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1=0?  One must feel inconceivable after he found that he is so led by one of the most revered mathemati-

cal piece in human history.  To expose what is found as an error is to confront, no pleasure but only shock can 
be found when one feels to be compelled to slip into such a stand.  This author wish so much that this 1=0 is a 
result of his mistaken calculation, but not something led by relativity.   However, even setting this inconceiva-
ble result aside, calculation via different route shows that zero speed is found to be the only physical state in 
which special relativity can claim validity for itself; and the equations generated by special relativity can verify 
just that.  It can be found, as demonstrated in the case study presented in this paper, that relativity dismantles 
the constancy of speed of light, and that relativity “enables” material points of a moving rod to complete ex-
traordinary distance without time consumption in the process of “length contraction”. 

It is well known that constancy of speed of light is the absolute foundation for this theory to be con-
structed.  If light cannot maintain its constancy on speed, it must be of interest to know what is left to support 
the validity of this theory.   While relativity has equations to forbid the appearance of speed that exceeds the 
speed of light in nature, the same equations either pushes some speed to exceeding such a speed limit or im-
poses c/2 as another speed limit.   Shouldn’t we feel irresistible to ask:  Why the key points have been so well 
camouflaged in the derivation of this theory that it can escape the fine-combing done by so many scientists for 
more than a century?  This author believes it is time for us to answer this question.  In presenting this review, 
this author never ceases to wish some people would come forward to help this author realizing how mistakenly 
this author has been but relativity’s integrity is left unchallengeable.  Immeasurable thanks to the people who 
would spend time to examine this paper, or even to correct this author if he would like to do so, are hereby giv-
en in advance. 

 

1. Introduction 

Mathematical verification performed in this paper shows that 
special relativity, in studying body movement, has created many 
pitfalls that violate its own fundamental hypotheses and conclu-
sions. 

In the 1905 original paper on relativity, [1] one will find the 
following transformation equations to connect the coordinates, 
both spatial and temporal, between two inertial frames, k(ξ, η, ζ, 
τ) and K(x, y, z, t), that move in the sense of k moving in the di-
rection of increasing  x at speed v: 
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Although relativity involves three inertial frames in complet-
ing its derivation of the above equations, it is obvious that only 
coordinates from two frames finally end up being compared in 
these equations. 

It is said that the above equations from relativity are mathe-
matically identical to the standard configuration of Lorentz 
Transformation Equations (LTE).  However, different from the 
derivation of LTE, relativity has derived them without the con-
cept of an ether.  Because the equations from special relativity 

and LTE share the same mathematical formalism, calculation in 
the upcoming paragraphs will make no distinction between LTE 
and special relativity; the same mathematical formalism makes it 
obvious that the failure of one necessarily means failure of the 
other.  The calculations used in this paper are done on a purely 
mathematical basis, and do not involve the concept of an ether.  
Therefore, although LTE is called for in the calculation. This pa-
per is focused instead on the problems with relativity.  The most 
essential hypothetical principle that enables the existence of the 
LTE is the speed of light, which is said to be universally constant 
with respect to any inertial frame. 

For the purpose of our verification, we need only to concen-
trate our analysis on the equation of spatial correspondence 
among (1a-d), i.e., the equation that reads as 
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To go along with the customary denotation in LTE, which 
normally uses X(x, y, z, t) and X’(x’, y’, z’, t’) to denote coordi-
nates of two inertial systems, we will rewrite (b in 1a-d) to ap-
pear as 
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With (3), when both inertial systems are involved in recording 
more than one event, for event 1 we will have 



 Rebigsol: Relativity's Length Measurement Inconsistency Vol. 6, No. 2 2

 

 
1 1

1 2
'

1

x vt
x

v
c






 (4) 

Similarly, for event 2, we will have 
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For event 3 
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2. Case Study 

Case 1.  Uniqueness of speed cannot be defined in relativity. 

 

Fig. 1.  How is speed determined between frames? 

In figure 1, if axis X’ is said to move at speed v with respect to 
axis X , the location displacement along X described by the rela-
tive movement of any point marked on X’ can be simply ex-
pressed as 2 1x x , which can be obtained through 

  2 1 2 1( )x x v t t    (7)  

for an observer who rides with the X system.  Similarly, for the 
location displacement along X’ described by any point marked 
on X, the same observer would express it as 2 1' 'x x . However, 

can he also similarly have 

 2 1 2 1' ' ( )x x v t t   ? (8) 

No! It will be rejected by those who hold to relativity. Relativity 
would claim that this expression violates the concept of length 
contraction of a moving rod, when X’ is the moving rod being 
observed.  If “genuine accuracy” is to be obtained, relativity only 
accepts an expression that utilizes the aforementioned LTE re-
garding multiple events.  Locating x1’ and x2’ are two consecutive 
events. Therefore, such expression must take the following form 
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In locating x1’ and x2’, the same observer will not change his 
location on X; his location displacement on X is therefore zero.  
Subsequently he will have 2 1 0x x   in (9).   Then what is left in 

(9) is 
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or 
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There is no doubt that 2 1

2 1

' 'x x
t t



is an expression of speed, 

which, according to what has been described, should be the 
speed for the observer’s movement with respect to X’.   Let us 
denote this speed as v’.  Immediately he has 
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or simply 
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In (13), v’ and v are obviously of different (absolute) values 
unless v inside the square root is zero.  However, as to the speed 
value inside the square root, relativity does not indicate which 
value, v or v’, should be used.  Confusion therefore must follow 
if two frames are said to be passing each other at a certain speed; 
but at which speed, v or v’? On the other hand, can relativity put 
any restriction on them in the calculation at all?  Let’s inspect 
some numerical examples. 

Let us assume some restriction to be applied and have v=0.8c 
inside the square root.  Equation (13) would lead us to have 
v’=1.3333c.  This result contradicts many statements from rela-
tivity, typically: (a) For v=c, all moving objects --viewed from the 
“stationary” system--shrivel up into plain figures (§4, [1]); (b) It fol-
lows… that the velocity of light c cannot be altered by composition with 
a velocity less than that of light (§5, [1]); (c) Velocities greater than that 
of light have…no possibility of existence (§10, [1]). 

Now relativity leads to a speed of light which these state-
ments, if valid, cannot allow.   Indeed, relativity can have state-
ment (a) formulated only if relativity chooses v’ to be used inside 
the square root in calculating length contraction.  This is because 
if v is chosen instead of v’, the implication from relativity would 
be that light rays have no length, but this is not what we observe.  
In addition, even if the speed of light is restricted to a set value, 
relativity even contradicts itself.  Shouldn’t it be reasonable to 
expect relativity to at least explain the physical significance re-
garding v’=1.3333c that appears mathematically, but which rela-
tivity itself forbids to appear in nature? On the other hand, with-
out restriction regarding the speed of light, if we use v’ in substi-
tution of the speed value inside the square root, we will have 
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where 'v c . 

By taking the derivative of v with respect to v’, or  'dv
dv , 

(14) will lead to a maximum value of v, which is 2c  , at 

' 2v c .    Now, apparently, in addition to an overall speed 

limit of c that relativity has been insisting upon, the same relativi-
ty throws in another speed limit through (14), which is  2c  for 

any frame moving with respect to an observer if its location dis-
placement is inspected against the observer’s frame of reference.  
This certainly is not so found in high energy labs. [7] 

Instead of any restriction on light speed, relativity’s choice 
regarding v or v’ is found to be as liberal as it can get.   In section 
§3, few paragraphs before it finalizes the tidy-up of the LTE, rela-
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tivity introduces a third system of co-ordinates K’ with the fol-
lowing statement: (the K’ system) relatively to the system k is in a 
state of parallel translatory motion parallel to the axis of X, such that 
the origin of co-ordinates of system k moves with velocity –v on the axis 
of X. [1]   Obviously, the origin of k in this statement is comparing 
its location displacement to spatial coordinates quoted from the 
other system (the K’ system) in concluding a speed of  –v.  How-
ever, the clock which determines the speed is found on the k sys-
tem but not on the K’ system.  Therefore, the speed obtained 
matches perfectly the model of v’: 

 spatial coordinate difference quoted from one system
speed

time recorded by clock from  systemanother
  (15) 

In comparison, before it introduces K’, relativity’s deriving work 
uses another speed model: 

 spatial coordinate difference quoted from one system
speed

time recorded by clock from   systemthe same
  (16) 

This can be evidenced by the following statement found in 
the same section: Now to the origin of one of the two systems (k) let a 
constant velocity v be imparted in the direction of the increasing x of 
the other stationary system K…at the time t (this “t” always denotes a 
time of the stationary system)… [1]  This speed model is that of v, 
which is shown by (16) but not allowed to be applied in (8) by 
relativity. 

All this indicates that relativity is not taking into account to 
the physical significance of speed.  Indeed, it is puzzling enough 
to consider why a system that consists of only two moving 
frames need to have its moving state justified by three speeds:  v, 
v’ , and c as shown by (13) or (14).  

Case 2. Relativity fails the constancy of speed of light in spite of its 
reliance on such constancy in developing its equations that are identical 
to the Lorentz Transformation Equations. 

 

Fig. 2.  At t=t’=0, light is seen emitting at where A2 and B2 coincide 

In figure 2, we set 2 3 1 2 2 3 1 2B B B B A A A A   = 1 l-s  

(light-second) as the rest length for each of these linear segments.  
We further assume that an observer riding on frame A sees frame 
B moving with respect to his frame at speed v=0.8c.  Thus 

  21 0.6v
c     (17) 

At some time-instant t=t’=0, a light source positioned where A2 
and B2 coincide emits light toward both the positive and negative 
directions. 

At this point, with this information, the observer on A must 
be able to make two statements, both supposedly valid:  First, as 
is easily seen, it will take one second by his clock for the light 
wave fronts to reach A1 and A3 simultaneously; and second, us-
ing the LTE time conversion, corresponding to the time lapse of 

one second on his frame, a clock staying at B2 all the time must 
read a time lapse of 0.6 seconds which we get from equation (17). 

With 1 second from the first statement,  the LTE will make 
the observer expect that the light wave front reaching A3 will be 
shared by a point on B that has coordinate value of (+0.333…) l-s 
if the spatial coordinate value of A2 and B2 are zero.  Likewise, 
the light wave front reaching A1 will be shared by another point 
on B but with coordinate value of (-3) l-s.  In other words, the 
same light waves enveloping a linear range of 2 l-s on A must 
envelop a linear range of [0.333-(-3)] l-s on B.  To complete this 
range in 0.6 seconds of time from the second statement, the light 
must have a speed: 
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with respect to frame B.  This speed value certainly shatters 
relativity’s stipulation as well as conclusion on the constancy 
of speed of light with respect to any inertial system. 

Conversely, from the second statement, at the end of the time 
interval of 0.6 seconds, relativity must guide the observer to pre-
dict that the light wave front from B2 would have reached a point 
of (+0.6) l-s in one direction and another point of (-0.6) l-s in the 
opposite direction on frame B. Correspondingly, points on A 
sharing the same light wave front will be (+1.16) l-s and (+0.44) l-
s, respectively.  Starting from the 1 second of time lapse from the 
first statement, relativity indicates the light fronts will not reach 
the coordinates (both points of +1 l-s and -1 l-s) on frame A in the 
same time interval. Given this, light should have a speed on 

frame A of 
1.16 0.44

2


l-s/second, or 0.36 l-s/second.  Now, regard-

ing 1 l-s/second, and 2.77 l-s/second, and 0.36 l-s/second, which val-
ue will relativity pick as a constant for the speed of light? 

Case 3.  Relativity makes length measurement uncertain.  

(Quotation one, from §2, [1]):  Let there be given a stationary ri-
gid rod [a rod to be measured]; and let its length [that is, the rest 
length] be l as measured by a measuring-rod which is also stationary.  
We now imagine the axis of the rod [the rod to be measured] lying 
along the axis of x of the stationary system of co-ordinates, and that a 
uniform motion of parallel translation with velocity v along the axis of 
x in the direction of increasing x is then imparted to the rod.[emphasis 
added]. 

With the composite system of movement thus described, rela-
tivity develops various concepts that are not found in Newtonian 
Physics, such as length contraction for a moving rod and time 
dilation for a moving clock. With the word then, this quoted pa-
ragraph inevitably immerses these various concepts into an ini-
tial moment in time when 0 0t  . Before this instant, the measur-

ing-rod, the rod to be measured, and the x axis are all at rest with 
respect to each other.  After this instant, the rod to be measured is 
moving with respect to the measuring-rod, which is stationary to 
the x axis.  This configuration is described as two operations by 
the text (omitted here) immediately following the above quoted 
paragraph.  Relativity thus tells us that in the first operation, the 
rod to be measured experiences no length contraction, but that in 
the second operation, the same rod shows length contraction in 
the measurement made by the observer staying on the stationary 
frame.     However, relativity gives no indication regarding how 
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the contraction is processed or completed.   When given a time 
interval of [  0   1t g ,  0   1t g ], where g can be any large posi-

tive number chosen at will by the stationary observer with the 
clock next to him, relativity gives us no indication regarding 
which of the two situations is to be preferred: 

Situation 1.  The entire rod B, i.e., the rod to be measured, 
contracts toward B1 as movement starts (Fig. 4).  So at any time-
instant  1 0   1t t g   , B is found at rest with respect to A, the 

measuring-rod, as indicated in Fig. 3: 

 

Fig. 3.  At  1 0   1t t g    

But at another time-instant  1 0   1t t g   , B is found moving 

with contraction as indicated in the following diagram: 

 

Fig. 4.  At  1 0   1t t g    

Situation 2:  The same rod B, starts from the same rest state 
as mentioned in fig. 3, and then contracts toward B2. So at time 
instant  1 0   1t t g   , B is found moving but in a state as indi-

cated in  Fig. 5: 

 

Fig. 5.  Also at  1 0   1t t g    

If legitimacy is given to either situation, one must find it diffi-
cult to explain how, and with how much time consumption, the 
other end of the rod completes its movement for a length contrac-
tion to be detected.  

It now becomes necessary for relativity to allow us to imagine 
a point on B (besides B1 and B2) which is stationary and against 
which the contraction can be measured. Because there is no rea-
son that any particular point on B should be preferred as an anc-
hor point, the inconsistency of length measurement shows up in 
the following example. 

In accord with the first quotation of case 3, we can start the 
history of movement in which rod A and rod B and the x axis are 
at rest with respect to each other, and have 

 1 2 1 2A A B B l   (19) 

At some time instant 1 0t t , B1 is found matching point A3 

and B2 matching point A4, as shown in Fig. 6: 

 

Fig. 6.  To determine the length of 1 4A A  

At this time instant 1t , what is the length of 1 4A A  as meas-

ured by the observer riding on rod A, or equivalently, on the x 
axis? 

To this observer, the distance between A1 and A2 must be in-
variant, i.e. 1 2A A l  at all times. Speed v, which B2 is supposed 

to have, should lead him to have the distance 2 4 1A A vt , which 

further leads to 

 1 4 1 2 2 4 1A A A A A A l vt     (20) 

Such calculation is developed with situation 2 mentioned above. 
If relativity fails to specify the preference between situation 1 and 
2, it should allow the same legitimacy for the same observer to 
start the measurement with the movement of B1, instead of B2. 
Therefore, because of the movement of B1, he has 

 1 3 1A A vt  (21) 

At 1t , 3 4A A matches a length that he sees moving, thus 

  23 4 1moving
vA A l l c    (22) 

and further  21 4 1 3 3 4 1 1 vA A A A A A vt l c      (23) 

This is a value disagrees with what is shown in (20).    
Clearly, this confusion cannot be resolved until relativity is 

able to present a clear mathematical argument about the move-
ment history associated with the above quoted paragraph.  But 
can it do so?  Can relativity, without violating its assumption 
regarding a constant speed of light, explain how all material 
points of the rod-to-be-measured would have completed their 
movement for the length contraction to be detected at the time 
instant defined by the word then? 

3. Root of the Inconsistency 

For brevity, let us examine only how popular textbooks 
usually expose students to relativity.  A typical approach [5] can 
only make relativity’s calculation appear improper for any non-
zero speed between moving frames. A review regarding these 
inconsistencies in the original 1905 paper on relativity is also 
being presented is these proceedings: Mathematical Inconsisten-
cy in Relativity’s Original Paper of 1905. [14]     There I have 
shown how relativity leads to the result “1=0.” 

The text book we analyze here begins its mathematical de-
duction with the following equation set:  

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

'
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'
'

x a x a y a z a t
y a x a y a z a t
z a x a y a z a t
t a x a y a z a t

   
   
   
   

 (24a-d) 

The task of (24a-d) is to find all a’s in order to establish a 
function, or functions, that correspond to all the spatial and tem-
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poral coordinates between two moving systems. With many 
supplemental conditions, (actually equations with various rea-
sons), (24a-d) finally boils down to 
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If all a’s remain as unknowns, equation set (25a-d) is a set 
with three unknowns but only two relevant equations.  To over-
come the difficulties in finding a finite solution set, the textbooks 
introduce new information with 
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 (26a, b) 

Given that y’=y and z’=z are redundant and they eventually re-
duce to zero, the useful information actually contains 
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 (27a, b) 

Putting everything together, the textbooks come to an equation 
set that reads 
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The introduction of (26a, b), or equivalently, the introduction 
of (27a, b) makes it indisputable that (28a-d) is conditioned to be 
solved in the following way:  no matter how time develops, each 
observer must see no relative movement between the origin of 
his own frame and the center of the spatial sphere enveloped by 
the propagation of light.  In other words, the origin of the frame 
and the center of the light sphere coincide forever in each ob-
server’s inspection.  Before any further calculation can be made, 
we need to analyze the validity of an equation set with these 
conditions, i.e., (28a-d).  Mathematically, the introduction of (26a, 

b), namely 
2 2 2 2 2

2 2 2 2 2' ' ' '

x y z c t

x y z c t

  

  
, is to say that the spherical space 

occupied by light starts its expansion at t=t’=0.  As far as the x 
axis and x’ axis are concerned, light must propagate along them 
in both the positive and negative directions, with speeds as-
sumed equal with respect to each of them, of course.  The as-
sumed movement of the x’ axis to the observer on the x axis 
should make him believe that the x’ axis and light both move in 
the same direction pointing toward the positive side on his x axis.    
Looking toward the negative side, the same assumed movement 
should make him see that the light wave front and the x’ axis 
move in opposite directions relative to each other.  The distance 
between the light front and any given point on the x’ axis, such 
as the origin, would be seen as continuously changing by the 
observer.  How would relativity guide the observer to calculate 
such a distance change? Let’s quote from relativity:  

(Quotation two, from §2, [1]): “Let a ray of light depart from A 
at the time tA, let it be reflected at B at the time tB, and reach A 

again at the time t’A.  Taking into consideration the principle of the 
constancy of the velocity of light we find that  

 AB
B A

r
t t

c v
 


  (29) 

and ' AB
A B

r
t t

c v
 


 (30) 

[Both (29) and (30) are numbered by this author]  where rAB 
denotes the length of the moving rod—measured in the stationary 
system.” 

The ray of light departing from A, chosen for the observer’s 
calculation, is only one of the infinitively numerous rays that 
form an expanding sphere.  At the exact moment of emission, the 
location on the stationary system where point A matches the 
point of light emission must be envisaged by relativity as the 
center of the sphere of the light.  Relativity allows no disagree-
ment regarding the concept that the observer will not see the 
center of the light sphere move even though the rod is moving. 
This quotation further tells us that for the light and a frame that 
an observer sees moving in the same direction, relativity will set 
up the relationship between distance and time and speed accord-
ing to (29).  If they are moving in opposite directions, the same 
observer should set up their relationship according to (30).  In 
both situations, time is marked from a clock next to the observer.  
Therefore, for the movement in the same direction, the observer 

on the x axis will obtain a distance r   that the light wave front 

describes on the x’ axis with time interval of (t-0) and establishes 

 
r

t
c v

 


 (31) 

For the movement in the opposite direction, this observer will 

obtain a distance r   that is described by the light traveling on 

the x’ axis and establishes 

 
r

t
c v

 


 (32) 

Subsequently, this observer must have  

 
r r

t
c v c v
  
 

 (33) 

or further 
r c v
r c v








 (34) 

Please note once again: The center of the light sphere is not al-
lowed to move with rAB for (34) to be formulated with respect to 
the stationary observer.  This observer must be stationary to both 
his x axis as well as the light sphere center.     How would the 
observer who is stationary to the x’ axis evaluate the situation? 
To this  observer on x’, with v=0 concluded from his own frame 
with respect to himself, and with the center of the light sphere to 
be claimed at point A, which is motionless to him, (29) and (30) 
together require that he must see 

 r r ct     (35) 

with t’ being quoted from a clock from his x’ axis.  This relation-
ship leads to 
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 1
r
r



  (36) 

It does not matter how the concept of length contraction of a 
moving rod may force each observer to believe seeing r  (or r  ) 

with different values.  Such a contracting multiplication factor 

cancels out in the ratio of 
r
r



  . Therefore, the exclusively unique 

and perfect sphere that brings up (27a, b), or
2 2 2

2 2 2' '

x c t

x c t




 , must 

force the two observers to come to an agreement between 
r and r  such that 

 1
c v r
c v r






 


 (37)   

This relationship can be satisfied only if v=0; no other value of v 
can satisfy it. 

Conversely, when the observer riding on x’ axis compares the 
relative movement between the light wave front and the x axis, 
believing the origin of his own frame to be the center of the light 
sphere, the same argument will be applicable from his point of 
view, again ending up with v=0 between him and the x axis.  
Therefore, the inescapable conclusion is that it is only at zero 
speed, and no other, that the two observers can agree that each 
detects (I) a perfect sphere of space occupied by the light propa-
gation and (II) both origins of their own frames to be the center of 
the light sphere.  Whatever solution set that results from both 
(25a-d), and, as a result, (24a-d), is only good for speed of v=0.  In 

other words, the introduction of 
2 2 2

2 2 2' '

x c t

x c t




, or equivalently 

2 2 2 2 2

2 2 2 2 2' ' ' '

x y z c t

x y z c t

  

  
, just simply kills any nonzero movement 

between the frames.  In mathematical terms, this treatment im-
plicitly forces equation set (24a-d) to be solved with a predeter-
mined speed value of v=0.   v=0 is a necessary and sufficient 
common condition for each observer to conclude a perfectly but 
uniquely spherical space occupied by light propagation in his 
observation while insisting his own frame’s origin to be the cen-
ter of the sphere.  When the solution set that is good only for v=0 
is applied to a nonzero speed between the frames, the application 
becomes merely a mathematical abstraction which conforms to 
an accepted rule. 

In the original 1905 paper, relativity also relied on the intro-
duction of one spherical space of light propagation but shared by 
two equations to complete its argument.  This means that the 
remaining arguments of the 1905 paper regarding the relative 
movement between two frames shares the same fate as what has 
just been demonstrated; this in contrast to what has been por-
trayed in the textbooks. 

4. Conclusion 
Thus, using equations that bear the same formalism as the 

LTE in dealing with movement, relativity has destined itself to 
failure in all of the following aspects: 

1. It allows no finite value of speed between two frames to 
describe movement;   even the speed limit that it creates 

and advocates can be shown to have more than one with 
value in its own equations. 

2. Its concept of length contraction brings up contradictory 
speeds for the material point of a moving rod. 

3. Most importantly, relativity turns out to completely shred 
its own stipulation as well as conclusion about the con-
stancy of the speed of light. 

Treated in this fashion, relativity demolishes its own condi-
tion regarding the constancy of the speed of light.  What then is 
left to support its validity? 

At this point, we have no reason to believe or worry that, as 
far as Galilean relativity in Newtonian Physics is concerned, a 
dent has been detected by any theory. [4]    

If special relativity has no valid foundation, general relativity 
may face a similar fate.   However, it may be interesting to note 
that, so far, general relativity is said to be the only theory “being 
able” to explain the excessive perihelion precession of Mercury, 
but Newtonian Mechanics seems tarnished in tackling this prob-
lem. [4]   How can we be sure that we have applied Newtonian 
Mechanics properly in exploring this topic?  But, if relativity is 
eliminated, all that is left is Newtonian Mechanics.  This author is 
confident that Mercury’s excessive precession should be able to 
be answered with Newtonian Mechanics but with one condition 
in mind: There have been other influences affecting Mercury’s 
behavior through history.  Let us discuss this briefly. 

In space a lighter gravitational body is found moving about a 
heavier gravitational body.  Its loci of steady movement is sup-
posed to allow us to detect a point where the gravitational force 
between the two bodies exactly cancels out the centrifugal force 
that is produced by the curving movement of the lighter body.  
We call this point the virtual equilibrium point.  At this point, we 
can regard the apparent velocity of the lighter body to be a resul-
tant velocity of two components: One of them is the velocity on 
the tangential direction, which will be denoted as vvt , the other 
one is along the radial direction, which will be denoted as vvr 
(stipulated with a negative sign for its pointing toward the 
heavier body). If we further use Rve to denote the distance be-
tween the virtual equilibrium point and the gravity center of the 
heavier body, the entire loci of the lighter body’s movement can 
be describe by [15] 

 
1 ( )sin

ve

vr
vt

R
R

v
v


 

 (38) 

where R is the distance at any instant in time between the two 
bodies; and   is the angle swept by the radius represented by R, 
starting its zero value one quarter period before the periapsis 

point appears if an ellipse is resulted from (38).  If 1vr

vt

v
v

 , (38) 

will describe a “perfect” ellipse.  The ellipse is perfect in the sense 
that the geometrical location of the apoapsis and periapsis rela-
tive to the heavier body must be permanently found with the 
same coordinate values in space, independent of the progress of 
time. 

Suppose that there was once a time such a perfect ellipse had 
been established for the Mercury’s orbital movement about the 
Sun.  Later, for some reason, a large amount of material was add-
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ed to the sun while nothing was added to Mercury.  Needless to 
say, the gravitational force afterwards between these two celes-
tial objects would pull Mercury closer to the Sun.  However, 
nothing has changed Mercury’s angular momentum.   Now, each 
time before Mercury is about to return to the previous apoapsis, 
or periapsis at the other end of the ellipse, the newer gravitation-
al force no longer allows it to go that far again; while the original 
but now “excessive” angular momentum (the result of the con-
servation principle) must then advance Mercury to move across a 
longer arc on the orbital curve.  This is to say that it takes a little 
more than 360 degrees if Mercury is to complete the original el-
lipse; precession thus results.  Of course, the new apoapsis and 
periapsis, which will be related to a new virtual equilibrium 
point, should both have shorter distances from the Sun compared 
to the previous ones.  Let R’ve be the distance of the new virtual 
equilibrium point from the Sun, to describe Mercury’s loci in a 
new situation, (38) can be rewritten as 

 
'

'1 ( )sin( )'

ve

vr
vt

R
R

v
v


  

 (39) 

where 
p

t
T

  , in which p is the total excessive perihelion  ad-

vancement in one rotation period, T is the time of one orbital 
period, and t is the planet’s traveling time, which begins its initial 
zero value at where   takes its initial zero. 

Note, however, Eq. (38) is set up with the condition that the 
two gravitational bodies are absolutely isolated from any other 
celestial objects so that no perturbation from anything else can 
affect the movement.  Eq. (39) is to be applied if the orbit is near-
ly circular.   Even if excluding perturbation from other objects, 
reality makes it almost impossible for a lighter body to have es-
tablished and started an elliptical orbit with conditions that can 
match out an exact virtual equilibrium point in space. Besides 
anything else, historical collisions between heavenly objects 
should have altered precession in the movement of celestial ob-
jects from time to time. We cannot possibly have seen all these 
events. 

On the other hand, Mercury’s movement must cause tides on 
the Sun.  The tidal action will consume Mercury’s angular mo-
mentum and change its precession.  New periapsis, apoapsis and 
precession are continuously reestablished in the process of such 
consumption even if the mass of the Sun and Mercury are un-
changed. 

Extra Discussion: Redefining the Straight Line 

Randomly choose any two points named a and b from a rigid 
curve. The segment of the curve so bound between the points is 
called (a~b). Let an exact replica of (a~b) be produced and be 
called (a’~b’).  Now join (a~b) and (a’~b’) in such a manner that 
point a and b’ merge together at one end and point b and a’ 
merge together at the other end.  After the joining,  if any point 
from (a~b) must land on (a’~b’), then (a~b)  is a genuinely 
straight segment provided the following two conditions are met: 
First, (a’~b’) has been allowed to move in space with any free-
dom it can find while retaining the merging of points  a/b’ and 
b/a’ ; second, another segment (c~d) is always allowed to be ran-

domly chosen within (a~b) such that (c~d) and its replica can be 
shown as a straight segment under the same operation in defin-
ing (a~b).  If the same operation defining (a~b) as a straight seg-
ment can be applied to any part of the curve from which (a~b) is 
quoted, then the entire curve is a straight line in a 3-D space. 

A straight line so defined does not agree with the idea that 
has been found popular in cosmological studies: an object travel-
ing away in one direction would eventually reappear from the opposite 
direction. This needs to be considered: A straight numerical axis 
extends its length following this traveling object.  When the ex-
tending end comes back to meet the origin of the axis as the trav-
eling object so reappears, will the numbers attached to the ex-
tending end appear as infinitely positive numbers or as …-4, -3, -
2, -1, 0? 

Euclidean Geometry, one of the high condensations of human 
wisdom, is unfortunately found to be abused by many liberal 
“theories” [3, 4, 6], only because it has not completed itself with a 
rigid definition of straight line. 
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