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Abstract: In this paper we are going to examine the effect, if any exists, that a

modification of the Schwarzchild metric by a lamda term could have on the so called

Sakharov’s upper temperature limit.  It’s known that Zakharov’s limit is the maximum

possible black body temperature that can occur in our universe.

Introduction: In 1966 Sakharov first came up with an upper temperature bound for the

black body radiation by using the thermodynamic properties of the hot matter in an

isotropic universe.  This upper bound can be written as follows:[1]
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where T is the temperature of the black body radiation, kB = is Boltman’s constant, h  is

Planck’s constant, c is the speed of light, and G is the gravitational constant, and c0 is a

constant of the order of unit.  This temperature is the maximum temperature of any

substance in equilibrium with the radiation field.  Following Massa’s work [2] we now

include a cosmological constant Λ in the suggested metric equation (2) and work out

possible differences, if any, in the original definition of Sakharov’s limit.

To start our analysis we first write out the appropriate metric modified by the

cosmological constant Λ:
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where dΩ2 = dθ2+sin2θdφ2.  Next, we consider black body radiation which is filling a

spherical box of radius r and let the radiation field have a temperature T which would

imply an energy density ε = σT4, where σ is the Stefan-Boltzman constant.  Then, the

total energy of the radiation field is given by:
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(2) would therefore imply a mass equal to:

3
2 r  

3
4












=

c
M ππ

(4)

Further we assume that the gravitational field in the” box “ can be described by the

already defined metric.  Then the time component of the metric g44 can be written as

follows:
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where:Λ is the cosmological constant and all the other variables have their usual

meanings.  Writing (4) and substituting for M we have:
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For relativity to make sense we must have that g44 ≥ 0 [4] and that further implies that:
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From (5) we can obtain:
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and finally we obtain for the temperature:
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Based on the basic quantum theory [5] now we can use the fact that the number of

photons in a spherical box of radius r is defined by N = (r T kB  / h c)3 [1].  Since N ≥ 1

we also have that:
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Finally, substituting (9) into (8) we obtain the expression for the temperature:
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Next, making use of the fact that 
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πσ = , the above relation takes the form:
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Rearranging (11) and solving for the tempewrature T we have the following solutions:
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and:
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If we finally simplify (12) in terms of all symbols we obtain for Zakharov’s temperature

limit:
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Where EP = is the Planck energy = erg
G
c 16
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If we now substitute for the cosmological constant Λ = 10-54 cm-2 [6] and the rest of the

constants we obtain that the numerical value of the Zakharov limit :
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It is now evident that the existence of an an extra term which contributes to

Zakharov’s limit, namely the term into the square bracket, in the RHS of equation (16).

This term can be thought as a correction factor to Zakharov’s limit due to the existance of

the cosmological constant Λ in the metric equation  This correction factor is very small

even if the cosmological constant Λ is positive or negative as we shall see in (19), and of

the order of 10-118 which is zero for any practical purposes.  The total change finally

becomes TSch(Λ) =0.60 Tmax.  Morever if we now take the cosmological constant to its

exteme quantum value Λmax = 1066 cm-2[7] [1] the quantity in the square root is a negative

number.  This might suggest a problem at the quantum value of the cosmological

constant since the temperature can not be a complex number.  Alternatively it may be that

a different treatment is required taking the quantum metric effects into account, in spite

the fact that Boltzman’s law which we used to derive the result, is independent of

quantum mechanics.  We anticipate that quantum curvature effects are taking place and

they might affect the temperature in some way.  There is of course a second root to

equation (13) which makes (19) equal to zero.  We will say that this root is of non

physical significance since Zakharov’s limit is a very high temperature.  There is a value

of the cosmological constant Λ for which the square root in (18) is always positive.  For

this, Λ must satisfy:



6

265

2

P 10046.1
c

E
0.408 −×≤





≤Λ cm
h

(20)

As an example and if we assume a moment during which Λ = 1059 cm-2, which

would be early in the history of the universe, then the effect on Zakharov’s limit would

have the following possible values:
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Graph # 1 shows a plot of the correction term for different values of the

cosmological constant.  We can see that Zakharov’s limit occurs at higher values of the

cosmological constant and most likely at Λ = 1066 cm-2.  After that, quickly drops to

lower values of Λ leaving the temperature unaffected.   The lower values of Λ are onthe

right hand side of the Λ axis.
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CorrectionTerm Graph # 1

Similrarly graph # 2 shows the change of the Zakharov’s limit itself with the variation of

the cosmological constant Λ.
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ZakharovLimit THKL Graph # 2
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Conclusions

We can now say that if the Schwarzchild metric is modified by the cosmological

constant Λ, positive or negative, the so called Zakharov’s temperature limit changes by a

factor which depends on the square root of the square root of the cosmological constant

itself and other fudamental constants of physics like h  and c.  If Λ is equal in magnitute

to the presently accepted value of the cosmological constant, then the correction to

Zakharov’s limit is extremely small, where as for higher values of the cosmological

constant close to the quantum limit, this difference is noticeable especially when Λ

becomes smaller than a particular limit.  Thus, we conclude that if the Schwarzchild

metric gets modified by the cosmological constant Zakharov’s temperature, noticeable

changes to smaller values if Λ becomes smaller or equal to 1065 2−cm
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