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RADAR TIME DELAYS IN THE DYNAMIC THEORY OF GRAVITY
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SUMMARY: There is a new theory gravity called the dynamic theory, which is
derived from thermodynamic principles in a five dimensional space, radar signals
travelling times and delays are calculated for the major planets in the solar system,
and compared to those of general relativity. This is done by using the usual four
dimensional spherically symmetric space-time element of classical general relativistic
gravity which has now been slightly modified by a negative inverse radial exponential
term due to the dynamic theory of gravity potential.
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1. INTRODUCTION

There is a new theory called the Dynamic The-
ory of Gravity (DTG). It is derived from classical
thermodynamics and requires that Einstein’s pos-
tulate of the constancy of the speed of light holds
(Williams 1997). Given the validity of the postulate,
Einstein’s theory of special relativity follows right
away (Williams 2001). The dynamic theory of grav-
ity (DTG) through Weyl’s quantum principle also
leads to a non-singular electrostatic potential of the
form:

V (r) = −K

r
e−

λ
r , (1)

where K is a constant and λ is a constant defined by
the theory. The DTG describes physical phenomena
in terms of five dimensions: space, time and mass
(Williams 2001). By conservation of the fifth dimen-
sion we obtain equations which are identical to Ein-
stein’s field equations and describe the gravitational
field. These equations are similar to those of general
relativity and are given by:

KoT
αβ = Gαβ = Rαβ − gαβ

2
R . (2)

Here Tαβ is the surface energy-momentum tensor
which may be found within the space tensor and is
given by:

T αβ = T αβ
sp − 1

c2

[

F α
4 F 4β − hαβ

2
F 4νF4ν

]

, (3)

and Tµν
sp is the space energy-momentum tensor for

matter under the influence of the gauge fields also
given by Williams (2001):

T ij
sp = γuiuj +

1

c2

[

F i
kF kj +

1

4
aijF k`Fk`

]

. (4)

This can further be written in terms of the surface
metric in the following way:

T αβ
sp = γuαuβ +

1

c2

[

F α
k F kβ + F α

4 F 4β +

+
1

4

(

gαβ − hαβ
) (

F µνFµν + F 4νF4ν

)

]

(5)
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and:

u4 =
dy4

dt
⇒ ∂y4

∂t
+

−
∇•

(

y4 −
u
)

= 0 . (6)

This is a statement required, by the conservation of
the fifth dimension, and the surface indices ν, α, β.
= 0,1,2,3 and space index i, j, k, l = 0,1,2,3,4, and

gαβ = aijy
i
αyj

α = aαβ+hαβ = aαβ+2aα4y
4
β+a44y

4
αy4

β ,

where the surface field tensor will be given by:

Fαβ = Fijy
i
αyj

β and yi
α =

∂yi

∂xα
= δi

α (7)

for i = 0, 1, 2, 3 and y4
α = ∂y4

∂xα .

Fij =













o E1 E2 E3 Vo

−E1 o B3 −B2 V1

−E2 −B3 o B1 V2

−E3 B2 −B1 o V3

−Vo −V1 −V2 −V3 o













. (8)

It was shown by Weyl that the gauge fields may be
derived from the gauge potentials and the compo-
nents of the 5-dimensional field tensor Fij given by
the 5×5 matrix given by (8). Now the determination
of the fifth dimension may be seen, for the only phys-
ically real property that could give Einstein’s equa-
tions is the gravitating mass or it’s equivalent mass,
(Hunter et al. 1997). Finally the dynamic theory of
gravity further argues that the gravitational field is
a gauge field linked to the electromagnetic field in
a five-dimensional manifold of space-time and mass,
but, when conservation of mass is imposed, it may
be described by the geometry of the four-dimensional
hyper-surface of space-time, embedded into the five-
dimensional manifold by the conservation of mass.
The five-dimensional field tensor can only have one
nonzero component V0, which must be related to the
gravitational field, and the fifth gauge potential must
be related to the gravitational potential.

The theory makes its predictions for red-shifts
by working in this five dimensional geometry of
space, time, and mass, and determines the unit of
action in the atomic states in a way that can be
calculated with the help of quantum Poisson brack-
ets when covariant differentiation is used (William
2001):

[xµ, pν ] Φ = ih̄gνq
{

δµq +
∣

∣Γµ
s,q

∣

∣xs
}

Φ . (9)

In (9) the vector curvature is contained in the
Christoffel symbols of the second kind and the gauge
function Φ is a multiplicative factor in the metric
tensor gνq , where the indices take the values: ν,q
= 0,1,2,3,4. In the commutator, xµ and pν are the
space and momentum variables respectively, and fi-
nally δ µq is the Kronecker delta. In DTG the

momentum ascribed as a variable canonically con-
jugated to the mass is the rate at which mass may
be converted into energy. The canonical momentum
is defined as follows:

p4 = mv4 (10)

where the velocity in the fifth dimension, is given by:

v4 =

•
γ

αo
. (11)

Now
•
γ is a time derivative, gamma having units of

mass density (kg/m3), αo is a density gradient with
units of kg/m4. In the absence of curvature (8) be-
comes:

[xµ, pν ] Φ = ih̄δνqΦ . (12)

2. THE LINE ELEMENT OF THE
DYNAMIC THEORY OF GRAVITY

In the DTG the metric is not different from
that of general relativity except for an exponential
term with an 1/r dependence, and λ is a constant
determined by the theory. Therefore we can write
the line element of dynamic gravity in the following
way:

ds2 = c2

(

1 − 2GM

c2r
e−λ/r

)

dt2 −
(

1 −
2GM

c2r
e−λ/r

)−1

dr2 −

r2
(

dθ2 + sin2 θdϕ2
)

. (13)

Fig. 1. The relative position of a planet, with
respect to the earth. A schematic diagram of the
radar-ranging time delay experiment. Radar waves
are sent from the Earth to a distant reflector, so that
they pass close to the Sun. They are reflected as
all electromagnetic radiation is. There is an excess
time delay between sending and return above what
would be expected were the signals propagating along
straight lines in flat space-time. Time delay caused
by the curvature of the space-time in the vicinity
of the Sun is an important test of general relativity
(Hartle 2003).
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3. RADAR DELAY IN THE DYNAMIC
THEORY OF GRAVITY

With reference to Fig. 1 we can write that:

tdyn(tot)
= 2

[

∫

√
r2

e−r2
s

0

dξ

c′
+

∫

√
r2

p−r2
s

0

dξ

c′

]

. (14)

If we now define ξ =
√

r2 − r2
s we then have that

dξ = rdr√
r2−r2

s

and finally the round travel time be-

comes:

tdyn(tot)
= 2







∫ re

rs

dr
[

1 − 2GMe−λ/r

rc2

]

√

1 −
(

rs

r

)2
+

+

∫ rP

rs

dr
[

1 − 2GMe−λ/r

rc2

]

√

1 −
(

rs

r

)2






. (15)

Since λ, rS < r to first order approximation, the
integral above takes the form:

tdyn(tot) =
2

c





re
∫

rS

[

1 + 2G
rc2 + 2GMλ

r2c2

]

√

1 −
(

rs

r

)2
dr+

+

rp
∫

rs

[

1 + 2GM
rc2 + 2GMλ

r2c2

]

√

1 −
(

rs

r

)2
dr



 . (16)

Since rs > 0 and re > rs (15) and λ = GMsun/c2,
(15) can be written as:

tdyn(tot) =
2

c





re
∫

rS

[

1 + 2λ
r + 2λ2

r2

]

√

1 −
(

rs

r

)2
dr+

+

rp
∫

rs

[

1 + 2λ
r + 2λ2

r2

]

√

1 −
(

rs

r

)2
dr



 (17)

which now integrates to the following expression:

tdyn(tot) =
2

c

[

√

r2 − r2
s − 2λ2

r
sin−1

(rs

r

)

+

+2λ ln

(

r

(

1 +

√

1 −
(rs

r

)2

))]

. (18)

In (16) rs is the distance of closest approach taken
to be equal to the radius of the sun, re is the earth’s
orbital radius, rp is the orbital radius of the planet,
and λ is a parameter defined by the dynamic theory

of gravity which has the value λ = GMsun/c2. Sub-
stituting for the limits, expression (16) can be further
simplified if we always remember that rs << re, rp
to:

tdyn(tot) =
2

c

[

√

r2
e − r2

s +
√

r2
p − r2

s+

+
4λ2

rs
−

2λ2

re
−

2λ2

rp
+ 2λln

(

4rerp

r2
s

)]

. (19)

The above equation results in a delay between clas-
sical signal propagation and that of dynamic gravity
which is equal to:

∆t = tdyn(tot) − tclas(tot) =

=
2

c

[

4λ2

rs
− 2λ2

re
− 2λ2

rp
+ 2λ ln

(

4rerP

r2
s

)]

. (20)

Also the delay between general relativity and dy-
namic gravity takes the form:

∆tdyn(tot) − trel(tot) =
2

c

[

4λ2

rs
− 2λ2

re
− 2λ2

rp

]

.

(21)
Next we will numerically evaluate equation (16) and
we will compare it with that of general relativity:

trel(tot) =
2

c





re
∫

rs

(

1 + 2λ
r

)

dr
√

1 −
(

rs

r

)2
+

rp
∫

rs

(

1 + 2λ
r

)

dr
√

1 −
(

rs

r

)2





(22)
which integrates into the expression:

trel(tot) =
2

c

[

√

r2
e − r2

s+

+
√

r2
p − r2

s + 2λln

(

4rerp

r2
s

)]

. (23)

4. CALCULATION OF RADAR
TRAVELING TIMES

Our numerical calculations of the predicted to-
tal traveled times for the major planets in the solar
system are shown in Table 1 and where in the third
column the two digits in the bracket represents the
only difference between the indicated travelling total
times in the fifteen digital accuracy calculation. This
difference, and for all practical purposes can be con-
sidered to be the same, between the two theories. All
the planetary distances rp are the planetary orbital
radii and re is the orbital radius of the earth (Allen
2000). For this planetary configuration between the
sun the earth and the planets we can easily see that
rs << rp, re.
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Table 1.

Planetary
Orbital
Radii ×106

Km

Classical
Total Time
(min)

Relativistic
and
Dynamic
Total time
(min)

Relativistic
Delay
(µsec)

Dynamic
Delay
(µsec)

Dynamic
Delay
(µsec)

Mercury
57.909175

23.071657
8730607

23.071661
3736106
(18)

210.03298
9764298

210.03306520
0644

209.996
5082

Venus
108.20893

28.664604
5366178

28.664608
2329327
(39)

221.77889
6458422

221.77897210
7128

221.742
4150

Mars
227.93664

41.977001
2778753

41.977005
2074730
(43)

235.77586
0526579

235.77593630
3704

235.739
3958

Jupiter
778.41202

103.18338
0980308

103.18338
5294488
(89)

258.85082
9682436

258.85090554
1638

258.814
3482

Saturn
1426.7274

175.26830
7725353

175.26831
2229253
(54)

270.23402
9226854

270.23410510
1500

270.197
5480

5. WHAT DISTANCE OF
CLOSEST APPROACH MAKES
DTG DELAYS ZERO?

Solving relations (20) and (21) for the distance
of the closest approach rs that will make the corre-
sponding delays equal to zero, we obtain:

rs =
λ

ProductLog

[

±λe
1
2

(

λ
rp

+ λ
re

)

2
√

rerp

]

≈ λ

ProductLog
[

± λ
2
√

rerp

] (24)

and also:

rs =
2rerp

(re + rp)
(25)

where ProductLog(z) function is the principal solu-
tion, of equations of the form z = weW also satis-
fying the following differential equation: (dw/dz) =
w/z(1 + w) (Mathematica 4.0, 1999).

6. COMPARING DYNAMIC
RELATIVISTIC AND
CLASSICAL EFFECTS

The changes in the delay times between the
dynamic and the classical propagation now become:

∆tdyn

tdyn

=
tdyn − tclas

tclas

≈ 4λ2

rs (re + rp)

[

1 +
rs

2λ
ln

(

4rerp

r2
s

)]

, (26)

and between the dynamic time and relativistic time
we obtain:

∆tdyn

tdyn

=
tdyn − trel

trel

≈ 4λ2

rs

[

(re + rp) + 2λ ln
(

4rerp

r2
s

)] . (27)

The Table 2 shows the magnitude of these quantities
for the earth fixed at the position of its orbital dis-
tance and similarly the planets at their orbital radii
which of course is not the most realistic position for
radar measurements.
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Table 2.

Planetary
Orbital
Radii
×106Km

∆t
t =

tdyn−trel
trel

∆t
t =

tdyn−tclas
tclas

Mercury:
57.909175

10−14 10−7

Venus:
108.20893

10−14 10−7

Mars:
227.93664

10−14 10−7

Jupiter:
778.41202

10−14 10−8

Saturn:
1426.7274.

10−15 10−8

Fig. 2. ∆tdyn/tdyn vs planetary distances at peri-
helion rp (cm).

Fig. 3. ∆tdyn/tdyn vs. planetary distances at peri-
helion rp (cm).

7. CONCLUSIONS

We have given a short introduction to the
dynamic theory of gravity. Next an approximate
first order calculation has been performed for ob-
taining the total traveling times of a radar signals
in the neighbourhood of the sun transmitted from
the earth. The planets considered are the ones indi-
cated in the Table 1 and all of them were assumed
to be away at their orbital radii distances. When
actual measurements of this kind are carried out it
could happen that this might not be the best plan-
etary configuration. In any case this is a standard
calculation that somebody can perform to test of a
new gravitational theory. It is anticipated that the
effects will be more evident if the planets are closer
to the sun which is the main massive body affect-
ing the signals gravitationally. It is also known that,
at the position of a superior conjunction, the delay
effects will become greater (Ohanian 1994).

From the numerical calculations of the total
traveling times, it appears that there is not much
of a significant difference, between dynamic gravity,
general relativity but classical propagation differs be-
ing slightly smaller. To get an idea on the magnitude
of this difference expressions describing the changes
of the delay times between dynamic gravity and gen-
eral relativity, as well as between dynamic gravity
and classical propagation, have been derived and nu-
merically evaluated for all the different planets and
the results are compared.

The delay difference between dynamic grav-
ity and general relativity is of the order of 10−14 for
all examined planets except Saturn for which it is of
the order of 10−15. Next, the delay difference be-
tween dynamic gravity and classical propagation for
all planets appears to be of the order of 10−7 except
for Jupiter and Saturn for which it is of the order of
10−5. Since dynamic gravity results in the same field
equations as general relativity, it would not be un-
justified to expect that delay effects on radio-signals
would not differ much from those of general relativ-
ity, and any difference would be really small but not
identical to that of general relativity. - With the help
of the evolving present day and also future technol-
ogy, such time differences might soon be accessible
so that the validity of dynamic gravity as compared
to general relativity might be finally understood and
assessed.
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KAXǋEǋE RADARSKOG SIGNALA U DINAMIQKOJ TEORIJI GRAVITACIJE
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UDK 52–16
Originalni nauqni rad

U novoj, alternativnoj teoriji, zvanoj
dinamiqka teorija gravitacije, koja je izvede-
na iz termodinamiqkih principa u petodimen-
zionom prostoru, vremena putovaǌa radarskih
signala i ǌihova odstupaǌa izraqunata su za
glavne planete sunqevog sistema i upore�ena
sa onima iz opxte relativnosti. Ovo je

ura�eno koriste�i qetvorodimenzioni sferno
simetriqni element klasiqne relativnosti
koji je neznatno izmeǌen negativnim in-
verznim radijalnim eksponencijalnim qlanom
koji potiqe iz dinamiqke teorije gravitaci-
je.

54


