
11. ILLEGAL STATICS
Sometimes we want to jump over the troubles. We have just a little chance on a kind
of success here. Let us violate (8.9’). On the boundary with vacuum (8.9’) provides
two conditions:  μ2    and its derivative across the boundary both should be zero. There
are two basic ways to violate (8.9’):

1. Soft Violation. If  μ2  continuous across the boundary but its derivative has a jump.
In this case equation (8.3’) will be violated in the point of a boundary and its left part
will be finite value instead of zero. A finite violation in just one point (surface) won’t
bear on volume integrals.

2. Hard Violation. If  μ2  has a jump across the boundary and its derivative go
infinite. In this case equation (8.3’) will be so violated that its left part will be infinite
instead of zero. In this case some volume integrals can acquire an unexpected but
finite value (like rest mass will be different from inertial mass). We are about to use a
hard violation. How bad is this venture? It is the same order like the use of a point
charge but even better because the integral of energy will not turn infinite. As an
advantage we will get a static model for any particle with any charge, spin, mass, and
magnetic moment.  

In general it is a “question of the future”. What we can say about it now? The
Gauss theorem (6.3) should be rewritten for the case if a vector  Uk  has a 
jump on some surface  S  which is inside our  V4:
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where  nk.. is a covariant normal to the surface  S  which is a 3-d surface. If  Uk=eiTik

then taking explicit form of  Tik from (8.2) we get:

2 2 2 2
0( ) ( ) 2 / ( ) ( )k k i

k k iU n U n k c e np m m+ - + -- = -

which is proportional to the scalar:                eini   (11.1)

(We used the continuity of E-M field across  S). If  Uk= emgnemnijxiTjk then the same
difference will be proportional to the scalar:
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These scalars often can be zero and even if not the integral over  S  still 

can be zero due to the symmetry of the surface  S. One case where the integral 
over  S  is not zero we will discuss in the section 13. If we consider IP+ 
in an external electric field it will accelerate. The proportionality 
coefficient between force and acceleration defines yet another “acceleration 
mass”. The good news are: the acceleration mass appear to be equal to the rest 
mass of IP+. 

Let us turn attention to the particle defined in (9.3) (9.5) with  z1 an arbitrary
value. This is not ideal particle. Calling it IP+notIP or simply IP+ let us apply to it the
same logic that we used in section 7 part I. First of all we can check that the integral
over  S  for IP+ (whether moving or at rest) equal to zero. If so then we can apply



Gauss theorem in the sense that it was used in section 7 and find:
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which is true because   Tik  does not depend on time. Let us calculate all the integrals
(7.4). Taking  α = 1,  ko= 1 for simplicity we get:
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The rest mass and inertial mass that can be retrieved from (3)  are significantly
different if  w1 not equal nπ , Ro(w1) not equal to zero. What does it mean? It means
that inertial mass should not be used.  Further in this section we use the rest mass as a
mass of the classical models of elementary particles.  

Can we build up a model of an electron or proton?  Yes, but these models will
be not ideal particles. The positive energy of the whole solution comes mainly from
the vacuum field. In order to describe electron and heavy particles like proton using
the same model we have to include a vacuum chamber inside our IP+. Having this in
mind let us take the currents:  
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where  aj
r

  is a unit vector of the spherical coordinate system. We have divided the
whole space on four spherical regions: I and III are not vacuum, II and IV are vacuum.
Everything here is good except jumps of the currents on three free boundaries  z=π,
z= z2, and  z= z3. Anyway, let us calculate all the global parameters of this particle.
This model will give the electron if we take z2=π. In this case, the inside vacuum
region II disappears. Using the currents (5) and formulas (9.1) we can find the
electromagnetic field in the inside regions I and III. Taking the vacuum electric field
in the regions II and IV and the vacuum magnetic field in the regions II, III, IV, we
have:
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Because the electric field should be continuous at z= z2 , we have: 
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The total charge of the regions I and III is:
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The magnetic moment that corresponds to the magnetic field (6) is:
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Let us calculate the rest mass of this particle. 
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Let us take the second integral which represents the energy of the magnetic field and
circular current:
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Integrating over  θ  and leaving out a constant factor, we have:
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That means that magnetic energy inside and outside the particle compensate each
other. Each of these parts is tremendous compared to the mass of the particle.  For
example, the vacuum magnetic energy of the electron exceeds its mass equivalent by
about 4x105 times! This energy can be calculated in conventional electrodynamics
(vacuum field). This fact requires the existence of negative energy inside the particle
and, consequently, confirms the credibility of the chosen energy-momentum tensor
(8.2). 
The first integral gives:
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Finally, we have:
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Let us calculate the mechanical angular momentum (spin). We have a density of a

linear momentum along  aj
r

:
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If we multiply this on the arm:  r.sin(θ)  and integrate it over

the volume then we get a spin:
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Finally, we have:
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Now we are in a position to apply these formulas. Our first objective is an electron.
Let us take  z2=π  and define some dimensionless constant: 
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Another combination of these formulas gives:
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The equation (11) for  z3  has many solutions. We have chosen the one which
produces the minimum radius for the electron: r3= 1.20468x10-13cm. The other
parameters of the electron are: 
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The constant of this theory  ko is now definite and we will use it for other particles as
a given value.  
For the charged heavy particles  we can define two other dimensionless constants:
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By solving the corresponding transcendent equations with the help of a computer we
can find the solutions for a given particle’s parameters (charge, mass, spin, magnetic
moment). Since the transcendent equations have many roots, we usually have to
choose between the first and second root. My guiding principle is to have a particle of
the smallest possible size. I have found two possible structures for the proton: Proton
Structure I: 
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Proton Structure II: 
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For a neutral heavy particle we can define another constant:
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According to (7), the radius of the outside free boundary of a neutral particle will be
the solution of:  $R_1(z_3) = 0$ . The two possible structures for a neutron is also
found.

Neutron Structure I:
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Neutron Structure II:
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The outside radius of a neutron is  r3 = 1.09972.10-13cm . The outside radius of all the
structures of proton and neutron are almost the same and less than the radius of the



electron. Both the proton and neutron have a core of the radius r1= 0.447218.10-13cm
which is surrounded by the vacuum. This core can be positive or negative in a proton
as well as in a neutron. The outside charged spherical layer of a heavy particle can be
thin or thick. We do not know which structure is closer to reality unless we discover
how comes about a stability of these particles. It is quite clear that we can build a
structure for any known particle. For example, let us build a particle that has magnetic
moment and spin, but its charge and mass are zero. From (7) we get the zero charge
when  R1(z3)= 0  or when  z3= 4.49340946 ,  z_3= 7.725252, and so on. Taking into
account that  R1(z3) = 0 and using (9) we find that the mass is zero if  z2  satisfies  sin
(z2)= (z2-π )\cos (z2)   the solutions of which is  z2=π, z2= 7.635062111, and so on. If
z2=π  and  z3= 4.49340946  then we have a neutrino without a vacuum chamber ---
electron neutrino. We could take  z2 =π and  z3= 7.725252. This electron neutrino
would be unnecessarily large. If we take  z2 = 7.635062111  and  z3= 7.725252, then
we have a neutrino with a vacuum chamber --- muon neutrino. Given a spin and
magnetic moment, we can find  α  and  β  for these neutrinos. Contrary to the existing
perception of neutrinos, these particles can be at rest and can be used only for a spin
balance otherwise we should consider neutrinos with a very small mass.  

Can we build a nucleus of the atom? Definitely so. For example, the proton of
the second structure and the neutron of the first structure both have a negative core
and positive charge density on the outside free boundary. This positive outside layer
can unite for many protons and neutrons. Each proton and neutron will preserve its
core and vacuum chamber (a small deformation should be expected). Due to the lack
of spherical symmetry, we will be forced to use a whole infinite series of the solutions
of Helmholz equation. 

I consider the illegal operation is a success and our choice of rest mass as a
real mass of the particles is correct. In section 14 we will show that for the particles
that violate (8.3’) on the boundary of disruption “inertial mass” (defined on $p.13)$,
that also can be calculated by integration, is different from the rest mass. We will
prove in the section 13 that yet another “acceleration mass” for small velocities
coincides with the rest mass which also indicates that the choice of rest mass is
correct.  

We showed that the very same dynamics equation (8.13) can explain electron
and much heavier proton as well --- we do not need any special “forces” or
modification of dynamics equation with another special constant to explain heavy
particles. 

The section 13 shows that all static solutions are unstable. The stability comes
about by introducing a High Frequency Strong Cosmic Background Radiation so that
real particles radiate and absorb at the same rate. That means that lot of dynamics
processes go around the described above static models. May be these dynamics
currents bring  μ2 to zero on the boundaries of disruption, may be the boundaries
themselves participate in some circles of motions that help to avoid the violation of
(8.3’). We just do not know.


