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Abstract 
 
This is the second paper dedicated to detailed calculations of disk galaxies. The first is “On orbital velocities in disk 
galaxies : “Dark Matter”, a myth?” [2] wherein I explain how to calculate the mass distribution of a disk galaxy and 
the orbital velocities of the stars, starting from a mass distribution of the originally spherical galaxy. This is based on 
the extended gravitation theory, called “Gyro-Gravitation” or gravitomagnetism. No existence of Dark Matter nor 
any other fancy supposition is needed at all in these calculations. 
The objective of this paper is to find the mathematical equations related to the time which is needed for the star's 
orbit to swivel down to the equator. The total diameter-change of the disk galaxy in the time can be found as well. 
Yet, these deductions are simplified by keeping constant the bulge's gyrogravitational properties during the process. 
I leave to the reader to experiment with time-dependent models of gyrogravitational fields in the bulge. 
An explanation for the very limited windings of our Milky Way's spirals is a direct consequence of this paper. 
 
  
1. From a spherical to a disk galaxy. 
 
Let us consider a spherical galaxy with a diameter RRRRe . 
Because the centre contains massive spinning stars or 
spinning black holes, a gyrotation field will start to 
make the stars' orbit swivel, as shown in [2] and [3]. 
After a time t , the radius of the disk galaxy is RRRRe . The 

stars beyond RRRRe did only swivel partly, and are not part 
of the disk itself. 
Consider fig.1.1 wherein the spherical galaxy's bulge is 
shown. The bulge is the group of fast spinning stars that 
has a global spin. However, the spin-vectors of the 
individual fast spinning stars are oriented variously. The 
considered star with mass m orbits at a distance r  from 
the galaxy's centre. 

 Fig. 1.1 : Definition of the angle α and θ . The orbital plane 
is defined by the orbital inclination α in relation to the axis X . 
The location of the orbiting star inside the orbit is defined by 
the angle θ . The equipotential line of the gyrotation Ω  
through the orbiting star has been shown as well. 
 
From a former paper[1] we know that the tangential 
gyrotational acceleration of a star's orbit is given by: 
 
 

     
 (1.1) 

at the place  θ = 0. 
Herein, I is the inertial moment of the bulge, ω its 
angular velocity, α the orbit's inclination angle of the 
considered orbiting star, and ω'  its orbital angular 
velocity, which follows the Kepler law: 
      

(1.2) 
 
wherein  M0 is the bulge's mass. 

 
The swivelling equation (1.1) can be represented in a 
graph, as in fig.1.2.  
 
This means that for prograde orbits, the states of rest are 
given for an orbital inclination of  α = 0 and π/4. For 
retrograde orbits, they are α = 0 and 3π/4.  
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Fig. 1.2. Tangential gyrotational orbit acceleration for θ = 0. 

 
For inclinations between α = 0 and π/4 (prograde), and 
for α = 3π/4 and 2π (retrograde), the acceleration tends 
towards positive values, resulting in a rotational drift 
towards the rotational axis of the Earth.  
For inclinations between  α = π/4 and π/2 (prograde), 
and for α = π/2 and 3π/4 (retrograde), the acceleration 
will much more strongly tend towards negative values, 
resulting in a rotational drift towards the equatorial axis 
of the Earth, and retrograde orbits are strongly pushed 
back into prograde orbits.  
 
We saw in [2] that the -simplified- value of the stars' 
velocity in disk galaxies has become :  
 

(1.3) 
 
wherein M0 is the mass and R0 the radius of the bulge 

(fig.1.3) We have not taken into account the 
gyrotational forces of the bulge as a part of the 
attraction force, just for simplicity of the calculations. 
These forces are to be considered as of secondary order. 
 
This means that (1.2) will become, after the swivelling: 
 

(1.4) 
 
 
When comparing both equations, the factor r-1/2 
becomes R0

-1/2 after time. 

 
 

Fig. 1.3: The schematic view of a disk galaxy with a 
radius Re

 
. The bulge is nearly a sphere or an ellipsoid. 

The bulge area, the disk and the fuzzy ends are studied 
separately. And  r  is the considered place. 

 
 

Below, I now will study the swivelling time for the stars' 
orbits in a simplified form. Consequently, we will 
replace some values by  approximations or by their 
average value. 
 
 
2. The swivelling time from a spherical 
galaxy to a disk galaxy. 
 
The transformation from a spherical galaxy to a disk 
galaxy is quite clear. We have seen that randomly 
inclined orbits of planets about the Sun have swivelled 
until they arrived to the Sun's equatorial plane. Also 
most of the stars outside the galaxy's bulge swivel to the 
bulge's equator plane.  
Out of fig.1.2. follows that at a certain distance r , the 
path length between the random inclination angle α of 
an orbit lays between zero and π r. The average path 
length is then π r/2 until the equator. And this is also the 
average path length until the swivelling star passes at 
the disk's equator for the first time (remember that the 
motion is an exponential decreasing oscillation). 
Remark that the complete swivelling will not occur 
nearby the bulge, due to the fuzzy and strongly variable 
gyrotation fields in that region. 
 
Integrating (1.2) twice over time gives the time which 
the average star need to reach the disk region. 
 
Hence,  
 
To get rid of α in (1.1), let us replace the geometric 

function in α of (1.1) by its average value between α =  
0 and α  = π / 2 .   
 
Thus,  
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is the total angular momentum for the n stars in the 
bulge and r is as defined in fig.1.3, as a simplification. 
 
And when applying the equation (2.2) into (2.1) , by 
assuming that the average tangential gyrotational 
swivelling acceleration is a constant for each orbit with 
radius r , it brings me, after integration to:
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and after rearranging, I get the following result for the 
swivelling time for a given orbit r : 
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For the choice of the value of ω' , I suggest to take the 
average of equations (1.2) and (1.4), because very 
probably, the change of angular velocity occurs during 
the swivelling, while the angular momentum of the 
bulge is transmitted to the disk. 
 
 

(2.7) 
 
 
The equation (2.6) can then be rewritten as: 
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The farther away from the bulge, the longer it takes 
(nearly quadratically) before the disk takes form. At the 
extremities RRRRe

 
 of the disk, there is still a fuzzy zone of 

stars because only a part of the stars did swivel entirely, 
namely those who whereof the orbit inclination 
originally was beyond π/4.  
  
Closer to the bulge, the disk is quickly generated. The 
growth velocity of the galaxy's disk decreases steadily 
in time. 
 
 
3. Discussion. 
 
In the equation (2.8) it is the bulge's angular momentum 
that is the most difficult to evaluate. Especially because 
it probably evolved from a low value to a higher value 
with time, and maybe there occurred a contraction of the 
central zone. 
 
The time delay which is observed in spirally wound 
galaxies such as the Milky Way does not correspond at 
all to the total lifetime of the galaxy. The reason is that 
there are several phases of time to consider.  
The starting point is the spherical galaxy with a spinning 
center, made of spinning stars and eventually black 
holes.  
Then follows the swivelling of the orbits, by which the 
disk diameter increases steadily, beginning from the 
centre and becoming very thin -in cosmic terms- at 
some places, causing a hyper-density of the disk 

compared with the original density of the spherical 
galaxy. 
If the original orbit inclination was situated between 0 
and π/4, the swivelling was originally pointed towards 
π/4. Later, when the disk formed, even stars at an orbit 
inclination till π/4 were attracted by the disk and got 
swivelled towards the disk. Only at the extremities of 
the disk, the fuzzy part betrays that the inclination till 
π/4 is more difficult to swivel down. 
The third phase is the formation of the spirals by the 
contraction of some hyper-dense zones, even yet after a 
partial formation of the disk. When observing the actual 
spiral-gradient, it appears as if the delay of time 
between the formation of the inner and the outer parts of 
the disk were very short, but in fact this delay is much 
longer because the stars that are farther away from the 
bulge can only form spirals at the time that the disk has 
become hyper-dense enough at that place, while the 
inner disk zone has its spirals yet formed. 
The observed strange form of the spirals, I would rather 
say: many parts of spirals, correlate quite well with this 
explanation. 
 
 
4. Conclusion. 
 
The time for an average orbit-swivelling is proportional 
to an exponent 17/8 of the star's orbit radius. Although 
the found time-equation is only a limited part of the 
formation time of our actual Milky Way, it allows us 
already to have a clearer view on the formation of disk 
galaxies. 
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