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The Inertial Transformations (IT) are a new set of 
transformations of the space and time variables providing an 
alterative (but empirically equivalent) approach to the Theory 
of Special Relativity (TSR). With the IT, the one way velocity 
of light is isotropic only in a privileged reference frame, S0. In 
this new theory only a weak form of relativity principle holds. 
We apply the IT to the collision of an energetic photon with an 
electron (Compton effect). A theoretical description of the 
dual quantum mechanical photon having both wave and 
particle properties is required. From the undulatory point of 
view we use the IT to deduce the e.m. wave equations in an 
inertial reference frame S moving with respect to S0 with 

(absolute) velocity V . Using the Maxwell equations in the 
form suitable to S, we show that the e.m. plane waves in S 
have the same properties as in S0: the fields are perpendicular 
to one another and perpendicular to the propagation direction 
of the field energy. The latter direction, however, does not 
coincide, in S, with the propagation direction of the e.m. plane 
wave. From the corpuscular point of view, we show that in the 
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framework of the IT the usual equations relating the photon 
energy and momentum to frequency also hold. The result of 
this research on the Compton effect is a complete empirical 
equivalence between the TSR and the IT approach. 

1. The inertial transformations 
The Theory of Special Relativity (TSR) and the Lorentz 
Transformations (LT) are fundamentally based on the well known 
Einstein synchronization of clocks. Mansouri and Sexl [1] showed 
that the Lorentz transformations contain a purely conventional term 
devoid of any empirical basis: the coefficient of x in the 
transformation of time. The task of this coefficient is to ensure that 
the one way velocity of light has the invariant value c.  

A more detailed examination of the problem shows that there are 
many methods of synchronizing clocks, the most used ones being 
essentially four: Einstein’s method, slow transport method, absolute 
method and method of symmetrical velocities. Selleri [2] succeded in 
obtaining a set of transformations of space and time in which a 
suitable free parameter appears, 1e  (synchronization parameter), from 
which the TSR is obtained by considering a particular nonzero value 
of 1e : in this way it is possible to formulate an infinite set of theories 
empirically equivalent to the TSR, that are theories compatible with 
the following assumptions: 

1. An inertial reference system S0 exists in which the velocity of 
light is c in every point and direction; 

2. the two way velocity of light is the same in all directions and 
in all inertial reference frames; 

3. the pace of clocks in motion with respect to S0 with velocity V 
slows down by the usual factor 21R β= − , where 

V cβ = . 
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One reasonably assumes also that 
i. space is homogeneous and isotropic, and time is 

homogeneous, at least for observers at rest in S0 ; 
ii. The axes of S and S0 coincide for 0 0t t= =  ; 

iii. The origin of S, seen from S0, moves with velocity 
V c<  parallel to the +x0 axis, that is according to the 
equation  0 0x V t= ; 

iv. Maxwell’s equations in S0 hold in the usual form; 
The equivalent transformations (ET) from S0 to S obtained by 

Selleri are: 

 

( )

0 0

0 0

0 1 0 0

                           

x Vtx
R

y y z z
t Rt e x Vt

−⎧ =⎪
⎪

= =⎨
⎪ = + −⎪
⎩

 (1) 

The TSR is recovered for 1 /e Rcβ= − , value introducing a well 
known symmetry between the space and time variables, forcing the 
latter to a geometrical role in the fourdimensional Minkowski space. 
Different values of 1e  correspond to different theories of space and 
time. 

Remarkable consequences of the ET (1) are: 
A1.  Relatively to the system S, the one way velocity of light 
propagating in a direction forming an angle ϑ   with the velocity V  of 
S relative to S0 (absolute velocity) is: 

 ( ) ( )1 1 cos
cc ϑ
β ϑ

=
+Γ

 (2) 



 Apeiron, Vol. 14, No. 3, July 2007 187 

© 2007 C. Roy Keys Inc. — http://redshift.vif.com 

with ( ) 1ce Rβ βΓ = + . Notice that, for all theories satisfying (i) and 
(ii) and having 0Γ ≠ , S is a necessarily anisotropic frame, so that S0, 
assumed isotropic, is unique. 
A2. Lorentz-Fitzgerald contraction. A rod at rest in S, whose 
extremes coincide with the coordinates 1x  and 2x , is seen in motion 
from S0 where it appears shortened along the 0x  direction according 
to the equation: ( )02 01 2 1x x R x x− = − . A rod at rest in S, whose 
extremes have coordinates 1y  and 2y , has the same length in S0 as in 
S . 
A3. Larmor retardation. A clock at rest in S marking time t, is seen in 
motion from S0 where it appears retarded according to the equation: 

( )02 01 2 1t t t t R− = − . 
A4. Michelson and Fizeau type experiments, the aberration of 
starlight, the occultations of Jupiter satellites, the radar distances of 
planets and the determination of the International Atomic Time do not 
depend on the value of 1e  as it was to be expected. 

Rizzi and collaborators [3] proved the following theorem: Selleri’s 
assumptions: 

1. At least one Inertial Reference Frame (IRF) S0 exists in which 
the velocity of light is c  in all points and in all directions (S0 
is optically isotropic). 

2. The two ways velocity of light is the same in all IRFs and in 
all directions. 

3. The pace of clocks in motion with respect to S0 with velocity 
V  slows down by the usual factor 21 β− , with /V cβ = . 

are equivalent to Einstein’s basic assumptions of the TSR. 
According to Rizzi et al., the important consequences of this 

theorem are: 
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a)  No experiment can discriminate between different values of 
1e ; 

b)  It is impossible to detect the privileged IRF S0.  
Therefore the role of privileged IRF played by S0 is only artificial as 
S0 is the IRF in which, by convention, the Einstein synchronization 
procedure was adopted. Any IRF S can then play the role of S0. 

c)  The transformation: 

 
( )ˆ ˆ  

ˆ ˆ ˆ;       ;       

t t x
c

x x y y z z

βΓ⎧
= +⎪

⎨
⎪ = = =⎩

 (3) 

allows one to pass, within any given IRF S, from the Einstein 
synchronization to Selleri’s generalized synchronization. In this way 
one also passes from the Lorentz to the equivalent transformations. 

Point a), it is our conviction, is not generally true. The hypothetical 
indifference of the objective reality with respect to clock 
synchronization holds only so far as Weakly Accelerated Reference 
Frames (WARFs) are excluded [4]. In fact the physical continuity 
with such frames chooses the transformations specified by the 
condition 1 0e =  (called Inertial Transformations). 

Point b) states the impossibility of detecting the privileged IRF S0. 
In fact there is a well defined way to resynchronize clocks [5] in all 
IRFs allowing one to pass from a given privileged IRF S0 to another 
privileged IRF S, arbitrarily chosen, where the “privilege” is the 
isotropy of space, e.g. with respect to the propagation of light. The 
equivalent theories (1) possess the following properties: 

1. It is impossible to detect experimentally the existence of an 
absolute motion of the Earth with respect to any eventually 
existent privileged IRF. This is known as Weak Relativity 
Principle (WRP). 



 Apeiron, Vol. 14, No. 3, July 2007 189 

© 2007 C. Roy Keys Inc. — http://redshift.vif.com 

2. The two way velocity of light is invariant. 

Due to the WRP the predictions of the equivalent theories for the 
fundamental experiments (Bradley, Römer, Fizeau, Foucault, 
Michelson, ecc.), are identical to the predictions of the TSR. 

The inertial transformations, obtained from (1) by assuming 1 0e =  
are: 

 

0 0

0 0

0

         

             ;              
               

x Vtx
R

y y z z
t Rt

−⎧ =⎪
⎪

= =⎨
⎪ =⎪
⎩

 (4) 

Remarkable consequences of the inertial transformations (4) are all 
those already seen for the ET (A1, A2, A3, A4). 

The origin of S, observed from S0, is seen to move with velocity 
V c< , while the origin of S0, observed from S, is seen to move with 
velocity 2/c Rβ− . The latter velocity can be larger than c , but 
cannot be superluminal. In fact a luminous pulse travelling in the 
direction x−  has a velocity given by (2) with ϑ π= , that is 
( ) /(1 )c cπ β= −  which is certainly larger than 2/c Rβ , if 0 1β≤ < . 

The relative velocities, in any direction ϑ , can grow without limit, 
but they always remain smaller than ( )1c ϑ . The absolute velocities 
can never be larger than c. 
Absolute simultaneity. Two spatially separated events happening at 
the same time in the IRF S0, are simultaneous also with respect to S. 
The remarkable successes marked by the theory of the IT push us to 
extend their applications to "dynamical" physical phenomena, 
recalling that up to the present time the published applications had 
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mainly a kinematical nature. We will therefore consider the Compton 
effect, that is a phenomenon in which the relativistic treatment of 
electrons and photons is considered essential. In spite of this we will 
show that the theory based on the IT is perfectly able to explain the 
empirical evidence if the dual nature of the photon (particle and wave) 
is taken into account. 

2.  Propagation of energy 
We consider the propagation of a light particle P (in practice a very 
small light pulse) in the privileged frame S0, relative to which the 
velocity of light is c in all directions. The position of P is given by 
two coordinates 0x  and 0y  satisfying, at time 0t : 

      0 0 0 0 0 0  cos           ;            x c t y c tϑ ϑ= =  (5) 

Relative to the moving inertial frame S, which superimposes with S0 
at time 0 0t t= = , we describe P with the coordinates x  and y  
satisfying, at time t  
 cos         ;  sinE E E Ex c t       y c tϑ ϑ= =  (6) 

Given the smallness of the pulse, the energy transported by it is 
clearly propagating with the same velocity and in the same direction. 
This is the reason why the index E was appended to velocity c and 
angle ϑ .  

Our first task is to use the inertial transformations to determine cE 
and Eϑ  in terms of the S0 quantities c and 0ϑ , which are considered 
known. 

The ("inverse") inertial transformations from the moving frame S 
to the privileged frame S0 are: 
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       0 0 0            ;                   ;         V tx R x t y y t
R R

= + = =  (7) 

Substituting (7) into (5) we find 

 ( )    0 02  cos              ;            c cx t y t
R R

ϑ β ϑ= − =  (8) 

with /V cβ = . A comparison of (6) with (8) gives 

( )     0 02cos   cos              ;            E E E E

c cc c
R R

ϑ ϑ β ϑ ϑ= − =

By dividing side by side these two equations one gets  

 0

0

sintan
cosE
R ϑϑ
ϑ β−

 (10) 

By squaring and adding the two equations (9) one can also obtain 

 ( ) 02 1  cosE

cc
R

β ϑ= −  (11) 

Eq. (10) coincides with the well known relativistic aberration formula 
[6], [7]. All quantities appearing in the right hand side of (10) are 
relative to the system S0 where Lorentz and inertial theories agree on 
the numerical values of 0ϑ  and β . Therefore the aberration angle is 
predicted by the two sets of transformations to have exactly the same 
value, and this for arbitrary S. One obtains thus a complete 
explanation of the aberration effect within the approach based on the 
inertial transformations.  

Substitution of Eq. (11) into (9) gives 



 Apeiron, Vol. 14, No. 3, July 2007 192 

© 2007 C. Roy Keys Inc. — http://redshift.vif.com 

 0 0

0 0

cos   sincos              ;          sin   
1  cos 1  cosE E

Rϑ β ϑϑ ϑ
β ϑ β ϑ

−
= =

− −
 12) 

Thus we see that the propagation direction of the light pulse in S is 
specified by the unit vector with components: 

  0 0

0 0

cos   sinˆ    ,    
1  cos 1  cosE

Rn ϑ β ϑ
β ϑ β ϑ

⎛ ⎞−
= ⎜ ⎟− −⎝ ⎠

 (13) 

The pulse velocity can be expressed in terms of the angle Eϑ  in S. 
Comparing (13) with ( )ˆ cos ,sinE E En θ θ=  one can easily obtain 

 
2

0

1  cos   
1  cosE

Rβ ϑ
β ϑ

+ =
−

 (14) 

which, substituted in (11), finally gives 

 
 

  
1  cosE

E

cc
β ϑ

=
+

 (15) 

As expected, Ec  coincides with the one-way velocity of light 
relative to S[8] obtained in the framework of the inertial 
transformations. 

3. Wave equations relative to the moving 
system 

We start from the transformation equations for the space and time 
derivatives. From the inertial transformations (7) one can easily 
obtain: 
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 0 0 0

0

1         ;                ;        

    

x R x y y z z
V R

t R x t

∂ ∂ ∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
= − +

∂ ∂ ∂

 (16) 

From (16) one gets: 

 
 

2 2 2 2 2 2

2 2 2 2 2 2 2
0 0 0

2 2 2 2 2 2

2 2 2 2 2 2
0

1       ;           ;       

1 1    2   
1

x R x y y z z

c t c t c x t x
β β β

β

∂ ∂ ∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂

∂ − ∂ ∂ ∂
= − +

∂ ∂ ∂ ∂ − ∂

 (17) 

Therefore the Laplace operator in S0 satisfies: 

 
2 2

2 2
0 2 2    

1 x
β
β

∂
∇ = ∇ +

− ∂
 (18) 

As it is well known, from Maxwell’s equations in 0S  follow the wave 
equations: 

 
2 2

2 20 0
0 0 0 02 2 2 2

0 0

1 1            ;            E HE H
c t c t

∂ ∂
∇ = ∇ =

∂ ∂
 (19) 

We wish to see how they must be written in the S  frame. By 
applying (18) and (17): 

2 2 2 22 2
2 20 0 0 0

0 02 2 2 2

1 2 1 2 ;E E H HE H
c t c x t c t c x t
β β β β∂ ∂ ∂ ∂− −

∇ = − ∇ = −
∂ ∂ ∂ ∂ ∂ ∂

(2

0) 
Consider now the transformations of the fields established in [9]: 
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( ) ( )

( ) ( )

0 0 0

0 0 0

1 1   ;       ;   

1 1  ;       ;   

x x y y z z z y

x x y y z z z y

E E E E H E E H
R R

H H H H E H H E
R R

β β

β β

= = + = −

= = − = +
 (21) 

Owing to (21), the equations (20) can respectively be written: 

2 22
2

2 2

2 2 2 22 2
2 2

2 2 2 2

2 22 22 2
2 2

2 2 2 2

1 2 0

1 2 1 2

1 2 1 2

x x
x

y y z z
y z

y yz z
z y

E EE
c t c x t

E E H HE H
c t c x t c t c x t

H HE EE H
c t c x t c t c x t

β β

β β β ββ

β β β ββ

⎧ ∂ ∂−⎪∇ − + =
⎪ ∂ ∂ ∂
⎪ ∂ ∂ ⎛ ∂ ∂− −⎪∇ − + = − ∇ − +⎨ ⎜∂ ∂ ∂ ∂ ∂ ∂⎝⎪
⎪ ⎛ ⎞∂ ∂∂ ∂− −⎪∇ − + = ∇ − +⎜ ⎟⎜ ⎟⎪ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎩

2 22
2

2 2

2 2 2 22 2
2 2

2 2 2 2

2 22 22 2
2 2

2 2 2 2

1 2 0

1 2 1 2

1 2 1 2

x x
x

y y z z
y z

y yz z
z y

H HH
c t c x t

H H E EH E
c t c x t c t c x t

E EH HH E
c t c x t c t c x t

β β

β β β ββ

β β β ββ

⎧ ∂ ∂−⎪∇ − + =
⎪ ∂ ∂ ∂
⎪ ∂ ∂ ⎛ ∂ ∂− −⎪∇ − + = − ∇ − +⎨ ⎜∂ ∂ ∂ ∂ ∂ ∂⎝⎪
⎪ ⎛ ⎞∂ ∂∂ ∂− −⎪∇ − + = ∇ − +⎜ ⎟⎜ ⎟⎪ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎩

Notice that the second of (22) and the third of (23) have the structure: 
{ } 2                   0F G G F F F F Gβ β β= − ⊕ = − ⇒ = ⇒ = = (24) 
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Also the third of (22) and the second of (23) have a similar structure 
and lead to a similar consequence. Therefore, repeating also the first 
equations (22) and (23) we write: 

2 22
2

2 2

2 22
2

2 2

2 22
2

2 2

1 2 0

1 2 0

1 2 0

x x
x

y y
y

z z
z

E EE
c t c x t

E E
E

c t c x t
E EE

c t c x t

β β

β β

β β

⎧ ∂ ∂−
∇ − + =⎪ ∂ ∂ ∂⎪

∂ ∂⎪ −
∇ − + =⎨

∂ ∂ ∂⎪
⎪ ∂ ∂−
∇ − + =⎪ ∂ ∂ ∂⎩

2 22
2

2 2

2 22
2

2 2

2 22
2

2 2

1 2 0

1 2 0

1 2 0

x x
x

y y
y

z z
z

H HH
c t c x t

H H
H

c t c x t
H HH

c t c x t

β β

β β

β β

⎧ ∂ ∂−
∇ − + =⎪ ∂ ∂ ∂⎪

∂ ∂⎪ −
∇ − + =⎨

∂ ∂ ∂⎪
⎪ ∂ ∂−
∇ − + =⎪ ∂ ∂ ∂⎩

 
(25)

 

Eq.s (25) are the wave equations in S. In vectorial form they become: 
2 2 2 2 2 2

2 2
2 2 2 2

1 2 1 2  ;  E E H HE H
c t c x t c t c x t
β β β β− ∂ ∂ − ∂ ∂

∇ = − ∇ = −
∂ ∂ ∂ ∂ ∂ ∂

 (26) 

We see that also in S the wave equations have the same form for E  
and H . As the strong form of the relativity principle does not hold 
with the inertial transformations, eq.s (26) are different from eq.s (19) 
valid in S0. 
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4. Properties of the plane waves 
It is well known that the Eq.s (19) have plane wave solutions of the 
form 

 ( )0 0 0 0
 

2
0 0  i k r tE e π νε ⋅ −
=  (27) 

where 0ε  is the constant amplitude, 0ν  is the frequency, 0k  is the 
wave vector giving the propagation direction. Relative to S0 the 
velocity of light is c, therefore 0 0 /k cν= . 

A linear transformation (Lorentz, inertial, …) of the space and 
time variables and of the field components maintains the general 
structure of the plane wave. Therefore we can assume that a solution 
of the first eq. (26) is of the type: 

 ( )
 

2   
  i k r tE e π νε ⋅ −
=  (28) 

with ε  constant amplitude, ν  frequency, k  wave vector, all relative 
to S. Inserting (28) into (26) and noting that: 

 
2 2

2 2 2 2 2 2
2 4   ;    4   ;    4 x
E EE k E E k E

t x t
π π ν π ν∂ ∂

∇ = − = − =
∂ ∂ ∂

 

we obtain the second degree equation in k: 

  

2
2 2

2

2 1cos 0k k
c c
β βν ϑ ν−

− − =  (29) 

with cosxk k ϑ= . The 0k >  solution of (29) is: 

  
2 2  cos   1 sink

c
ν β ϑ β ϑ⎡ ⎤= + −⎣ ⎦  (30) 

This holds for plane waves satisfying (26). In the system S it is 
analogous to the relationship 0 0 /k cν=  holding in the privileged 
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frame. Eq. (30) implies that the seeming velocity of the wave, cφ , is 
the same for all frequencies ν  (therefore the waves do not disperse in 
the vacuum) but depends on the propagation direction according to: 

 
2 2

    
cos   1 sin

cc
kφ
ν

β ϑ β ϑ
= =

+ −
 (31) 

We will later see, however, that the direction of k  does not 
coincide with the propagation direction of the energy transported by 
the wave [10] and that (31) does not represent the true velocity of the 
wave in S. 

Naturally we could have deduced the previous results from the 
magnetic equation (26) by studying its plane wave solutions similar to 
(28). Actually the electric and magnetic equations lead to the same 
properties of the plane waves.  

Next consider again eq. (28), for which: 

     2     ...       2x
E Eik E i E
x t

π π ν∂ ∂
= = −

∂ ∂
 (32) 

the dots standing for y and z derivatives similar to the x derivative. 
Thus to the vectorial operator ∇ corresponds the imaginary vector 
2 ikπ and the time derivative operator to the imaginary scalar 2 iπ ν− . 
In the same sense one can see from (27) that in S0 to ∇0 corresponds 

02 ikπ  and to the time derivative corresponds 02 iπ ν− . That is: 

 
  

  0 0 0
0

2 ;    2

2 ;  2

ik i
t

ik i
t

π π ν

π π ν

∂
∇→ →−

∂
∂

∇ → →−
∂

 (33) 
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We can now easily find the transformations of wave vector and 
frequency between the two reference frames S and S0. The phase 
invariance of the plane wave (27) and (28) can be written 
 ( ) ( )  0 0 0 0 0 0 0 02 2x y z x y zi k x k y k z t i k x k y k z tπ ν π ν+ + − = + + −  

Substituting the inverse inertial transformations (7) and noting that the 
previous equation holds for arbitrary values of the space and time 
variables one can easily obtain: 

 0 0 0 0
1   ;     ;     ;     x x y y z z x

Vk k k k k k R k
R R

ν ν= = = = +  (34) 

whence one gets: 

  0 0
0 0 0

     ;     ;     ;   x
x x y y z z

V kk Rk k k k k
R

νν −
= = = =  (35) 

Let us define the unit vector 0n  by writing 0 0 0 0 0( / )k k n c nν= = . 

One has then 0 0 0  ( / )xVk V n cν= ⋅  and the last eq. (35) becomes: 

 0 0  1 V n
R c
νν

⎛ ⎞⋅
= −⎜ ⎟

⎝ ⎠
 (36) 

The Doppler effect formula (36) was obtained in Ref. [10]. 
Consequences of (35) are: 

 2 2 0
0 0 2 2

0

cos 1 cos  ; cos  
1 cos

xk Rk k
k

ϑβ ϑ ϑ
β ϑ

= − = =
−

 (37) 

where 0 0 0cos /xk kϑ = . Eq.s (37) are the transformations of the wave 
vector modulus and direction. From the second of (37) one gets 
easily: 
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 0
2 2

0

sinsin   
1 cos

ϑϑ
β ϑ

=
−

 (38) 

Thus the unit vector normal to the wave front in S: 
( )  cos ;sinn ϑ ϑ= , can be written: 

 0 0
2 2 2 2

0 0

cos sin  ,   
1 cos 1 cos

Rn ϑ ϑ

β ϑ β ϑ

⎛ ⎞
⎜ ⎟=
⎜ ⎟− −⎝ ⎠

 (39) 

This is to be compared with the energy propagation direction given 
by (12): 

  0 0

0 0

cos   sinˆ    ,    
1  cos 1  cosE

Rn θ β θ
β θ β θ

⎛ ⎞−
= ⎜ ⎟− −⎝ ⎠

 (40) 

Substituting in (39) the relationship 

 ( )22 2 2
0 0cos   /n V cβ ϑ = ⋅  (41) 

we get: 

 
( )

( ) 0
0 22 2

0

1    1
1 /

V nn n R V
Vn V c

⎡ ⎤⋅
= + −⎢ ⎥

⎣ ⎦− ⋅
 (42) 

Eq (42) coincides with the Puccini-Selleri formula [10]. For the 
seeming phase velocity cφ  (already found in (31)) by using the 
transformations (36)-(37) as well as (40) one has: 

 
( )

0 0 0
2 2 2 2

0 0 0

1 / 1 / 
1 cos 1 /

V n c V n ccc
k R Rk n V c

φ
νν

β ϑ
− ⋅ − ⋅

= = =
− − ⋅

 (43) 
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Also (43) coincides with a result found by Puccini-Selleri [10], and 
furthermore it coincides with (31). 

Further conditions are found by assuming that the plane waves 
satisfy the Maxwell equations in the form established in [9]. The 
Maxwell equations in S in the vacuum in regions where there are no 
charges and currents have the form: 

1 ' 1 '  ;   ; ' 0 ;  ' 0H EE H H E
c t c t
∂ ∂

∇× = − ∇× = ∇⋅ = ∇⋅ =
∂ ∂

  (44) 

where 

 '     ;    'H H E E E Hβ β= + × = − ×  (45) 

with V cβ = .Using the correspondences (33) we can write for E∇×  
and H∇×  as given by (44) and (45) : 

 ( ) ( )    ;    k h k h h
c c
ν νε β ε ε β× = + × × = − − ×  (46) 

Multiplying the first and second Eq. (46) respectively by ε  and 
h we get: 
  0hε ⋅ =  (47) 
Thus the solutions of the wave equations (26) respecting the Maxwell 
equations in S have, just as in S0, perpendicular electric and magnetic 
fields. Using again the correspondences (43) we can write for 'E∇⋅   
and 'H∇⋅ as given by (44) and (45):  

 ( ) ( )   0   ;       0k h k hε β β ε⋅ − × = ⋅ + × =  (48) 

From (48) another important result follows trivially: 
      ;     k k h k h kε β β ε⋅ = ⋅ × ⋅ = − ⋅ ×  (49) 
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Eq.s (49) show that the plane wave solutions of the wave 
equations, differently than in S0, in general are not transverse in S. 
That is, the electric and magnetic fields, even if perpendicular to one 
another, are not orthogonal to the seeming propagation direction k . 
Furthermore the fields obey the Lorentz transformations (21), from 
which one easily obtains: 
 2 2 2 2

0 0 0 0       ;     h h h hε ε ε ε− = − ⋅ = ⋅  (50) 

Given that 0 0hε =  one sees that: 

  hε =  (51) 
In conclusion in S the wave fields are perpendicular to one another 

and have equal moduli. 

5. The physical wave vector  
In S0 the propagation direction of the electromagnetic energy is 
perpendicular to the electric and magnetic fields 0ε  and 0h . The 
theory of the inertial transformations should show empirical 
equivalence to the TSR. According to this expectation also in S the 
propagation direction of energy should be perpendicular to the 
electric and magnetc fields ε  and h . We can show that this is indeed 
the case by writing (48) as: 

 ( ) ( )   ;    k h k k h kε β β ε⋅ = ⋅ × ⋅ = − ⋅ ×  (52) 

Inserting now Eq.s (46) in the right hand sides of (52) we get: 

      0   ;      0k k h
c c
ν νβ ε β⎛ ⎞ ⎛ ⎞− ⋅ = − ⋅ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (53) 

Eq.s (53) imply that the vector: 
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   E     k k
c
νρ β⎛ ⎞≡ −⎜ ⎟

⎝ ⎠
 (54) 

is perpendicular both to ε  and to h  ( ρ  is a normalizing factor). 
Notice that 

  

2
2 2

E 2 2 cosk k k k k
c c c c
ν ν ν νρ β β ρ β ϑ β⎛ ⎞ ⎛ ⎞≡ − ⋅ − = − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (55) 

By using (29) one can also write: 
  E  /k cρ ν=  (56) 

We can now show that the propagation direction of the 
electromagnetic energy transported by the wave, as described in the 
frame S, is given by Ek . Representing Ek  with its components we 
have: 

   E       ,    x yk k k
c
νρ β⎛ ⎞≡ −⎜ ⎟

⎝ ⎠
 (57) 

whence, using (35) and (36) 

   
0

E 0 0 0 0 0   cos (1 cos ) ,    sink Rk k
cR
ν

ρ ϑ β ϑ β ϑ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (58) 

which is the same as: 

 ( ) 
0

E 0 0    cos ,    sinkk R
R

ρ ϑ β ϑ= −  (59) 

Therefore Ek  is parallel to En  (see (40)) and one has necessarily: 

        E
K cn k
K c

ν β
ν
⎛ ⎞≡ = −⎜ ⎟
⎝ ⎠

 (60) 
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This shows that the vector E E Ek k n=  gives the propagation 
direction of the electromagnetic energy transported by the wave 
relatively to the frame S. Therefore Ek  as defined by (54) will be 
called effective wave vector. It is useful to define also the effective 
wave length L : 

    EcL
ν

=  (61) 

which due to (15) and (36) becomes:  

 
0

1    cL
Rν

=  (62) 

elongated by a factor 1 R , as expected, with respect to the 
wavelength 0 0    /cλ ν=  measured in S0. 

6. Photonic energy and momentum 
Suppose that relative to the inertial frame 0S  a photon has energy and 
momentum respectively given by: 

 0
0 0 0 0  ;   hE h p n

c
νν= =  (63) 

The photon is the quantum of the electromagnetic field. Its energy 
relative to the moving frame S  [11] is: 

( ) ( )0
0 0 0

1     1  cosx
hE E Vp

R R
ν β ϑ= − = −  (64) 

where 0ϑ  is the angle between the photon propagation direction and 
the x0 axis of S0. The frequency is related to 0ν  by eq. (35). Therefore, 
substituting (35) in (64) one gets: 
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  E hν=  (65) 
Using the first of the inertial transformations for momentum [11] one 
gets: 

 [ ]0
0 0 0

1       cos   x x
h

p p E
R c Rc

νβ ϑ β⎡ ⎤= − = −⎢ ⎥⎣ ⎦
 (66) 

whence, introducing once more eq. (35), 

 0

0

cos           
1    cosx

hp
c

ϑ βν
β ϑ
−

=
−

 (67) 

Therefore, thanks to (12) 

  cosx E
hp
c
ν ϑ=  (68) 

Supposing now for simplicity that the photon has 0 0zp = , one can 
write in S 

 0
0 0   siny y

hp p
c
ν ϑ= =  (69) 

Using once more eq. (35) one gets: 

   
0

0

sin      
1    cosy

hp R
c

ϑν
β ϑ

=
−

 (70) 

or also, introducing (12)  

  siny E
hp
c
ν ϑ=  (71) 

From (68) and (71) one sees that the modulus of the photon 
momentum in the frame S is 

  hp
c
ν

=  (72) 



 Apeiron, Vol. 14, No. 3, July 2007 205 

© 2007 C. Roy Keys Inc. — http://redshift.vif.com 

In conclusion, given that relative to the frame S the photon has 
energy and momentum respectively given by (65) and (72), these 
quantities can be written as functions of the frequency in formally 
identical ways in S0 and S. This is of course the standard result in the 
TSR, but it needed to be proven anew in the approach based on the 
IT. 

7. The Compton effect 
We now apply the found results to the Compton effect [12]. Suppose 
that in the system S  the photon has initially the frequency ν  and 
travels in the +x direction and the electron is at rest. 

 
Figure 1. The Compton effect. 

From the conservation of energy and momentum in the frame S  
one gets the equations: 

 

2  

cos cos   ;   0 sin 'sin

eh mc h E
h h hp p
c c c

ν ν
ν ν νϑ φ ϑ φ

′ ′+ = +
′ ′

′= + = −
 (73) 

In order to get rid of the angle φ  we rewrite the second and third 
eq.s (73) as: 
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 ''cos   cos       ;      sin   sinh h hp p
c c c
ν ν νφ ϑ φ ϑ

′
′= − =  (74) 

By squaring, summing, and multiplying by 2c  we get: 

( ) ( ) ( )( )2 22 2   2 cosp c h h h hν ν ν ν ϑ′ ′ ′= + −  (75) 

From the first equation (73): 

 ( )22 2  
e

E h h mcν ν′ ′= − +  (76) 

By subtracting side by side (75) from (76) and using the electron 
mass condition we get after a few steps: 

 ( )2

1 1    1  cosh
mc

ϑ
ν ν

− = −
′

 (77) 

This is the famous Compton formula expressed in terms of the 
synchronization independent frequencies. Thus also the inertial 
transformations predict essentially the same formula that Compton 
found in 1923 by using the theory of relativity. Rewriting the 
Compton formula in terms of wavelengths is not trivial in the present 
approach, given that the velocity of light relative to S is given by Eq. 
(15). It will be done in the next section. 

8. The wavelength determination 
In Compton’s experiment (see the setup in Fig. 2) x-rays of 

wavelength 0,0709 nm produced in an x-ray tube struck a carbon 
target. A series of slits allowed only those scattered x-rays which left 
the target in a direction forming an angle θ  with the direction of the 
incident x-rays to enter the spectrometer. The value of θ  could be 
varied by moving the x-ray source. The spectrometer consisted of a 
rotating framework with a calcite crystal to diffract the x-rays and an 
ionization chamber acting as a detector. As the glancing angle φ  at 
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which the primary beam of x-rays struck the crystal was varied, the 
angle between the ionization chamber and the primary beam was kept 
at 2φ , in order to receive the secondary beam reflected from the 
crystal. Since the spacing of the crystal planes in calcite is known, the 
wavelength of the scattered x-rays could be accurately determined 
from the angle φ  at which they were diffracted with maximum 
intensity (Bragg’s law, a well known interference effect). Thus the 
output of the spectrometer, for any chosen value of θ , was essentially 
the intensity of the scattered x-rays as a function of wavelength.  

Calcite     
crystal

Carbon           
target

Detector    

X ray tube     

θ

 
Figure 2. In Compton’s experiment x-rays produced in an x-ray tube struck a carbon 
target. A series of slits allowed to enter the spectrometer only those scattered x-
rays which left the target at an angle θ  with respect to the incident x-rays. The 
value of θ  could be varied by moving the x-ray tube. The spectrometer consisted 
of a calcite crystal to diffract the x-rays and an ionization chamber acting as a 
detector. An application of Bragg’s law determined the wavelength of the scattered 
x-rays. 

A laboratory is at rest in the inertial system S moving with 
absolute velocity ν  and in it a Compton experiment is performed 
with a beam of x-rays. Given the quantum mechanical properties of 
photons a correct description of the propagation must take into 
account both particle and wave aspects of the radiation. From the 
undulatory point of view one should consider that in such an 
experiment two different photons are incoherent and do not interfere. 
Therefore the interference taking place in the crystal arises from a 
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very large number of repetitions of interference of an individual 
photon with itself.  

A photon born in the point P propagates to the point Q where it is 
detected. The extension of the quantum mechanical wave describing 
the photon implies that its propagation can be represented by 
infinitely many Feynman trajectories[13], two of which are shown as 
(a) and (b) in Fig. 3. Actually the curved part of the trajectory is 
limited to the inside of the Calcite crystal of Fig. 2, outside of which 
the propagation is rectilinear. Notice that the big grey arrow of Fig. 3 
represents the laboratory "absolute" velocity (velocity of the inertial 
reference frame S in which the laboratory is at rest with respect to the 
privileged isotropic frame S0). The interference in Q (a point of the 
detector) is determined by the time delay ΔT between the two paths. 
According to the TSR light propagates in all directions with the same 
speed c  also with respect to S  and one has:  

         b a
b a

L LT T T
c
−

Δ = − =  (78) 

v

Q

P

(a) 

(b) 

 
Figure 3. A photon born in the point P propagates to the point Q where it is 
detected. From the undulatory point of view the propagation can take place along 
infinitely many trajectories, two of which are shown as (a) and (b). The big grey 
arrow represents the laboratory absolute velocity. 

where aL  and bL  are the P to Q lengths of the curves (a) and (b): 
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( ) ( )

           ;           a a b b
a b

L d L d= =∫ ∫  (79) 

Next we calculate ΔT from the equivalent transformations, 
according to which the inverse velocity of light relative to S is given 
by (9). One has: 

  

1 1( ) ( )

       
( ) ( )

b a

b ab a

d dT
c cθ θ

Δ = −∫ ∫  (80) 

where ( )a bθ θ  is the angle between ad  and ν ( bd  and ν ). By 
inserting (A8) in (79): 

  

 

( ) ( )

( ) ( )

      cos   cos

             

b a
b b a a

b a

b a
b a

b a

L LT d d
c c c

L L d d
c c

θ θ

ν
ν

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

⋅

− Γ Γ
Δ = + −

− Γ
= + −

∫ ∫

∫ ∫
   (81) 

The term with curly brackets vanishes because the two integrals 
separately equal the vector joining the points P and Q. Thus (78) and 
(81) are the same. Therefore Γ (containing 1e ) disappears from the 
result and there is a unique ΔT predicted by all theories of the set 
based on the equivalent transformations. This ΔT leads to a unique 
numerical prediction for the angle θ  at which there is constructive 
interference of the photonic waves accompanying a photon after 
interaction with the atomic lattice of the crystal. At this point it is 
possible to apply an arbitrary theory of the set, e.g. the STR assuming 
that the velocity of the x-rays is c  also relative to S . Given the result 
(77) of the previous section and assuming cλν =  one clearly gets the 
Compton formula for wavelengths: 
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 ( )0 C    1  cosλ λ λ θ− = −  (82) 

A different result is possible if one starts from a different theory of 
the set, for which 1( )cλν θ= , but the difference is in any case only 
formal and not substantial, as we have shown above. 

Appendix 
In this appendix we will present a simple method to obtain, 
consistently with the equivalent transformations (1), the velocity of a 
flash of light propagating in a medium at rest in the generic inertial 
frame S. Consider the triangle ABC of fig. 4, at rest in the inertial 
frame S, with sides having lengths ,AB BC  and CA  and with 
suitably oriented mirrors placed in B and C (not shown).  

x

yy0

x0

v

A

B

C
θ
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Figure 4. The triangle ABC is at rest in the inertial frame S. Suitably oriented 
mirrors in B and C (not shown) force a flash of light emitted in A to propagate on 
the closed path ABC. Along AB light propagates in a medium, while the sides BC 
and CA are in the vacuum. 

The time ABCt  required by light to propagate on the closed path 
ABC can be measured with a single clock in A independently of 
clock synchronization and is given by  

      AB BC CA
ABC

AB BC CA

t
c c c

= + +  (A1) 

where ABc  is the velocity of light from A to B, and so on. 
The sides BC and CA are intended to be in the vacuum, while we 

assume that the path AB is inside a medium (refraction index n) at 
rest in S. In the TSR the velocity of light in such a medium is given 
by: 

 TSR  AB

cc
n

=  (A2) 

In fig. 4 BC is perpendicular and CA antiparallel to the absolute 
velocity v of S. Therefore, by using eq. (2) for light velocity in the 
vacuum we have 

 ( )      1AB BC CA
ABC

AB

t
c c c

= + + −Γ  (A3) 

The prediction of the TSR according to (A2) is instead 

      BC CA
ABC AB

nt
c c c

= + +  (A4) 

The time ABCt , measurable with a single clock, is independent of 
the synchronisation parameter 1e . Therefore (A3) and (A4) must be 
equal and it follows 
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 1     CA
AB

AB

n
c c c
⎡ ⎤

− = Γ⎢ ⎥
⎣ ⎦

 (A5) 

whence, considering that cosCA AB θ= : 

 1 cos    
AB

n
c c c

θΓ
= +  (A6) 

This result shares with eq. (2) a property that can be written for 
any two points X and Y connected by light propagation in the vacuum 
or in a medium as follows : 

 1 1 cos    
TSRXYc c c

θΓ
= +  (A7) 

where Γ is independent of the medium. Clearly, the propagation time 
dt over the very small distance d  is 

      TSR

d ddt
c c

ν
ν

Γ ⋅
= +  (A8) 

where d  is the vector of length d  oriented in the direction of light 
propagation. The latter result is used in the text for deducing the last 
expression (81) of ΔT. 
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