative to the receiver’, and ‘ c +V  relative to the
source’.

The second thing definitely changes.  It is the sign of all time
derivatives.  Without fail, time derivatives change at the moment
of switch, because this switch is fundamentally what it takes to
change from a solution that is expanding to one that is contract-
ing.  It is worth noting here that there is no ‘mechanism’ that
causes this switch.  The switch occurs because we set the bound-
ary conditions for the math to fulfill: “start at this particular
source, and end up at this particular receiver, and do it by com-
bining solutions of the Maxwell differential equations.“  If ex-
actly the needed switch did not occur, then the particular solu-
tion produced would fit some other set of boundary conditions
instead.  The subject of boundary conditions is actually a subtle
one, rather like the subject of quantum entanglement.  Boundary
conditions often extend over space, and, though they may move
over time, they are eternal in time.  What does that mean in the
point-particle, elastic-time world of SRT?  I shall just leave that
question hanging for interested readers to take up.

Note that the discontinuity in time derivatives needed here is
feasible for the original Maxwell coupled field equations, but not
for the wave equations derived from them.  That is because
Maxwell’s coupled field equations are first order in derivatives,
and so require only field continuity, but the wave equations are
second order in derivatives, and so require not only field conti-
nuity, but also continuity of the first derivatives of the fields.
That requirement is violated when the time derivatives switch
sign in making the switch from a solution that is expanding to
one that is contracting.

Again we see that the wave equations have a set of possible
solutions that is not identical to the set of possible solutions for
Maxwell’s original coupled field equations.  That is why it is so
important to investigate the solutions for the original coupled
field equations in order to model light signal pulses and quan-
tum photons.

In the Two Step Light formulation, the speed of light
throughout the first step, the expansion step, is  c  relative to the
source.  In Einstein’s SRT [1,2], the speed of light is  c  for any
observer, and any observer has his own reference frame, so the
speed of light is  c  in any reference frame, and that includes the
frame of a hypothetical observer resident with the source.  But
the actual observer is the receiver.  So the first step in Two Step
Light is not clearly compatible with Einstein.  It is more compati-
ble with Ritz [8], but only so long as the motion of the source is
inertial.  If the motion of the source is not inertial (usually the
case), then the first step in Two Step Light is more compatible
with Moon and Spencer et al. [9-11].  Their vitally important idea
was on-going connection between the light and its source, even
after the propagation process starts.  The present work adds to
the Moon-Spencer idea a second step, wherein there is on-going
connection between light and its receiver, even before the propa-
gation process concludes.  The speed of light throughout the sec-
ond step, the contraction step, is  c  relative to the receiver.  This
idea resembles Einstein’s idea, but it doesn’t just follow Einstein;
it goes further, allowing even non-inertial motion of the receiver
(certainly the case for all human observers!).

Ref. [7] began by postulating Two Step Light, as an alterna-
tive to Einstein’s Second Postulate from [1,2].  The present work
invites the reader to omit the use of a postulate there altogether,
establishing that Maxwell’s coupled differential equations for
fields determine that Two Step Light has to happen.  The whole
strategy is just this: always follow where the energy goes.

6.  Pascal’s Triangle and Energy Redistribution

The preceding Section featured some sketches of waveforms

spreading out over time, like 
   

  
− →x

, and 

  

     
−⊗→


, and 

   

    
−→x

   

,

and the reader can well imagine others with more peaks, but the
author finds them too difficult to draw in this way.  It is neces-
sary to move on from sketches to numerical models.

We begin, not with the continuous waveforms themselves,
but with the energy contents of their peaks.  That is, we think

about   E
2 / 2  and   B

2 / 2 .  When an 
 
Ey  single pulse generates a

 
Bz  double pulse, with the 

 
Ey  pulse thereby disappearing, it has
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to be at least approximately true that the dying 
 
Ey  pulse casts

half its energy to each of its neighboring two emerging 
 
Bz

pulses.  This ‘bequeath equally to both thy neighbors below’ en-
ergy-redistribution algorithm is related to the arithmetic algo-
rithm that generates Pascal’s famous triangle of binomial coeffi-

cients, 
  
n ! (n − j) ! j !⎡⎣ ⎤⎦ ,   j = 0,1,...n , which arise in the expansion

of   2
n  as   (1 + 1)n .  The Pascal algorithm is ‘sum both neighbors

above’.  The energy redistribution algorithm differs only in that
all the rows of Pascal’s triangle have to be normalized to sum to
unity.  Thus we have Fig. 6.1:

Pascal’s Triangle in its Original Form:

 

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
etc.

Pascal’s Triangle Normalized:

 

1
1
2

1
2

1
4

2
4

1
4

1
8

3
8

3
8

1
8

1
16

4
16

6
16

4
16

1
16

1
32

5
32

10
32

10
32

5
32

1
32

1
64

6
64

15
64

20
64

15
64

6
64

1
64

etc., etc.

Pascal’s Triangle Normalized and Decimalized:

 

1
.5 .5

.25 .5 .25
.125 .375 .375 .125

.0625 .25 .375 .25 .0625
etc., etc., etc.

Figure 6.1.  Pascal’s triangle approaching a Gaussian distri-
bution.

Number strings, like  1 , and  .5  .5 , and  .25  .5  .25 , represent
waveform peak energy contents.  Waveform amplitude sketches,

like 
   

  
− →x

, and 

   

     
−⊗→x



, and 

   

    
−→x

   

, can be matched in our

minds with number strings like  1 , and  − .5   .5 , and

 .25   − .5    .25 .  Longer waveform amplitudes sketches, too
difficult to draw, can be replaced in our minds with longer num-
ber strings.

The deeper one goes into the normalized, decimalized Pas-
cal’s triangle, the more the string of numbers in a row resembles
a Gaussian curve.  For the above case of   n = 4 , let the  5  num-
bers present be identified by an index  i =   −2,−1,0,+1,+2 .  The

best-fit Gaussian is   exp(−i2 / 2) 2π , which yields point values:

Gaussian point values

 .0540 .2420 .3989 .2420 .0540

that approximate Pascal numbers

 .0625 .2500 .3750 .2500 .0625

Written with a continuous variable  x , the fitting function

  exp(−x2 / 2) 2π , constitutes a Gaussian   exp(−x2 / 2σ2) 2π σ

with standard deviation  σ = 2 / 2 = 1 .  This result suggests the

more general model 
  
exp −x2 / (n / 2)⎡

⎣⎢
⎤
⎦⎥ (n / 2)π  where  n  is the

power of  2  for which the normalized binomial coefficients from
Pascal are being fit.  The standard deviation of the general fitting

Gaussian is   σ = n / 4 .
Knowing full well that this model works better and better the

further one goes with it, I shall leave the reader to play with it for
larger  n .

The parameter   n / 4  will recur later in the present work.

7.  Input Pulse - Math Models

The previous Section developed a rough discrete numerical
model for energy content of waveform peaks.  That exercise pre-
pares and informs one about what to expect from a more detailed
continuous model to cover both waveform amplitude profile and
energy density profile.

We shall assume just one pulse input, to suppress the travel
aspect of waveform emergence and focus on the waveform-
spreading aspect.  There is an initial choice to make: What shall
be the shape of the input pulse?  Reasonable candidates include a

Lorenzian like   1 (1 + x2) , a hyperbolic function like   1 cosh (x) ,

or a Gaussian like   exp( − x2) , and no doubt many others the
reader may think of.  But so far, we have seen Gaussian units in
Maxwell’s equations and Gaussian waveforms from Pascal’s
spreading algorithm.  A definite theme is developing here:
‘Gaussian everything’.  So let us suppose that the shape of an

initiating pulse is a Gaussian function   e
−x2

.  Detailed numerical
results may depend on this choice, but general character should
not.  As with the strings of Pascal numbers in the last Section, a
pretty good Gaussian fit can be found for most ‘bump-like’ func-
tions.  So the study of just the Gaussian function is of value more
generally.
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8.  Waveform Development – Math Model

The continuous model for the waveform as it emerges is de-
veloped next.  That means we shall in effect carry out the repeti-
tive calculation process indicated by Fig. 2.1.  The input is the

Gaussian   e
−x2

, normalized for unit total energy:

  
energy before normalization = e−2x2

dx
−∞

∞

∫ = π / 2 (8.1a)

  energy-normalized Gaussian = e−x2
π / 2 (8.1b)

The spatial derivatives successively applied to an input
Gaussian by Maxwell’s propagation process generate successive
Hermite polynomials.  These are defined by the formula [12]

  

Hn (x) = 1

(−1)n e−x2

dn

dxn
e−x2{ } (8.2)

The Gaussian   e
−x2

 is the so-called ‘generating function’ for the
Hermite polynomials.  Given the definition, one can initialize

  
H0(x) = 1 , evaluate 

  
H1(x) = 2x , and generate all the rest from

the recursion relation [12]

  
Hn+1(x) = 2xHn (x) − 2nHn−1(x) (8.3)

It is very well known that distinct Hermite polynomials are ‘or-
thogonal’, where ‘orthogonality’ is defined according to the rela-
tion [12]

   
  

Hn (x)Hm (x)e−x2
dx

−∞

∞

∫ = 0  for  m ≠ n    . (8.4)

However, that fact is not at all relevant for the present analysis.
We need to establish some other facts instead.  For representing
electric  E  and magnetic  B  fields at successive times in the
waveform development process, we are really interested in the

functions analogous of the form 
  
Fn (x) ∝  

  

dn

dxn
e−x2{ } =

  
AnHn (x)e−x2

, with the proportionality factor 
 
An  such that the

  
Fn (x)  functions are normalized to represent according to

  
Fn (x)⎡⎣ ⎤⎦

2
dx =

−∞

∞

∫ 1 .  That requirement makes

  
An = 1 Hn (x)⎡⎣ ⎤⎦

2
e−2x2

dx
−∞

∞

∫ (8.5)

Inasmuch as 
  
H0(x) = 1 , Eq. (8.5) is just a generalization from

Eqs. (8.1).  Note the   exp(−2x2)  appearing in the integral, which

is not the   exp(−x2)  factor that appeared in the standard, but
here irrelevant, orthogonality definition (8.4).

There has to exist a recursion relation to evaluate

  
Hn (x)⎡⎣ ⎤⎦

2
e−2x2

dx
−∞

∞

∫ .  It should be possible to develop this re-

cursion relation analytically, but numerical integration also suf-
fices to do the job, and more immediately reveals the pattern in-

volved.  We begin with just 
  

H0(x)⎡⎣ ⎤⎦
2

e−2x2
dx

−∞

∞

∫ ≡  
  

e−2x2
dx

−∞

∞

∫
= π / 2   = 1.2533136080008 .  The recursion for subsequent

  n = 1,2,3...  is:

 
  

Hn (x)⎡⎣ ⎤⎦
2

e−2x2
dx

−∞

∞

∫ = (2n − 1) Hn−1(x)⎡⎣ ⎤⎦
2

e−2x2
dx

−∞

∞

∫ (8.6)

So, for example, for   n = 4  we have

  
H4 (x)⎡⎣ ⎤⎦

2
e−2x2

dx
−∞

∞

∫ = 7 × 5 × 3 × 1 × π / 2

which comes to  105 × 1.2533136080008 =  131.59792884008 .
That makes the normalizing factor

  

A4 = 1 131.59792884008

                             = 1 / 11.471614046859
                                                         = 0.087171691439

.

For representing the contribution  E × ΔB  or  B × ΔE  to
waveform spreading, we are interested in correlations between

successive functions 
  
Fn (x)  and 

  
Fn+1(x) .  Because successive

functions 
  
Hn (x)  and 

  
Hn+1(x)  are even and odd, or else odd

and even, 
  
Fn (x)  and 

  
Fn+1(x)  are orthogonal on the interval −∞

to +∞  by any plausible orthogonality definition.  But on the half

intervals  0  to +∞  and −∞  to  0 , the 
  
Fn (x)  and 

  
Fn+1(x)  can

yield non-zero correlations that oppose each other, and so can
drive waveform spreading.  These correlations are defined by

  
Fn (x)Fn+1(x)dx

0

∞

∫ = − Fn (x)Fn+1(x)dx
−∞

0

∫
Since the 

  
Fn (x)  are proportional to the 

  
Hn (x) , the integral

  
Fn (x)Fn+1(x)dx

0

∞

∫  is proportional to the integral

  
Hn (x)Hn+1(x)e−2x2

dx
0

∞

∫ .  This integral can be evaluated using

integration by parts:

  

Hn (x)Hn+1(x)e−2x2
dx

0

∞

∫ = Hn (x)e−x2 d
dx

Hn (x)e−x2

0

∞

∫ dx

         = − Hn (x)e−x2⎡
⎣⎢

⎤
⎦⎥
2

0

∞

− Hn (x)
0

∞

∫ Hn+1(x)e−2x2
dx

or in other words
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Hn (x)Hn+1(x)e−2x2
dx

0

∞

∫
                              = − 1

2
Hn (x)e−x2⎡
⎣⎢

⎤
⎦⎥
2

0

∞

= 1

2
Hn (0)⎡⎣ ⎤⎦

2
(8.7)

Observe that this result is zero for  n  odd.  These zeros occur

because for odd  n  the product 
  
Hn (x)Hn+1(x)e−2x2

 has an even

number of peaks in the half interval, and these peaks cancel each
other in pairs of plus/minus area.  Figure 8.1 shows this for

  n = 1 .
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Figure 8.1.  Correlation between 
  
F1(x)  and 

  
F2(x) .

For  n  even, (8.7) yields a positive result.  This occurs because

the product 
  
Hn (x)Hn+1(x)e−2x2

has an odd number of peaks on

each half interval, so one peak is always left over to make an un-
cancelled non-zero contribution.  Figure 8.2 shows this for   n = 2 .
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Figure 8.2.  Correlation between 
  
F2(x)  and 

  
F3(x) .

In the case of even  n , the correlation 
  

Fn (x)Fn+1(x)dx
0

∞

∫
causes spreading of the wave pattern.  The rate of spread is ad-

dressed next.  Since the 
  
Fn (x)  are proportional to the 

  
Hn (x) ,

they share in the oscillatory character of the 
  
Hn (x) , which is

evident in [12] as

  

Hn (x) = ex2 2n+1

π
e−t2

tn cos 2xt − n
2
π

⎛
⎝⎜

⎞
⎠⎟

dt
0

∞

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(8.8)

That makes 
  
Fn (x)  and 

  
Fn+1(x)  a quarter cycle, or  π / 2  radians,

out of phase.  We know that
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Fn (x)2dx

0

∞

∫ = Fn+1(x)2dx
0

∞

∫ = 1
2

So we infer that

  
Fn (x)Fn+1(x)dx

0

∞

∫ = 1

2
cos(2xt) cos(2xt − π / 2) = 1

2
⋅

1

2
=

1

4

This driver for waveform spreading is active half the time;

i.e., when the waveform has 
  
Fn (x)  with an even  n  fully devel-

oped and waning, while it builds 
  
Fn+1(x) .  That makes for a

rather ‘staccato‘ development.  The staccato development makes

for time average 
 
1

4
⋅

1

2
= 1

8
 unit spreading, on each side of the

waveform, for total spreading of 
 
1

8
+ 1

8
= 1

4
 unit.  This is a specific

realization of the spreading process discussed in general terms in
Sect.  3.

The Hermite peak-generation process leads to the develop-
ment of a wave train.  Figure 8.3 illustrates this wave train for

  n = 4 , meaning 4 quarter-cycles of evolution, or  4 / 4 = 1  full
cycle of evolution (here we see   n / 4  again).  The plot contains
three curves.  Series 1 is the original Gaussian pulse input to the
process.  Series 2 is this same Gaussian after 1 cycle of spreading.
Its width has had 1 unit added, so its width is a factor of 2 larger.
And of course its height is correspondingly down, by a factor of

 2 .  This spread-out wider, slumped-over lower, Gaussian is the
generating function for the Hermite polynomial of order 4,
which, when scaled by the same Gaussian, gives Series 3.  Series
3 is the emergent wave train.
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1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79
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Series2
Series3

Figure 8.3.  Input Gaussian pulse (Series 1), spread-out, slumped-over Gaussian after a full cycle of evolution (Series 2), and the wave train
that it generates (Series 3).

At   n = 4 , the emergent wave train (Series 3) has altogether 4
zero crossings and 5 peaks.  Observe that all the peaks in the
emergent wave train (Series 3) are visually the same width as the
original input Gaussian pulse.  The width of the Gaussian input
to the Hermite peak generation process determines what the
wavelength of the ultimate wave train will be.

The emergence of the wave train recalls the QM uncertainty
relationship.  Recall that under Fourier transformation, Gaus-
sians map into Gaussians, and that the product of the spreads of
such Gaussians is a constant.  In the process of wave train devel-
opment, a Gaussian in position space  x  spreads out, while its
corresponding Gaussian in wave number space in  k  sharpens
up.

Observe that ‘light in flight’ develops its wavelength only
during its flight.  It doesn’t have it to start with, and it gives it up
at the end.  So light at emission, or reception, has a position, but
no wavelength, whereas light in flight has a wavelength, but no
position.  This could be the true meaning of the ‘duality’ of light,
or ‘complementarity’, so often discussed in QM.

The information that underlies Fig. 8.3 can also be displayed
in terms of wave energy, or squared amplitude.  Figure 8.4 gives
this view.  Observe that the input Gaussian pulse (Series 1), the
spread-out slumped-over Gaussian (Series 2), and the wave train
it generates (Series 3) all have the same area, meaning they all
contain the same total energy.



Storrs 2009 PROCEEDINGS of the NPA 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

Series1
Series2
Series3

Figure 8.4.  Information from Fig. 8.3 recast in terms of energy.

Basically, the Hermite peak generation process does for its
generating Gaussian what the normalized, decimalized Pascal

triangle algorithm does for the integer 1: 
 
Hn  divides the energy

of the Gaussian into separate ‘bins‘ (peaks) that are the same in
number as the entries in the normalized, decimalized Pascal tri-
angle at order  n .  The numbers in these bins correspond to an
energy redistribution rather more spread out than the Gaussian
that generates the Hermite polynomials, as one can plainly see
from Fig. 8.4.  The reason why the Hermite polynomials produce
additional spreading is that they are exactly that: polynomials.
Their amplitudes diverge in their wings.  But their Gaussian
weighting function soon tames them.

9.  Conclusions

This paper demonstrates a ‘disconnect’ between Maxwell and
Einstein.  Einstein’s Second Postuate for SRT definitely does not
follow from Maxwell’s EMT.  What is the philosophically correct
thing to say about this situation?

Especially since many of us in NPA distrust SRT in the first
place, the obvious conclusion is that Maxwell was right, and Ein-
stein was wrong.  But it could be the reverse; Einstein could have
been right (by inspiration, without foundation) and Maxwell
would then have been wrong (despite many years of meticulous
work).  But to what extent Maxwell could be wrong we cannot
imagine, since Maxwell’s EMT is very broadly and successfully
applied throughout our civilization.  And SRT certainly is not.

The minimum thing to say is that there exists a problem
about ‘truth in advertising’ concerning SRT.  There is not now,
and never has been, any sort of ‘band-wagon‘ effect in NPA, but
perhaps we can agree on that minimum conclusion concerning
“Maxwell’s Maxima”!
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