The „Mass" of a Photon only an expression of its helical configuration?

Erich Wanek
Paracelsusstrasse 25 B, A-5020 Salzburg
E-mail : erich.wanek@aon.at

Photons exhibit at the same time both mass und wave properties. If, however, a photon moved in a straight line, no wave properties and no interference were possible. Therefore some wave structure is necessary. The author has presented a model for a "particlewave" consisting of a chain of subparticles revolving around each other in a spiral trajectory like toroidal vortex particles, thus yielding a double helical shape (Physics Essays, Vol. 21,4, Dec.2008, pp.267-270) with a proportionality between λ and the radius r of the partidewave and $m=h /(\lambda . v)$

If the wavelength shortens, then its mass will increase and its radius will shrink. The inverse relationship of wavelength and mass (with $v=$ const) and the inverse relationship of velocity and mass (with $r=$ const) raises the question if what appears here as "mass" is but a measure for the spatial confinement (the "density") of the helical configuration, i.e. the state of condensation of the cylinder-surface of the double-helix.

The cylinder-surface of the photon helix

Fig. 1 shows "The Particlewave" as a double-helix of 2 points of a chain of subparticles

The area of the cylinder-surface of the helical track of motion is given by the product of the circumference ($=$ $2 r . \pi$) and the height (i.e. the number of wavelengths) of the cylinder, being proportional to r and to $v(=\lambda . f)$

Therefore, one could argue in the following way: The outer surface of the helically shaped photon may be compressed by either a smaller radius (i.e. a smaller circumference) or a shorter wavelength of the photon helix yielding to a more condensed state of its cylindric surface area. This condensation can be identified with an increase in mass:
The smaller the outer surface of the helix the larger its mass.

Taking m_{o} and r_{o} as the parameters of a standard helix (Fig. 2) we may infer for an arbitrary particle with the parameters m_{i} and r_{i} :

The cylinder-surface of the double-helix is the product of the circumference $2 r . \pi$ and $v=\lambda . f$

See now some examples to illustrate these rel ations a) $m_{i}=m_{0}$: if $v_{i}=2 v_{0}$ follows $r_{i}=r_{o} / 2$ and $f_{i}=f_{0}{ }^{2}$.(Fig.3) Under these conditions the area of the outer surface (i.e. the "mass") remains constant (the shadowed area in Fig. 3 is of the same size as the shadowed area in Fig.2)

b) $v_{i}=v_{0}$: if $r_{i}=r_{o} / 2$ follows $m_{i}=2 m_{o}$ and $f_{i}=2 f_{o}$ (Fig. 4). Under these conditions the area of the outer surface is condensed (compressed) twice yiel ding to a doubled mass (the shadowed area in Fig. 4 is half the size of the area in Fig. 2).

C) $r_{i}=r_{o}$: if $v_{i}=v_{0} / 2$ follows $m_{i}=2 m_{o}$ and $f_{i}=f_{o} / 2$ (Fig. 5). Under these conditions the area of the outer surface is condensed twice again yielding to a doubled mass (the shadowed area in Fig. 5 is half the size of the area in Fig. 2

Thereof the following conclusion may be drawn: What appears as the "mass" of a photon is but an expression of the size of the condensed cylindric surface of the photon helix.

