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ABSTRACT

In a previous article, i.e. Part I of the present work, we arrived at an essential relationship for T, the classical vibration period of the diatomic molecule in hand, at the total electronic energy E, i.e.                                         T = 
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 is the reduced mass of the nuclei; me is the mass of the electron; r is the internuclear distance; g is a dimensionless and relativistically invariant coefficient, roughly around unity; n1 and n2 are the principal quantum numbers of electrons making up the bond(s) of the diatomic molecule. The above relationship holds generally. 
In a subsequent article, i.e. Part II of the present work, we have established that the product 
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 turns out to be the ratio of the internuclear distance of the molecule at the given excited state, to the internuclear distance of the molecule at the ground state, provided that these states are configured similarly. Furthermore based on the analysis of H2 spectroscopic data, we found out that the ambiguous states of this molecule are configured like the ground states alkali of hydrides, and the ground state of Li2, respectively. Conversely, this suggests that, we can describe, the ground state of any of these molecules, on the basis of an equivalent H2 excited state.

Via this interesting finding, herein we propose to associate the quantum numbers n1 and n2 , with the bond’s electrons of the ground state of any diatomic molecule belonging to a given chemical family, in reference to the ground state of the diatomic molecule, still belonging to this family, bearing the lowest classical vibrational period, since g, depending only on the electronic configuration, will accordingly stay nearly constant, throughout. 

This allows us to draw a whole new systematization of diatomic molecules, given that g (appearing to be purely dependent on just the electronic structure of the molecule), stays constant for chemically alike molecules (which, in return, constitutes a definition of a “chemical family”) .

Thus, our approach discloses a simple architecture about diatomic molecules, otherwise left behind a much too cumbersome quantum mechanical description. This architecture, telling how vibrational period of time, size, and mass are installed, is Lorentz invariant, and can be considered as the mechanism about the behavior of the quantities in question, in interrelation with each other, when the molecule is brought to a uniform translational motion, or transplanted into a gravitational field, or in fact any field it can interact with.
In our previous article [
] we derived the following essential relationship regarding the electronic states of a diatomic molecule:
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    [Eq.(15-a) of Part I] ,
              
    (1)

(written by the author for the classical vibrational period 
  of the diatomic molecule at the given electronic state)

along the definitions given below.

T is the classical period of time (at the given electronic state); r is the internuclear distance (at this state); M0 is the reduced mass of the nuclei of concern; me is the electron mass; g is a Lorentz invariant, dimensionless constant depending only on the electronic structure of the molecule, somewhat characterizing how tight the bond is; 
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and 
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 are the principal quantum numbers of the bond(s) electrons; h is the Planck Constant.
Within the frames of Theorems 2 and 3 of Part II, regarding the electronic states of a given molecule, we have established that the product 
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 turns out to be the ratio of the internuclear distance of the molecule at the given excited state, to the internuclear distance of the molecule at the ground state, provided that these states are configured alike.

At this stage, consider Figure 1 of Part II [
], where we analyzed 
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 spectroscopic data, and found out that the ambiguous states are configured like the ground states of alkali hydrides, and the ground state of 
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, respectively [
].
This suggests that, quantum mechanically we can well describe, say the ground state of 
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, on the basis of  an equivalent 
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 excited state.

Therefore the corresponding product 
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 of quantum numbers, we propose to associate with 
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 ground state, in comparison with the 
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 ground state, following Theorem 3 of Part II, becomes the mere ratio of the internuclear distance of 
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 at its ground state, to the internuclear distance of 
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 at its ground state, given that the 
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 and
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 bonds, are configured similarly.

Recall that in Part I, we have demonstrated that, already the cast, 
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 holds fairly well regarding diatomic molecules belonging to a given chemical family, thus being configured similarly, so that g stays virtually the same [cf. Figures 1 - 7 of Part I ].

Bettering these curves, requires the elaboration of the quantum numbers 
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. This is what we are going to work out below.
1. 
SYSTEMATIZATION OF GROUND STATES OF ALL DIATOMIC MOLECULES 

Hence, we rewrite Eq.(7) of Part II (now, not for the excited levels of a given molecule, but), for the ground states of molecules belonging to a given chemical family, and accordingly being configured alike: 
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                       (written by the author for the ground state classical vibrational period 
                       of the  ith diatomic molecule, belonging to a given chemical family)
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 is the ground state largest vibrational period of the ith member molecule of the “chemical family” in consideration (consisting in molecules all bearing practically the same electronic configuration); M0i is the reduced mass of the nuclei; 
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 is the ground state’s internuclear distance of the diatomic molecule in question; 
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 is the internuclear distance of the ground state of the family’s member, adopted as the reference molecule; here we choose to pick up the member bearing the lowest vibrational period.

Therefore 
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 for chemically alike molecules, should display a linear behavior, the slope of which shall furnish g, to be associated with the chemical family in consideration. 

Thus, we can now write an equation similar to Eq.(9) of Part II, in regards to the ground states of molecules belonging to a given chemical family:
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                (3)

(written by the author, for the ground
 states of chemically alike molecules)
where 
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 is the inverse of the ground state classical vibrational period of the molecule of concern.

Thus, the constant in question shall be expressed as
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Although 
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 is a constant we still keep, in the RHS of Eq.(3). not to have to alter the dimension of the constant in question.
In Figures 1 - 7, based on experimental data [
,
], we present 
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, for eight chemical families, for which the coefficient g, stays indeed neatly constant. The constancy of 
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, in harmony with Eqs.(3) and (4), is quantitatively demonstrated, in (the fifth column of) Table 1-7. 

g’s are calculated from Eq.(4) for different chemical families, and are presented in Table 8. Note that g’s vary between 0.4 and 0.01.

Recall that following Eqs. (3) and (4), the value of the constancy of 
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 depends, on both g and 
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 (the reference internuclear distance of the family of concern), which makes that the “constants” calculated in (the fifth columns of) Tables 1-7, differ.

Note further that, the standard deviation on the constants in question is roughly ten percent. 
There seems to be two reasons for this. 
The first one is that chemically alike molecules, as we classified them, on the contrary to our assumption, are not exactly configured similarly, which indeed may make that, g does not remain as a constant throughout. 
Along a similar line, the second one is that 
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 [cf. Eq.(2)] (where we choose the molecule with the lowest vibrational period, as the reference molecule), may not be considered rigorously equal to 
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 (which is basically a relationship we shaped for the electronic states of a given molecule, configured alike). 
In the Appendix 1 of Part I, we have predicted that the inverse of g, somewhat characterizes the strength of the bond of concern as one can observe from Table 1, g indeed decreases as the bond becomes stronger. Thus, the higher the number of the covalent bonds, making the overall bond of the diatomic molecule, the smaller will g be. Or the higher the number of free electrons an atom possesses, the looser will be the bond it will make with say, an halogen, thus the higher will g be, etc [
]. 

      Table 1 Checking the End Result, for Alkali Molecules

	Molecules
	M0

(amu)
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	H2
	0,50
	0,24
	0,74
	0,62
	0,29

	Li2
	3,50
	2,89
	2,67
	0,40
	0,15

	LiNa
	5,33
	3,89
	2,90
	0,40
	0,17

	Na2
	11,50
	6,34
	3,08
	0,40
	0,15

	NaK
	14,48
	8,06
	3,50
	0,37
	0,22

	K2
	19,49
	10,80
	3,92
	0,37
	0,22

	KRb
	26,83
	13,2
	4,07
	0,36
	0,24

	Rb2
	42,47
	17,3
	4,21
	0,36
	0,24

	RbCs
	52,04
	20
	4,42
	0,35
	0,27

	Cs2
	66,47
	23,8
	4,64
	0,34
	0,29

	Average
	
	
	
	0,40
	0,22


Table 2 Checking the End Result, for O2 - like Molecules 

	Molecules
	M0

(amu)
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	O2
	  8,00
	  0,64
	1,21
	0,15
	0,17

	S2
	15,99
	1,39
	1,89
	0,12
	0,06

	Se2
	    39,97
	2,56
	2,16
	0,12
	0,06

	Te2
	    63,82
	4,00
	  2,59
	0,11
	0,14

	SO
	 10,67
	    0,90
	  1,49
	0,14
	0,09

	Average
	
	
	
	0,13
	0,10


Table 3 Checking the End Result, for N2 - like Molecules
	Molecules
	M0

(amu)
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	N2
	7,00
	0,43
	1,09
	0,13
	0,08

	P2
	15,49
	1.29
	1,89
	0,11
	0,08

	PN
	9,65
	0,76
	1,49
	0,11
	0,00

	Average
	
	
	
	0,12
	0,05


Table 4 Checking the End Result, for Halogens

	Molecules
	M0

(amu)
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	F2
	11,21
	9,50
	1,44
	1,37
	0,05

	Cl2
	17,96
	17,49
	1,99
	1,22
	0,15

	Br2
	31,15
	39,96
	2,28
	1,70
	0,18

	I2
	46,87
	63,47
	2,67
	1,78
	0,24

	BrF
	15,04
	15,35
	1,76
	1,4
	0,28

	ClF
	12,93
	12,31
	1,63
	1,37
	0,05

	ICl
	26,23
	27,42
	2,32
	1,26
	0,13

	Average
	
	
	
	1,44
	0,15


 Table 5 Checking the End Result, for CsBr - like Molecules 

	Molecules
	M0

(amu)
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	CsBr
	52,63
	49,92
	3,14
	1,02
	0,52

	CsI
	71,63
	64,94
	3,41
	1,00
	0,5

	NaCl
	26,46
	13,95
	2,51
	0,56
	0,17

	NaBr
	31,98
	17,86
	2,64
	0,60
	0,09

	NaI
	35,15
	19,45
	2,90
	0,54
	0,19

	KF
	25,64
	12,78
	2,55
	0,51
	0,24

	KCl
	35,95
	18,59
	2,79
	0,55
	0,17

	KBr
	43,55
	26,26
	2,94
	0,65
	0,02

	KI
	47,48
	29,89
	3,23
	0,61
	0,09

	RbCl
	39,53
	25,07
	2,89
	0,66
	0,00

	Average
	
	
	
	0,67
	0,20


Table 6 Checking the End Result, for BF - like Molecules

	Molecules
	M0

(amu)
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	BF
	7,26
	6,72
	1,26
	1,44
	0,69

	BCl
	12,06
	8,38
	1,72
	0,88
	0,03

	BBr
	14,77
	9,66
	1,88
	0,80
	0,06

	AlCl
	20,95
	15,24
	2,13
	0,88
	0,03

	AlBr
	26,64
	20,11
	2,29
	0,92
	0,08

	InCl
	31,71
	26,82
	2,31
	1,11
	0,3

	InI
	56,72
	60,32
	2,86
	1,36
	0,59

	TlCl
	35,09
	29,87
	2,55
	1,02
	0,19

	TlBr
	52,27
	57,98
	2,68
	1,50
	0,76

	TlI
	66,67
	78,31
	2,87
	1,61
	0,89

	Average
	
	
	
	1,15
	0,36


Table 7 Checking the End Result, for CO - like Molecules

	Molecules
	M0

(amu)
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	CO
	4,67
	6,86
	1,13
	2,48
	0,46

	CS
	7,86
	8,73
	1,53
	1,55
	0,08

	SiO
	8,13
	10,18
	1,51
	1,81
	0,07

	SiS
	13,43
	14,93
	1,93
	1,43
	0,16

	GeO
	10,23
	13,15
	1,65
	1,83
	0,08

	SnO
	12,27
	14,09
	1,84
	1,51
	0,11

	SnS
	20,62
	25,25
	2,06
	1,77
	0,06

	PbO
	14,00
	14,85
	1,92
	1,40
	0,17

	PbS
	23,49
	27,72
	2,39
	1,46
	0,14

	Average
	
	
	
	1,69
	0,15


Table 8 
Bond Looseness Factors of the Chemically Alike 

Diatomic Molecules

	Chemical Family
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gm

π

4

A

amu

c

10

x

cm

r

r

r

T

e

2

2

4

1

2

0

0

00

0

0

=

÷

÷

ø

ö

ç

ç

è

æ

-

M


	Bond Looseness     Factor (g)

	H2, Li2, Na2, K2
	   4,00

	0,34

	CO, CS, SiO, SiS, GeO, SnO, SnS, PbO, PbS
	1,69
	0,06

	F2, Cl2, Br2, I2, BrF, ClF, ICl
	1,44
	0,04

	O2, S2, Se2, Te2, OS
	1,30
	0,04

	N2, P2, PN
	1,20
	0,03

	BF, BCl, BBr, AlCl, AlBr, InCl, NBr, InI, TlCl, TlBr, TlI
	1,15
	0,03

	CsF, CsBr, CsI, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl
	0,67
	0,01


2. CONCLUSION

It was the author’s original idea that, owing to the end results of the special theory of relativity, as well as those of the general theory of relativity, the space size, the clock mass, and the period of time to be associated with any real wave-like object, ought to be organized in just a given manner, i.e. (period of time) ~ (clock mass)(space size)2; we call this occurrence the universal matter architecture (or in short), the UMA cast.

In this work, we were able to demonstrate the occurrence in question regarding the vibrational structure of diatomic molecule, regarding either the electronic states of a given molecule configured alike, or the ground states of molecules belonging to a given chemical family (thus, practically configured similarly).
Our approach led us to the derivation of an empirical relationship known since 1925, but not disclosed up to now, also to a new systematization of diatomic molecules.
Thus our approach reveals a simple architecture about diatomic molecules, otherwise left behind a much too cumbersome quantum mechanical description. This architecture, displaying how vibrational period of time, size, and clock mass are installed, is Lorentz invariant, and can conversely be considered as the mechanism about the behavior of the quantities in question, in interrelation with each other, when the molecule is brought to a uniform translational motion, or transplanted into a gravitational field, or in fact any field it can interact with [
,
].
Note that previous [
,
,
,
] or more recent trials [
], that could be classified as close to what we have presented above, despite relatively satisfactory results they may furnish, are in fact quite far from displaying how the fundamental quantities of mass, space and time (i.e. clock mass, clock size and period of time, one can associate with the clock’s motion), are structured in interrelation with each other, in the architecture of molecules.

This architecture is in effect, successfully delineated by our Eqs.(1) and (2).

[image: image70.wmf]0

20

40

60

80

0

5

10

15

20

25

30

H

2

Na

2

NaK

K

2

KRb

Rb

2

RbCs

Cs

2

Li

2

LiNa

T

0

 x10

3

c (cm)

Figure 1

  Period of alkali molecules versus 

                (1/(r

0

/r

00

)

1/2

)(M

0

1/2

 

r

0

2

)

(1/(r

0

/r

00

)

1/2

)(M

0

1/2

 

r

0

2

)  (amu

1/2

A

2

)

                 r

00 

: internuclear distance of H

2



[image: image71.wmf]0

10

20

30

40

0

1

2

3

4

5

O

2

SO

S

2

Se

2

Te

2

(1/(r

0

/r

00

)

1/2

)(M

0

1/2

 

r

0

2

)  (amu

1/2

A

2

)

T

0

 (x10

3

c)

Figure 2

   Period of (O

2

, S

2

, Se

2

, Te

2

)

 

versus (1/(r

0

/r

00

)

1/2

)(M

0

1/2

 

r

0

2

)

                    r

00 

: internuclear distance of O

2



[image: image72.wmf]0

2

4

6

8

10

12

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

N

2

PN

P

2

T

0

 (x10

4

c)

Figure 3

    Period of (N

2

, PN, P

2 

)

 

versus (1/(r

0

/r

00

)

1/2

)(M

0

1/2

 

r

0

2

)

(1/(r

0

/r

00

)

1/2

)(M

0

1/2

 

r

0

2

)  (amu

1/2

A

2

)

                    r

00 

: internuclear distance of N

2



[image: image73.wmf]0

10

20

30

40

50

0

10

20

30

40

50

F

2

ClF

BrF

Cl

2

Br

2

ICl

I

2

T

0

 (x10

4

c)

Figure 4  

  Period of diatomic molecules, made of combinations of
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