Relativity failures nail \# 6

Alpha Coronae Borealis binary stars apsidal motion puzzle solution
The Problem that Einstein and the 100,000 Space - time physicists could not solve by space-time physics or any said or published physics

Binary Stars Apsidal Motion Puzzle Solution

By Professor Joe Nahhas 1986
joenahhas1958@yahoo.com

Greetings: My name is Joe Nahhas. I am the founder of real time physics July 4th, 1973 It is the fact that not only Einstein is wrong but all 100,000 living physicists are wrong and the 100,000 passed away physicists were wrong because physics is wrong for past 350 years. This is the problem where relativity theory collapsed. The simplest problem in all of physics is the two body problem where two eclipsing stars in motion in front of modern telescopes and computerized equipment taking data and said "NO" to relativity. For 350 years Newton's equations were solved wrong and the new solution is a real time physics solution of $r(\theta, t)=\left[a\left(1-\varepsilon^{2}\right) /(1+\varepsilon \operatorname{cosine} \theta)\right] e^{i \lambda(r)+i \omega(r)] t}$

That gave apsidal rate better than anything said or published in all of physics of: $\left.\mathrm{W}^{\circ}(\mathrm{Cal})=(-720 \mathrm{x} 36526 / \mathrm{T})\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right]\right\}\left[\left(\mathrm{v}^{\circ}+\mathrm{v}^{*}\right) / \mathrm{c}\right]^{2}$ degrees $/ 100$ years

Abstract

Alpha - CRB binary stars is a set of binary stars Astronomers gave the apsidal motion to be $46,000+/-8,000$ years. However, they did not give reliable information about the stars spin. An estimate of $110 \mathrm{~km} / \mathrm{sec}$ for the primary but a $14 \mathrm{~km} / \mathrm{sec}$ for secondary seems too low and the suggestion of $197 \mathrm{~km} / \mathrm{sec}$ is not a solution. The apsidal motion formula gives 38,000 years $+8,000$ to a total of $46,000 \mathrm{~km} / \mathrm{sec}$ within experimental errors for the secondary spin of $14 \mathrm{~km} / \mathrm{sec}$. Although $197 \mathrm{~km} / \mathrm{sec}$ can justify closer results $197 \mathrm{~km} / \mathrm{sec}$ is not a solution because $197 \mathrm{~km} / \mathrm{sec}$ spin speed for a star smaller than the sun is not common. For over two decades scientists did not bother to improve the 1986 data and here is the solution because this solution is the best solution available and the solution says relativity theory is bad physics

Real time Universal Mechanics Solution: For 350 years Physicists Astronomers and Mathematicians missed Kepler's time dependent equation introduced here and transformed Newton's equation into a time dependent Newton' equation and together these two equations explain apsidal motion as "apparent" light aberrations visual effects along the line of sight due to differences between time dependent measurements and time independent measurements These two equations combines classical mechanics and quantum mechanics into one Universal mechanics solution and in practice it amounts to measuring light aberrations of moving objects of angular velocity at Apses.

All there is in the Universe is objects of mass m moving in space (x, y, z) at a location $\mathbf{r}=\mathbf{r}(\mathrm{x}, \mathrm{y}, \mathrm{z})$. The state of any object in the Universe can be expressed as the product $\underline{\mathbf{S}=\mathrm{m}} \mathbf{r} ;$ State $=$ mass x location:

```
\(\mathbf{P}=\mathrm{d} \mathbf{S} / \mathrm{d} \mathrm{t}=\mathrm{m}(\mathrm{d} \mathbf{r} / \mathrm{d} \mathrm{t})+(\mathrm{dm} / \mathrm{d} \mathrm{t}) \mathbf{r}=\) Total moment
    \(=\) change of location + change of mass
    \(=\mathrm{mv}+\mathrm{m}^{\prime} \mathrm{r} ; \mathrm{v}=\) velocity \(=\mathrm{dr} / \mathrm{d} \mathrm{t} ; \mathrm{m}^{\prime}=\) mass change rate
\(\mathbf{F}=\mathrm{d} \mathbf{P} / \mathrm{d} \mathrm{t}=\mathrm{d}^{2} \mathbf{S} / \mathrm{dt}^{2}=\) Total force
    \(=\mathrm{m}\left(\mathrm{d}^{2} \mathbf{r} / \mathrm{dt}^{2}\right)+2(\mathrm{dm} / \mathrm{dt})(\mathrm{d} \mathbf{r} / \mathrm{d} \mathrm{t})+\left(\mathrm{d}^{2} \mathrm{~m} / \mathrm{dt}^{2}\right) \mathbf{r}\)
    \(=\mathrm{m} \gamma+2 \mathrm{~m}^{\prime} \mathbf{v}+\mathrm{m}^{\prime \prime} \mathbf{r} ; \gamma=\) acceleration; \(\mathrm{m}^{\prime \prime}=\) mass acceleration rate
```

In polar coordinates system
We Have $\mathbf{r}=\mathrm{r}_{\mathbf{r}}^{(\mathbf{1})} ; \mathbf{v}=\mathrm{r}^{\prime} \mathbf{r}_{(\mathbf{1})}+\mathrm{r} \boldsymbol{\theta}^{\prime} \boldsymbol{\theta}_{(\mathbf{1})} ; \boldsymbol{\gamma}=\left(\mathrm{r}^{\prime \prime}-\mathrm{r} \theta^{\prime 2}\right) \mathbf{r}_{(\mathbf{1})}+\left(2 \mathrm{r}^{\prime} \theta^{\prime}+\mathrm{r} \theta^{\prime \prime}\right) \boldsymbol{\theta}_{(1)}$
$\mathbf{r}=$ location; $\mathbf{v}=$ velocity; $\gamma=$ acceleration
$\mathbf{F}=\mathrm{m} \boldsymbol{\gamma}+2 \mathrm{~m}^{\prime} \mathbf{v}+\mathrm{m}^{\prime \prime} \mathbf{r}$
$\mathbf{F}=\mathrm{m}\left[\left(\mathrm{r}^{\prime \prime}-\mathrm{r} \theta^{\prime 2}\right) \mathbf{r}_{(1)}+\left(2 \mathrm{r}^{\prime} \theta^{\prime}+\mathrm{r} \theta^{\prime \prime}\right) \boldsymbol{\theta}_{(1)}\right]+2 \mathrm{~m}^{\prime}\left[\mathrm{r}^{\prime} \mathbf{r}_{(1)}+\mathrm{r} \theta^{\prime} \boldsymbol{\theta}_{(1)}\right]+\left(\mathrm{m}^{\prime \prime} \mathrm{r}\right) \mathbf{r}_{(1)}$
$=\left[\mathrm{d}^{2}(\mathrm{mr}) / \mathrm{dt}^{2}-(\mathrm{m} \mathrm{r}) \theta^{\prime 2}\right] \mathbf{r}(\mathbf{1})+(1 / \mathrm{mr})\left[\mathrm{d}\left(\mathrm{m}^{2} \mathrm{r}^{2} \theta^{\prime}\right) / \mathrm{dt}\right] \boldsymbol{\theta}_{(\mathbf{1})}$
$=\left[-\mathrm{GmM} / \mathrm{r}^{2}\right] \mathbf{r}(\mathbf{1})-------------------------$ Newton's Gravitational Law
Proof:
First $\mathbf{r}=r[\operatorname{cosine} \theta \hat{\mathbf{i}}+\operatorname{sine} \theta \hat{\mathbf{J}}]=r \mathbf{r}$ (1)
Define $\mathbf{r}(\mathbf{1})=\operatorname{cosine} \theta \hat{\mathbf{i}}+\operatorname{sine} \theta \hat{\mathbf{J}}$
Define $\mathbf{v}=\mathrm{d} \mathbf{r} / \mathrm{dt}=\mathrm{r}^{\prime} \mathbf{r}(\mathbf{1})+\mathrm{rd}[\mathbf{r}(\mathbf{1}) / \mathrm{dt}$

$$
\begin{aligned}
& =r^{\prime} \mathbf{r}_{(\mathbf{1})}+\mathrm{r} \theta^{\prime}[-\operatorname{sine} \theta \hat{\mathbf{\imath}}+\operatorname{cosine} \theta \hat{\mathrm{J}}] \\
& =\mathrm{r}^{\prime} \mathbf{r}_{(\mathbf{1})}+\mathrm{r} \theta^{\prime} \boldsymbol{\theta} \boldsymbol{(\mathbf { 1 })}
\end{aligned}
$$

Define $\boldsymbol{\theta}(\mathbf{1})=-\operatorname{sine} \theta \hat{1}+\operatorname{cosine} \theta \hat{J}$;
And with $\mathbf{r}(1)=\operatorname{cosine} \theta \hat{\imath}+\operatorname{sine} \theta \hat{J}$
Then $d[\boldsymbol{\theta}(1)] / d t=\theta^{\prime}\left[-\operatorname{cosine} \theta \hat{\imath}-\operatorname{sine} \theta \hat{J}=-\theta^{\prime} \mathbf{r}(1)\right.$
And $d[\mathbf{r}(1)] / \mathrm{dt}=\theta^{\prime}[-\operatorname{sine} \theta \hat{i}+\operatorname{cosine} \theta \hat{\mathrm{J}}]=\theta^{\prime} \boldsymbol{\theta}(1)$
Define $\boldsymbol{\gamma}=\mathrm{d}\left[\mathrm{r}^{\prime} \mathbf{r}(1)+\mathrm{r} \theta^{\prime} \boldsymbol{\theta}(1)\right] / \mathrm{dt}$
$=r^{\prime \prime} r(1)+r^{\prime} d[\mathbf{r}(1)] / d t+r^{\prime} \theta^{\prime} \mathbf{r}(1)+r \theta^{\prime \prime} \mathbf{r}(1)+r \theta^{\prime} d[\theta(1)] / d t$
$\boldsymbol{\gamma}=\left(\mathrm{r}^{\prime \prime}-\mathrm{r} \theta^{\prime 2}\right) \mathbf{r}(1)+\left(2 \mathrm{r}^{\prime} \theta^{\prime}+\mathrm{r} \theta^{\prime \prime}\right) \boldsymbol{\theta}(1)$
With $\mathrm{d}^{2}(\mathrm{mr}) / \mathrm{dt}^{2}-(\mathrm{mr}) \theta^{\prime 2}=-\mathrm{GmM} / \mathrm{r}^{2}$ Newton's Gravitational Equation
And $d\left(m^{2} r^{2} \theta^{\prime}\right) / d t=0$
Central force law
(2): $d\left(m^{2} r^{2} \theta^{\prime}\right) / d t=0$

Then $\mathrm{m}^{2} \mathrm{r}^{2} \theta^{\prime}=$ constant

$$
=\mathrm{H}(0,0)
$$

$$
=\mathrm{m}^{2}(0,0) \mathrm{h}(0,0) ; \mathrm{h}(0,0)=\mathrm{r}^{2}(0,0) \theta^{\prime}(0,0)
$$

$$
=\mathrm{m}^{2}(0,0) \mathrm{r}^{2}(0,0) \theta^{\prime}(0,0) ; \mathrm{h}(\theta, 0)=\left[\mathrm{r}^{2}(\theta, 0)\right]\left[\theta^{\prime}(\theta, 0)\right]
$$

$$
=\left[\mathrm{m}^{2}(\theta, 0)\right] \mathrm{h}(\theta, 0) ; \mathrm{h}(\theta, 0)=\left[\mathrm{r}^{2}(\theta, 0)\right]\left[\theta^{\prime}(\theta, 0)\right]
$$

$$
=\left[\mathrm{m}^{2}(\theta, 0)\right]\left[\mathrm{r}^{2}(\theta, 0)\right]\left[\theta^{\prime}(\theta, 0)\right]
$$

$$
=\left[\mathrm{m}^{2}(\theta, \mathrm{t})\right]\left[\mathrm{r}^{2}(\theta, \mathrm{t})\right]\left[\theta^{\prime}(\theta, \mathrm{t})\right]
$$

$$
=\left[\mathrm{m}^{2}(\theta, 0) \mathrm{m}^{2}(0, \mathrm{t})\right]\left[\mathrm{r}^{2}(\theta, 0) \mathrm{r}^{2}(0, \mathrm{t})\right]\left[\theta^{\prime}(\theta, \mathrm{t})\right]
$$

$$
=\left[\mathrm{m}^{2}(\theta, 0) \mathrm{m}^{2}(0, \mathrm{t})\right]\left[\mathrm{r}^{2}(\theta, 0) \mathrm{r}^{2}(0, \mathrm{t})\right]\left[\theta^{\prime}(\theta, 0) \theta^{\prime}(0, \mathrm{t})\right]
$$

With $\mathrm{m}^{2} \mathrm{r}^{2} \theta^{\prime}=$ constant
Differentiate with respect to time
Then $2 m m^{\prime} r^{2} \theta^{\prime}+2 m^{2} r^{\prime} \theta^{\prime}+m^{2} \mathrm{r}^{2} \theta^{\prime \prime}=0$
Divide by $\mathrm{m}^{2} \mathrm{r}^{2} \theta^{\prime}$
Then $2\left(\mathrm{~m}^{\prime} / \mathrm{m}\right)+2\left(\mathrm{r}^{\prime} / \mathrm{r}\right)+\theta^{\prime \prime} / \theta^{\prime}=0$
This equation will have a solution $2\left(\mathrm{~m}^{\prime} / \mathrm{m}\right)=2[\lambda(\mathrm{~m})+\mathrm{i} \omega(\mathrm{m})]$
And 2($\left.\mathrm{r}^{\prime} / \mathrm{r}\right)=2[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})]$
And $\theta^{\prime \prime} / \theta^{\prime}=-2\{\lambda(\mathrm{~m})+\lambda(\mathrm{r})+i[\omega(\mathrm{~m})+\omega(\mathrm{r})]\}$
Then $\left(\mathrm{m}^{\prime} / \mathrm{m}\right)=[\lambda(\mathrm{m})+\mathrm{i} \omega(\mathrm{m})]$
Ordm/mdt=[$\lambda(\mathrm{m})+i \omega(\mathrm{~m})]$
And $d m / m=[\lambda(m)+i \omega(m)] d t$
Then $m=m(0) e^{[\lambda(m)+i \omega(m)] t}$
$\mathrm{m}=\mathrm{m}(0) \mathrm{m}(0, \mathrm{t}) ; \mathrm{m}(0, \mathrm{t}) \mathrm{e}^{[\lambda(\mathrm{m})+\mathrm{i} \omega(\mathrm{m})] \mathrm{t}}$
With initial spatial condition that can be taken at $\mathrm{t}=0$ anywhere then $\mathrm{m}(0)=\mathrm{m}(\theta, 0)$
And $m=m(\theta, 0) m(0, t)=m(\theta, 0) e^{[\lambda(m)+i \omega(m)] t}$
And $m(0, t)=e^{[\lambda(m)+i \omega(m)] t}$
Similarly we can get

Also, $r=r(\theta, 0) r(0, t)=r(\theta, 0) e^{[\lambda(r)+i \omega(r)] t}$
With $\mathrm{r}(0, \mathrm{t})=\mathrm{e}^{[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})] \mathrm{t}}$
Then $\theta^{\prime}(\theta, \mathrm{t})=\left\{\mathrm{H}(0,0) /\left[\mathrm{m}^{2}(\theta, 0) \mathrm{r}(\theta, 0)\right]\right\} \mathrm{e}^{-2\{[\lambda(\mathrm{~m})+\lambda(\mathrm{r})]+\mathrm{i}[\omega(\mathrm{m})+\omega(\mathrm{r})]\} \mathrm{t}} \ldots---\mathrm{I}$
And $\left.\theta^{\prime}(\theta, \mathrm{t})=\theta^{\prime}(\theta, 0)\right] \mathrm{e}^{-2\{[\lambda(\mathrm{~m})+\lambda(\mathrm{r})]+\mathrm{i}[\omega(\mathrm{m})+\omega(\mathrm{r})]\} \mathrm{t}}$ \qquad
And, $\theta^{\prime}(\theta, \mathrm{t})=\theta^{\prime}(\theta, 0) \theta^{\prime}(0, \mathrm{t})$
And $\theta^{\prime}(0, \mathrm{t})=\mathrm{e}^{-2\{[\lambda(\mathrm{~m})+\lambda(\mathrm{r})]+\mathrm{i}[\omega(\mathrm{m})+\omega(\mathrm{r})]\} \mathrm{t}}$
Also $\theta^{\prime}(\theta, 0)=\mathrm{H}(0,0) / \mathrm{m}^{2}(\theta, 0) \mathrm{r}^{2}(\theta, 0)$
And $\theta^{\prime}(0,0)=\left\{\mathrm{H}(0,0) /\left[\mathrm{m}^{2}(0,0) \mathrm{r}(0,0)\right]\right\}$
With (1): $\mathrm{d}^{2}(\mathrm{mr}) / \mathrm{dt}^{2}-(\mathrm{m} r) \theta^{2}=-\mathrm{GmM} / \mathrm{r}^{2}=-\mathrm{Gm}^{3} \mathrm{M} / \mathrm{m}^{2} \mathrm{r}^{2}$
And $\quad d^{2}(m r) / d t^{2}-(m r) \theta^{\prime 2}=-\operatorname{Gm}^{3}(\theta, 0) m^{3}(0, t) M /\left(m^{2} r^{2}\right)$
Let $\mathrm{m} r=1 / \mathrm{u}$
Then $d(m r) / d t=-u^{\prime} / u^{2}=-\left(1 / u^{2}\right)\left(\theta^{\prime}\right) d u / d \theta=\left(-\theta^{\prime} / u^{2}\right) d u / d \theta=-H d u / d \theta$
And d ${ }^{2}(\mathrm{mr}) / \mathrm{dt}^{2}=-\mathrm{H} \theta^{\prime} \mathrm{d}^{2} \mathbf{u} / \mathrm{d} \theta^{2}=-\mathrm{Hu}^{2}\left[\mathrm{~d}^{2} \mathbf{u} / \mathrm{d} \theta^{2}\right]$
$-\mathrm{Hu}^{2}\left[\mathrm{~d}^{2} \mathrm{u} / \mathrm{d} \theta^{2}\right]-(1 / \mathrm{u})\left(\mathrm{Hu}^{2}\right)^{2}=-\mathrm{Gm}^{3}(\theta, 0) \mathrm{m}^{3}(0, \mathrm{t}) \mathrm{Mu}^{2}$
$\left[\mathrm{d}^{2} \mathrm{u} / \mathrm{d} \theta^{2}\right]+\mathrm{u}=\mathrm{Gm}^{3}(\theta, 0) \mathrm{m}^{3}(0, \mathrm{t}) \mathrm{M} / \mathrm{H}^{2}$
$\mathrm{t}=0 ; \mathrm{m}^{3}(0,0)=1$
$\mathrm{u}=\mathrm{Gm}^{3}(\theta, 0) \mathrm{M} / \mathrm{H}^{2}+\mathrm{A} \operatorname{cosine} \theta=\mathrm{Gm}(\theta, 0) \mathrm{M}(\theta, 0) / \mathrm{h}^{2}(\theta, 0)$

$$
\begin{aligned}
\text { And } \mathrm{mr} & =1 / \mathrm{u}=1 /[\operatorname{Gm}(\theta, 0) \mathrm{M}(\theta, 0) / \mathrm{h}(\theta, 0)+\mathrm{A} \operatorname{cosine} \theta] \\
& =\left[\mathrm{h}^{2} / \mathrm{Gm}(\theta, 0) \mathrm{M}(\theta, 0)\right] /\left\{1+\left[\mathrm{Ah}^{2} / \mathrm{Gm}(\theta, 0) \mathrm{M}(\theta, 0)\right][\operatorname{cosine} \theta]\right\} \\
& =\left[\mathrm{h}^{2} / \mathrm{Gm}(\theta, 0) \mathrm{M}(\theta, 0)\right] /(1+\varepsilon \operatorname{cosine} \theta)
\end{aligned}
$$

Then $m(\theta, 0) r(\theta, 0)=\left[a\left(1-\varepsilon^{2}\right) /(1+\varepsilon \operatorname{cosine} \theta)\right] m(\theta, 0)$
Dividing by $\mathrm{m}(\theta, 0)$
Then $r(\theta, 0)=a\left(1-\varepsilon^{2}\right) /(1+\varepsilon \operatorname{cosine} \theta)$
This is Newton's Classical Equation solution of two body problem which is the equation of an ellipse of semi-major axis of length a and semi minor axis $b=a \sqrt{ }\left(1-\varepsilon^{2}\right)$ and focus length $\mathrm{c}=\varepsilon \mathrm{a}$
And $\mathrm{mr}=\mathrm{m}(\theta, \mathrm{t}) \mathrm{r}(\theta, \mathrm{t})=\mathrm{m}(\theta, 0) \mathrm{m}(0, \mathrm{t}) \mathrm{r}(\theta, 0) \mathrm{r}(0, \mathrm{t})$
Then, $r(\theta, \mathrm{t})=\left[\mathrm{a}\left(1-\varepsilon^{2}\right) /(1+\varepsilon \operatorname{cosine} \theta)\right] \mathrm{e}^{[\lambda(\mathrm{r})+\mathrm{i} \omega(\mathrm{r})] \mathrm{t}}-$ \qquad
This is Newton's time dependent equation that is missed for 350 years
If $\lambda(\mathrm{m}) \approx 0$ fixed mass and $\lambda(\mathrm{r}) \approx 0$ fixed orbit; then
Then $r(\theta, t)=r(\theta, 0) r(0, t)=\left[a\left(1-\varepsilon^{2}\right) /(1+\varepsilon \operatorname{cosine} \theta)\right] \mathrm{e}^{i \omega(r) t}$
And $m=m(\theta, 0) e^{+i \omega(m) t}=m(\theta, 0) e^{i \omega(m) t}$

We Have $\theta^{\prime}(0,0)=h(0,0) / \mathrm{r}^{2}(0,0)=2 \pi \mathrm{ab} / \mathrm{Ta}^{2}(1-\varepsilon)^{2}$

$$
\begin{aligned}
& =2 \pi \mathrm{a}^{2}\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] / \mathrm{T} \mathrm{a}^{2}(1-\varepsilon)^{2} \\
& =2 \pi\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] / \mathrm{T}(1-\varepsilon)^{2}
\end{aligned}
$$

Then $\theta^{\prime}(0, \mathrm{t})=\left\{2 \pi\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] / \mathrm{T}(1-\varepsilon)^{2}\right\} \operatorname{Exp}\{-2[\omega(\mathrm{~m})+\omega(\mathrm{r})] \mathrm{t}$

$$
\begin{aligned}
& =\left\{2 \pi\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\}\{\operatorname{cosine} 2[\omega(\mathrm{~m})+\omega(\mathrm{r})] \mathrm{t}-\mathrm{i} \sin 2[\omega(\mathrm{~m})+\omega(\mathrm{r})] \mathrm{t}\} \\
& =\theta^{\prime}(0,0)\left\{1-2 \sin ^{2}[\omega(\mathrm{~m})+\omega(\mathrm{r})] \mathrm{t}\right\}
\end{aligned}
$$

$$
-2 i \theta^{\prime}(0,0) \sin [\omega(\mathrm{m})+\omega(\mathrm{r})] \mathrm{t} \text { cosine }[\omega(\mathrm{m})+\omega(\mathrm{r})] \mathrm{t}
$$

Then $\theta^{\prime}(0, \mathrm{t})=\theta^{\prime}(0,0)\left\{1-2 \operatorname{sine}^{2}[\omega(\mathrm{~m}) \mathrm{t}+\omega(\mathrm{r}) \mathrm{t}]\right\}$

$$
-2 i \theta^{\prime}(0,0) \sin [\omega(\mathrm{m})+\omega(\mathrm{r})] \mathrm{t} \text { cosine }[\omega(\mathrm{m})+\omega(\mathrm{r})] \mathrm{t}
$$

$\Delta \theta^{\prime}(0, \mathrm{t}) \quad=\operatorname{Real} \Delta \theta^{\prime}(0, \mathrm{t})+$ Imaginary $\Delta \theta(0, \mathrm{t})$
Real $\Delta \theta(0, \mathrm{t})=\theta^{\prime}(0,0)\left\{1-2 \operatorname{sine}^{2}[\omega(\mathrm{~m}) \mathrm{t} \omega(\mathrm{r}) \mathrm{t}]\right\}$

$$
\begin{aligned}
\text { Let } \mathrm{W}(\mathrm{cal}) & =\Delta \theta^{\prime}(0, \mathrm{t})(\text { observed })=\operatorname{Real} \Delta \theta(0, \mathrm{t})-\theta^{\prime}(0,0) \\
& =-2 \theta^{\prime}(0,0) \operatorname{sine}^{2}[\omega(\mathrm{~m}) \mathrm{t}+\omega(\mathrm{r}) \mathrm{t}] \\
& =-2\left[2 \pi\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] / \mathrm{T}(1-\varepsilon)^{2}\right] \operatorname{sine}^{2}[\omega(\mathrm{~m}) \mathrm{t}+\omega(\mathrm{r}) \mathrm{t}] \\
\text { And } \mathrm{W}(\mathrm{cal}) & \left.=-4 \pi\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] / \mathrm{T}(1-\varepsilon)^{2}\right] \operatorname{sine}^{2}[\omega(\mathrm{~m}) \mathrm{t}+\omega(\mathrm{r}) \mathrm{t}]
\end{aligned}
$$

If this apsidal motion is to be found as visual effects, then

With, $\mathrm{v}^{\circ}=$ spin velocity; $\mathrm{v}^{*}=$ orbital velocity; $\mathrm{v}^{\circ} / \mathrm{c}=\tan \omega(\mathrm{m}) \mathrm{T}^{\circ} ; \mathrm{v}^{*} / \mathrm{c}=\tan \omega(\mathrm{r}) \mathrm{T}^{*}$ Where $\mathrm{T}^{\circ}=$ spin period; $\mathrm{T}^{*}=$ orbital period

And $\omega(\mathrm{m}) \mathrm{T}^{\circ}=$ Inverse $\tan \mathrm{v}^{\circ} / \mathrm{c}$; $\omega(\mathrm{r}) \mathrm{T}^{*}=$ Inverse $\tan \mathrm{v}^{*} / \mathrm{c}$
$\left.\mathrm{W}(\mathrm{ob})=-4 \pi\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] / T(1-\varepsilon)^{2}\right] \operatorname{sine}^{2}\left[\right.$ Inverse $\tan v^{\circ} / c+$ Inverse tan $\left.\mathrm{v}^{*} / \mathrm{c}\right]$ radians Multiplication by $180 / \pi$
$\mathrm{W}(\mathrm{ob})=(-720 / \mathrm{T})\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\} \operatorname{sine}^{2}\left\{\right.$ Inverse $\left.\tan \left[\mathrm{v}^{\circ} / \mathrm{c}+\mathrm{v}^{*} / \mathrm{c}\right] /\left[1-\mathrm{v}^{\circ} \mathrm{v}^{*} / \mathrm{c}^{2}\right]\right\}$ degrees and multiplication by 1 century = 36526 days and using T in days

$$
\begin{aligned}
\mathrm{W}^{\circ}(\mathrm{ob})= & (-720 \times 36526 / \text { Tdays })\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\} \mathrm{x} \\
& \operatorname{sine}^{2}\left\{\text { Inverse } \tan \left[\mathrm{v}^{\circ} / \mathrm{c}+\mathrm{v}^{*} / \mathrm{c}\right] /\left[1-\mathrm{v}^{\circ} \mathrm{v}^{*} / \mathrm{c}^{2}\right]\right\} \text { degrees } / 100 \text { years }
\end{aligned}
$$

Approximations I

With $\mathrm{v}^{0} \ll \mathrm{c}$ and $\mathrm{v}^{*} \ll \mathrm{c}$, then $\mathrm{v}^{0} \mathrm{v}^{*} \lll \mathrm{c}^{2}$ and $\left[1-\mathrm{v}^{0} \mathrm{v}^{*} / \mathrm{c}^{2}\right] \approx 1$
Then $\mathrm{W}^{\circ}(\mathrm{ob}) \approx(-720 \times 36526 /$ Tdays $)\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\} \times \operatorname{sine}^{2}$ Inverse $\tan \left[\mathrm{v}^{\circ} / \mathrm{c}+\mathrm{v}^{*} / \mathrm{c}\right]$ degrees/100 years

Approximations II

With $\mathrm{v}^{\circ} \ll \mathrm{c}$ and $\mathrm{v}^{*} \ll \mathrm{c}$, then sine Inverse $\tan \left[\mathrm{v}^{\circ} / \mathrm{c}+\mathrm{v}^{*} / \mathrm{c}\right] \approx\left(\mathrm{v}^{\circ}+\mathrm{v}^{*}\right) / \mathrm{c}$ $\mathrm{W}^{\circ}(\mathrm{ob})=(-720 \times 36526 /$ Tdays $)\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\} \times\left[\left(\mathrm{v}^{\circ}+\mathrm{v}^{*}\right) / \mathrm{c}\right]^{2}$ degrees $/ 100$ years
This is the equation that gives the correct apsidal motion rates \qquad
The circumference of an ellipse: $2 \pi \mathrm{a}\left(1-\varepsilon^{2} / 4+3 / 16\left(\varepsilon^{2}\right)^{2}---.\right) \approx 2 \pi \mathrm{a}\left(1-\varepsilon^{2} / 4\right) ; \mathrm{R}=\mathrm{a}\left(1-\varepsilon^{2} / 4\right)$ Where $\mathrm{v}(\mathrm{m})=\sqrt{ }\left[\mathrm{GM}^{2} /(\mathrm{m}+\mathrm{M}) \mathrm{a}\left(1-\varepsilon^{2} / 4\right)\right]$
And $v(M)=\sqrt{ }\left[\mathrm{Gm}^{2} /(\mathrm{m}+\mathrm{M})\right.$ a $\left.\left(1-\varepsilon^{2} / 4\right)\right]$
Looking from top or bottom at two stars they either spin in clock (\uparrow) wise or counter clockwise (\downarrow)
Looking from top or bottom at two stars they either approach each other coming from the top (\uparrow) or from the bottom (\downarrow)

Knowing this we can construct a table and see how these two stars are formed. There are many combinations of velocity additions and subtractions and one combination will give the right answer.
Alpha CRB Spin - Orbit velocities Table:

Primary \rightarrow Secondary \downarrow	$\mathrm{v}^{\circ}(\mathrm{p}) \uparrow \mathrm{v}^{*}(\mathrm{p}) \uparrow$	$\mathrm{v}^{\circ}(\mathrm{p}) \uparrow \mathrm{v}^{*}(\mathrm{p}) \downarrow$	$\mathrm{v}^{\circ}(\mathrm{p}) \downarrow \mathrm{v}^{*}(\mathrm{p}) \uparrow$	$\mathrm{v}^{\circ}(\mathrm{p}) \downarrow \mathrm{V}^{*}(\mathrm{p}) \downarrow$
$\mathrm{v}^{\circ}(\mathrm{s}) \uparrow \mathrm{v}^{*}(\mathrm{~s}) \uparrow$	Spin $=[\uparrow, \uparrow]$ $[\uparrow, \uparrow]=0, b i t$	$[\uparrow, \uparrow][\downarrow, \uparrow]$	$[\downarrow, \uparrow][\uparrow, \uparrow]$	$[\downarrow, \uparrow][\downarrow, \uparrow]$
Spin results	$\mathrm{v}^{\circ}(\mathrm{p})+\mathrm{v}^{\circ}(\mathrm{s})$	$\mathrm{v}^{\circ}(\mathrm{p})+\mathrm{v}^{\circ}(\mathrm{s})$	$-\mathrm{v}^{\circ}(\mathrm{p})+\mathrm{v}^{\circ}(\mathrm{s})$	$-\mathrm{v}^{\circ}(\mathrm{p})+\mathrm{v}^{\circ}(\mathrm{s})$
Orbit results	$\mathrm{v}^{*}(\mathrm{p})+\mathrm{v}^{*}(\mathrm{~s})$	$-\mathrm{v}^{*}(\mathrm{p})+\mathrm{v}^{*}(\mathrm{~s})$	$\mathrm{v}^{*}(\mathrm{p})+\mathrm{v}^{*}(\mathrm{~s})$	$-\mathrm{v}^{*}(\mathrm{p})+\mathrm{v}^{*}(\mathrm{~s})$
Examples				
$\mathrm{v}^{\circ}(\mathrm{s}) \uparrow \mathrm{v}^{*}(\mathrm{~s}) \downarrow$	$[\uparrow, \uparrow][\uparrow, \downarrow]$	$[\uparrow, \uparrow][\downarrow, \downarrow]$	$[\downarrow, \uparrow][\uparrow, \downarrow]$	$[\downarrow, \uparrow][\downarrow, \downarrow]$
Spin results	$\mathrm{v}^{\circ}(\mathrm{p})+\mathrm{v}^{\circ}(\mathrm{s})$	$\mathrm{v}^{\circ}(\mathrm{p})+\mathrm{v}^{\circ}(\mathrm{s})$	$-\mathrm{v}^{\circ}(\mathrm{p})+\mathrm{v}^{\circ}(\mathrm{s})$	$-\mathrm{v}^{\circ}(\mathrm{p})+\mathrm{v}^{\circ}(\mathrm{s})$
Orbit results	$\mathrm{v}^{*}(\mathrm{p})-\mathrm{v}^{*}(\mathrm{~s})$	$-\mathrm{v}^{*}(\mathrm{p})-\mathrm{v}^{*}(\mathrm{~s})$	$\mathrm{v}^{*}(\mathrm{p})-\mathrm{v}^{*}(\mathrm{~s})$	$-\mathrm{v}^{*}(\mathrm{p})-\mathrm{v}^{*}(\mathrm{~s})$
Examples				
$\mathrm{v}^{\circ}(\mathrm{p}) \downarrow \mathrm{v}^{*}(\mathrm{~s}) \uparrow$	$[\uparrow, \downarrow][\uparrow, \uparrow]$	$[\uparrow, \downarrow][\downarrow, \uparrow]$	$[\downarrow, \downarrow][\uparrow, \uparrow]$	$[\downarrow, \downarrow][\downarrow, \uparrow]$
Spin results	$\mathrm{v}^{\circ}(\mathrm{p})-\mathrm{v}^{\circ}(\mathrm{s})$	$\mathrm{v}^{\circ}(\mathrm{p})-\mathrm{v}^{\circ}(\mathrm{s})$	$-\mathrm{v}^{\circ}(\mathrm{p})-\mathrm{v}^{\circ}(\mathrm{s})$	$-\mathrm{v}^{\circ}(\mathrm{p})-\mathrm{v}^{\circ}(\mathrm{s})$
Orbit results	$\mathrm{v}^{*}(\mathrm{p})+\mathrm{v}^{*}(\mathrm{~s})$	$-\mathrm{v}^{*}(\mathrm{p})+\mathrm{v}^{*}(\mathrm{~s})$	$\mathrm{v}^{*}(\mathrm{p})+\mathrm{v}^{*}(\mathrm{~s})$	$-\mathrm{v}^{*}(\mathrm{p})+\mathrm{v}^{*}(\mathrm{~s})$
Examples				
$\mathrm{v}^{\circ}(\mathrm{s}) \downarrow \mathrm{V}^{*}(\mathrm{~s}) \downarrow$	$[\uparrow, \downarrow][\uparrow, \downarrow]$	$[\uparrow, \downarrow][\downarrow, \downarrow]$	$[\downarrow, \downarrow][\uparrow, \downarrow]$	$[\downarrow, \downarrow][\downarrow, \downarrow]$
Spin results	$\mathrm{v}^{\circ}(\mathrm{p})-\mathrm{v}^{\circ}(\mathrm{s})$	$\mathrm{v}^{\circ}(\mathrm{p})-\mathrm{v}^{\circ}(\mathrm{s})$	$-\mathrm{v}^{\circ}(\mathrm{p})-\mathrm{v}^{\circ}(\mathrm{s})$	$-\mathrm{v}^{\circ}(\mathrm{p})-\mathrm{v}^{\circ}(\mathrm{s})$
Orbit results	$\mathrm{v}^{*}(\mathrm{p})-\mathrm{v}^{*}(\mathrm{~s})$	$-\mathrm{v}^{*}(\mathrm{p})-\mathrm{v}^{*}(\mathrm{~s})$	$\mathrm{v}^{*}(\mathrm{p})-\mathrm{v}^{*}(\mathrm{~s})$	$-\mathrm{v}^{*}(\mathrm{p})-\mathrm{v}^{*}(\mathrm{~s})$
Examples				

1- Advance of Perihelion of mercury. [No spin factor] Because data are given with no spin factor
$\mathrm{G}=6.673 \times 10^{\wedge}-11 ; \mathrm{M}=2 \times 10^{30} \mathrm{~kg} ; \mathrm{m}=.32 \times 10^{24} \mathrm{~kg} ; \varepsilon=0.206 ; \mathrm{T}=88$ days
And $\mathrm{c}=299792.458 \mathrm{~km} / \mathrm{sec} ; \mathrm{a}=58.2 \mathrm{~km} / \mathrm{sec} ; 1-\varepsilon^{2} / 4=0.989391$
With $\mathrm{v}^{\circ}=2 \mathrm{~meters} / \mathrm{sec}$
And $v *=\sqrt{ }\left[\mathrm{GM} / \mathrm{a}\left(1-\varepsilon^{2} / 4\right)\right]=48.14 \mathrm{~km} / \mathrm{sec}$
Calculations yields: $\mathrm{v}=\mathrm{v}^{*}+\mathrm{v}^{\circ}=48.14 \mathrm{~km} / \mathrm{sec}$ (mercury)
And $\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right](1-\varepsilon)^{2}=1.552$
$\mathrm{W}^{\prime \prime}(\mathrm{ob})=(-720 \times 36526 \times 3600 / \mathrm{T})\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\}(\mathrm{v} / \mathrm{c})^{2}$
$\mathrm{W}^{\prime \prime}(\mathrm{ob})=(-720 \times 36526 \times 3600 / 88) \times(1.552)(48.14 / 299792)^{2}=43.0$ "/century
This is the rate of for the advance of perihelion of planet mercury explained as "apparent" without the use of fictional forces or fictional universe of space-time confusions of physics of relativity.

Venus Advance of perihelion solution:

$\mathrm{W}^{\prime \prime}(\mathrm{ob})=(-720 \times 36526 \times 3600 / \mathrm{T})\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\}\left[\left(\mathrm{v}^{\mathrm{o}}+\mathrm{v}^{*}\right) / \mathrm{c}\right]^{2}$ seconds/ 100 years
Data: $\mathrm{T}=244.7$ days $\left.\mathrm{v}^{\circ}=\mathrm{v}^{\circ}(\mathrm{p})\right]=6.52 \mathrm{~km} / \mathrm{sec} ; \varepsilon=0.0 .0068 ; \mathrm{v}^{*}(\mathrm{p})=35.12$

Calculations
$1-\varepsilon=0.0068 ;\left(1-\varepsilon^{2} / 4\right)=0.99993 ;\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}=1.00761$
$\mathrm{G}=6.673 \times 10^{\wedge}-11 ; \mathrm{M}(0)=1.98892 \times 19^{\wedge} 30 \mathrm{~kg} ; \mathrm{R}=108.2 \times 10^{\wedge} 9 \mathrm{~m}$
$V^{*}(p)=\sqrt{ }\left[\mathrm{GM}^{2} /(\mathrm{m}+\mathrm{M}) \mathrm{a}\left(1-\varepsilon^{2} / 4\right)\right]=41.64 \mathrm{~km} / \mathrm{sec}$.
Advance of perihelion of Venus motion is given by this formula:
$\left.\mathrm{W}^{\prime \prime}(\mathrm{ob})=(-720 \times 36526 \times 3600 / \mathrm{T})\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right]\right\}\left[\left(\mathrm{v}^{\circ}+\mathrm{v}^{*}\right) / \mathrm{c}\right]^{2}$ seconds $/ 100$ years
$\mathrm{W}^{\prime \prime}(\mathrm{ob})=(-720 \times 36526 \times 3600 / \mathrm{T})\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\} \operatorname{sine}^{2}[$ Inverse tan 41.64/300,000] $=(-720 \times 36526 \times 3600 / 224.7)(1.00762)(41.64 / 300,000)^{2}$

W" (observed) = 8.2"/100 years; observed 8.4"/100years

This is the rate of for the advance of perihelion of planet mercury explained as "apparent" without the use of fictional forces or fictional universe of space-time confusions of physics of relativity.
Next the same equation will be used to find the advance of Periastron or "apparent" apsidal motion of Alpha - CRB binary stars system.
Alpha - CRB apsidal motion solution:
Data $\mathrm{T}=17.36 ; \mathrm{a}=28.9 \times 10^{\wedge} 9 \mathrm{~m} / \mathrm{sec} ;\left[\mathrm{v}^{\circ}(\mathrm{m}), \mathrm{v}^{\circ}(\mathrm{M})\right]=[110,14] ; \varepsilon=0.37 ; 1-\varepsilon=0.63$
With $\mathrm{m}=2.58 \mathrm{M}(0) ; \mathrm{M}=0.92 \mathrm{M}(0) ; \mathrm{m}+\mathrm{M}=3.5 \mathrm{M}(0)$
Calculations
$\mathrm{G}=6.673 \times 10^{\wedge}-11 ; \mathrm{M}_{(0)}=1.98892 \times 10^{\wedge} 30 \mathrm{~kg} ; \mathrm{R}(0)=0.696 \times 10^{\wedge} 9 \mathrm{~m}$
And $\left.\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right]=2.34$
And $v(m)=\sqrt{ }\left[\mathrm{GM}^{2} /(\mathrm{m}+\mathrm{M}) \mathrm{a}\right]=32.9 \mathrm{~km} / \mathrm{sec}$
And $v(M)=\sqrt{ }\left[\mathrm{GM}^{2} /(\mathrm{m}+\mathrm{M}) \mathrm{a}\right]=92.289674 \mathrm{~km} / \mathrm{sec}$
And: $\mathrm{v}^{\circ}=\mathrm{v}^{\circ}(\mathrm{p})+\mathrm{v}^{\circ}(\mathrm{s})=110 \mathrm{~km} / \mathrm{s}-14 \mathrm{~km} / \mathrm{s}=96 \mathrm{~km} / \mathrm{sec}$
Orbit: With $\mathrm{v}^{*}=\mathrm{v}^{*}(\mathrm{p})-\mathrm{v}^{*}(\mathrm{~s})=59.389674 \mathrm{~km} / \mathrm{sec}$
Then $\mathrm{v}^{*}+\mathrm{v}^{\circ}=155.389674$
$\mathrm{W}(\mathrm{ob})=(-720 \times 36526 / \mathrm{T}) \times\left\{\left[\sqrt{ }\left(1-\varepsilon^{2}\right)\right] /(1-\varepsilon)^{2}\right\}\left\{\left[\mathrm{v}^{*}+\mathrm{v}^{\circ}\right] / \mathrm{c}\right\}^{2}$
$\mathrm{W}^{\circ}($ observed $)=(-720 \times 36526 / 17.36) \times(2.34)\{155.389674 / 300,000\}^{2}$
$=0.95 \%$ century or $\mathrm{U}=38,000$; OBSERVED is 0.74% century
Or, $\mathrm{U}=46,000+/-8,000$
Within scientific errors
References: Apsidal motion of Alpha-C r b binary stars 1986.
By Tomkin, Popper.
Joenahhas1958@yahoo.com

