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A frame transfer model introduced here shows that the kinetic energy is totally conserved and accounted 
for in the ideal inelastic collision as well as in the elastic collision. The kinetic energy transfer between colliding 
masses in the ideal inelastic collision case is found to be totally consistent with the law of conservation of ener-
gy which states that energy can be neither created nor annihilated. In all inelastic collisions, the two colliding 
masses move jointly at precisely their center-of-mass velocity, a velocity which is unchanging in a closed sys-
tem of unbound masses. For this reason, a properly formulated energy transfer model is chosen to be one that 
goes from the initial frame of the moving mass to that of the center-of-mass frame.  Keywords: invariance of ve-
locity of center-of-mass, conservation of kinetic energy, closed system of masses. 

 

1. Introduction 

It has been traditionally taught in the physics classrooms that 
the kinetic energy is not conserved in the inelastic collisions. [1–
5] This study finds that a frame transfer technique of kinetic 
energy from a moving mass into the center-of-mass frame of the 
combine masses at the inelastic collision event shows a conserva-
tion of kinetic energy for the inelastic collision case; a hitherto not 
covered topic in the textbooks. [2,4,5] The law of conservation of 
energy clearly states that energy can be neither destroyed nor 
created. In the rest frame, the kinetic energy is by definition that 
quantity of energy that is deliverable to a receiving mass in that 
frame. The kinetic energy of a moving mass is a function of its 
mass and the velocity of its mass referenced to the receiving 
mass. A moving mass can deliver the total content of its kinetic 
energy to a resting mass if and only if the moving mass of an 
initial velocity V were to come to a final velocity of V = 0. In or-
der for this to occur, the resting mass must be tied to the rest 
frame so that it does not move. An occurrence of an ideal inelas-
tic collision between a moving mass and a stationary mass that is 
free to move will always result in a motion of the joined masses 
at precisely their center-of-mass velocity (VCM) of a closed system 
of unbound masses. This is confirmed by countless numbers of 
experimental observations. With this, it is clear that the total ki-
netic energy of a moving mass referenced to the rest frame can-
not be transferred to the combined masses at the event of an in-
elastic collision with a mass that is initially at rest and is free to 
move. The proper frame transfer of kinetic energy must be refe-
renced to the center-of-mass frame, not the rest frame, for the 
ideal inelastic collision. At collision, the resting mass gains a 
pulse of kinetic energy as it accelerates from its initial velocity V 
= 0 to the velocity CMV   while the moving mass loses kinetic 

energy as it decelerates from its initial velocity V to the velocity 

CMV . This is an energy exchange bump; a frame transfer of a 

kinetic energy burst that is in consistency with the law of conser-
vation of energy. The properly applied frame transfer model 
clearly shows that the kinetic energy is totally conserved and 
accounted for in the ideal inelastic collision case as well as in the 
elastic collision case. 

2. Invariance of the Velocity CMV  

From countless experiments on the inelastic collisions, two 
colliding masses 1M  and 2M  move jointly at the velocity CMV

where 
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in any closed system of unbound masses that are free to move. [2, 
4] 

 

Fig. 1.  Time Resolved Images illustrating the Invariance of the Ve-
locity of the Center-of-Mass Points in a Closed System of Masses 
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In Figure 1, an inelastic collision process is illustrated, show-
ing the instantaneous positions of two mass spheres and their 
center-of-mass point at snap shot instants in time. [6] The illustra-
tion clearly shows the linear motion of the center-of-mass point, 
demonstrating the invariance of the velocity VCM. In the time 
resolve images, the center-of-mass point moves along a linear 
path and appears to be totally unaffected by any action taking 
place inside of the closed system of masses. In the elastic collision 
case, the two colliding masses move, for a brief instant in time, 
precisely at the velocity VCM until they recoil. As a consequence 
of the invariance of VCM given by (1) and the conservation of the 
kinetic energy laws, the following mathematical statement cor-
rectly describes the ideal inelastic case: 
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Fig. 2.  Frame Transfer of Kinetic Energy during Inelastic Accele-
ration Bump 

3. The Transformation of Energy from Frame to 
Frame 

The quantities 21
1 12 M V  and 21

2 22 M V  are the initial kinetic 

energies of the masses M1 and M2, respectively, as would be 
noted from the rest frame. These are the quantities of energy that 
are available to be deposited into the rest frame if the two masses 
go from their initial velocities, V1 and V2, respectively, to a com-
plete stop, 1 0V  and 2 0V  . For instance, a mass M1=1 Kg mov-

ing with an initial velocity of 1 12iV   m/s collides with a resting 

non movable wall, bringing the mass to full stop, hence, to a final 
velocity of 1 0fV  , will deposit at the wall the kinetic energy of 

    
2 21 1

1 1 1 12 2
12 0 72i fM V V M J     (3) 

This is the frame transfer of the kinetic energy. To write down 

   2 21 1
1 12 2

12 0M M  would be a very serious error that is made 

too often by qualified physicists. The kinetic energy of mass 1M  

moving with an initial velocity 1 1iV V  that would be deposited 

into the center-of-mass frame coming to a final velocity 

1 f CMV V  is 

    
2 21 1

1 1 1 1 12 2i f CMM V V M V V    (4) 

An observer in the center-of-mass frame of two colliding 
masses, 1M  and 2M , would note that the mass 1M  approaches 

with the velocity 1 CMV V while the mass 2M  approaches with 

velocity 2 CMV V . It is important to note that the observer's 

frame of reference has nothing at all to do with the physics of the 
problem. The laws of physics are independent of the frame of 

reference. The quantity  21
1 12 CMM V V   is the kinetic energy 

that the mass 1M  transfers from its frame to the center-of-mass 

frame as it goes from an initial velocity 1V  to a final velocity 

CMV . This is the quantity of kinetic energy that 1M transfers to 

the center-of-mass frame at collision. Similarly, the quantity 

 21
2 22 CMM V V  is the kinetic energy that the mass 2M  trans-

fers to the center-of-mass frame as it goes from an initial velocity

2V  to a final velocity CMV .  

In Figure 2, a frame transfer of kinetic energy is illustrated. 

The energy quantities  21
1 12 CMM V V   and 

 21
2 22 CMM V V   represent the total kinetic energy that is ex-

tracted from the initial kinetic energies, 21
1 12

M V  and 21
2 22

M V , 

during a transfer of kinetic energy between the two mass spheres 
of different frames of reference. This is the pulse of kinetic energy 
transferred during the acceleration bump, bringing the lumped 
masses 1M  and 2M  into the center-of-mass frame. This is an 

energy transfer that takes place according to the law of conserva-
tion of energy at the ideal inelastic collision event. During the 
inelastic collision event, 1M  decelerates from velocity 1V  to ve-

locity CMV while 2M accelerates from velocity 2V  to velocity 

CMV . From this we can see that for any ideal inelastic collision 

case, all kinetic energy quantities are totally accounted for. It is 
very important to note that the experimentally observed inva-
riance of CMV  should have been a tip off that the kinetic energy 

in a well designed mass collision experiment has to be conserved 
in the inelastic collisions as well as in the elastic collisions. The 
mass collision experiment can now be well designed so as to lim-
it mechanical deformations, energy dissipations due to sparks or 
thermal shock emissions, acoustical vibrations and sound emis-
sions. 

Let us assume that mass 1 1M  kg moving with velocity 

1 12V   m/s and collides ideally with a resting mass 2 2M  kg. 

From equation (1), we can determine that the velocity 4CMV   

m/s. We find that the initial kinetic energy of mass 1M  is 72 

Joules (J). This is the available kinetic energy that is transferable 
to the rest frame. We know that all of this kinetic energy cannot 
be transferred into to the center-of-mass frame, as the velocity 1V  

of 1M  does not go to zero, namely, 1 0V  , or to a complete stop 

which is a requirement for the total dissipation of the available 
kinetic energy of mass 1M . The initial kinetic energy for the rest-
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ing mass 2M  is zero. We find that from (4) the transferable ki-

netic energy needed to bring 1M  into the center-of-mass frame is 

   2 21 1
1 1 12 2 12 4 32CMM V V M J     and, similarly, the trans-

ferable kinetic energy needed to bring 2M  into the center-of-

mass frame is 16 J. The remaining energy left from these energy 
transfers is 72J - 32J - 16J = 24J. The resulting lumped mass kinetic 
energy from the right hand side of equation (2) is found to be 
exactly 24J. From this, we can see that the kinetic energy in this 
inelastic collision is totally accounted for. From equation (2), an 
expansion, simplification and collection of the energy terms ar-
rive at the kinetic energy equation (5) which leads directly to a 
valid conservation of momentum equation (6) and (7). 

2 2 2 2 21 1 1 1 1
1 1 2 2 1 1 1 1 1 2 22 2 2 2 2CM CMM V M V M V M V V M V M V     

  2 21 1
2 2 2 1 22 2CM CM CMM V V M V M M V    (5) 

   2
1 1 2 2 1 2CM CM CMM V V M V V M M V    (6) 

  1 1 2 2 1 2 CMM V M V M M V    (7) 

This may be considered to be a mathematical proof that the 
energy is conserved and totally accounted for in all well de-
signed ideal inelastic collision experiments as in the elastic colli-
sion experiments. One can see that the conservation of energy 
law is clearly at work here where one moving mass sphere ap-
pears to exchanges its energetic action, passing it along to be re-
ceived by another mass sphere in a closed system of masses that 
are free to move. [6] It is clear from experiment that the center-of-
mass velocity CMV  and the linear motion of the center-of-mass 

point remains totally unaffected by all collision processes. 

4. The Dissipation of Heat Energy during an 
Inelastic Collision: the Experimental Results 

We shall apply the well known Newton's Law of cooling to 
examine the heat retention of the stainless steel mass spheres 
used in this inelastic collision experiment. One of the spheres, 
each with mass 111.5 grams and diameter 3.750 cm, was selected 
and deliberately heated to 36°C, a temperature of 14°C above the 
temperature envT  of the laboratory environment, recorded to be 

22°C during the measurement. The heated sphere was suspended 
in the lab on 3 sharp pointed pins for thermal isolation and al-
lowed to cool. The temperature  T t  was recorded using a digi-

tal thermometer that was electrically connected to a miniature 
thermistor probe. The probe was coupled to the heated sphere 
using a heat conducting silicon grease. The cooling rate was rec-
orded and summarized in Table 1. The Newton's Law of Cooling, 
equation (8), states that the cooling rate of a heated mass body is 
directly proportional to the difference between the temperature 
of the environment envT  and the time varying temperature  T t  

of the cooling mass body. 

   env
dT k T t T
dt

    (8) 

A solution to the differential equation (8) has the form given 
by equation (9) 

 

time 
(sec) 

T(t) 
(°C) 

T(t) 
(°C) 

 Measured Fitted 
    0.0 
   60.0 
 180.0 
 314.0 
 360.0 
 390.0 
 440.0 
 480.0 
 540.0 
 600.0 
 750.0 
 920.0 
1163.0 
1333.0 
1560.0 
1860.0 
2265.0 
2940.0 
3300.0 
3900.0 
4200.0 

36.000 
36.800 
35.000 
34.000 
33.800 
33.400 
33.000 
32.500 
32.400 
32.000 
31.000 
30.000 
29.000 
28.000 
27.000 
26.000 
25.000 
23.500 
23.000 
22.200 
22.000 

36.356 
35.846 
34.873 
33.858 
33.526 
33.314 
32.967 
32.697 
32.301 
31.918 
31.013 
30.070 
28.862 
28.104 
27.194 
26.148 
24.975 
23.502 
22.908 
22.138 
22.032 

Table 1. Newton’s Law of Cooling applied to the 111.5 gram mass 
Stainless Steel Spheres 

     env env0 ktT t T T T e    (9) 

where envT is the temperature of the laboratory environment and 

 0T  is the initial temperature of the heated mass sphere at time 

t=0. The constant k is the cooling rate that describes the radiation 
of the mass sphere according the Newton's law of cooling. The 
measurements made on the cooling rate of the mass spheres are 
important as the time rate of change in   envT t T  is needed to 

gauge the validity of the mathematical model used for the ideal 
inelastic collision case as opposed to the conventional under-
standing of the inelastic collision as published in the literature. 
The recorded cooling rate for the stainless steel spheres was care-
fully done using a simple and easily repeatable experiment. An 
exponential fit was made to the data using a KaleidaGraph data 
analysis and graphic program, version 3.52. The mathematical fit 
to the data is presented in equation (10). 

     0.000530720.085 36.356 20.085 tT t e    (10) 

This experimental result finds that after repeated inelastic col-
lisions between the mass spheres. the measurements could not 
account for sufficient heat loss to support conventional under-
standing of the inelastic collision cases. After a careful monitor-
ing of the temperature of the spheres after many collisions, the 
expected accumulation of heat was not sufficient to support any 
of the inelastic collision models as published in the literature. The 
cooling rate was experimentally found to be k=0.00055152°C 
/sec. The countless number of inelastic collision impacts shows 
an expected lack of heat buildup in the mass spheres, confirming 
the correctness of the ideal inelastic collision model presented 
here. The metal spheres of mass 111.5 grams were slung at the 
velocity of 666.6 cm/sec, delivering a kinetic energy of 2.47E07 
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dynes or 2.47 Joules for each shot from spring loaded launcher. 
The velocity of the slung sphere was determined using two micro 
switches at positions 1x  and 2x  that were tripped as the sphere 

flew by, causing timing pulses to occur at times 1t  and 2t . The 

pulses were recorded with a Hewlett Packard 54510A digitizing 
oscilloscope. The moving sphere was determined to have the 
equivalent of 2.47 Watt-sec of energy deliverable at each shot. 
This would be ca. 25 Watt-sec of deliverable energy accumulated 
for every 10 shots or 250 Watt-sec of deliverable energy for every 
100 shots of the mass spheres. In a controlled experiment, an ac-
cumulation of heat should be easily measurable after repeated 
inelastic impacts if any of this energy were to be converted into 
heat. However, the experimental result shows this has not been 
the case. We have already seen in the previous section that, from 
the invariance of the velocity CMV  and the law of conservation of 

energy, the kinetic energy in the ideal inelastic collision is totally 
accounted for. The conservation of kinetic energy is found to 
apply directly to the ideal inelastic collisions. 

A time rate of change in   envT t T  is found to be far too 

slow for the conventional understanding of the inelastic collision 
processes as published in the literature. The measured cooling 
rate of the 111.5 gram mass stainless steel spheres used in this 
experiment confirms that the repeated collisions, injecting energy 
at the rate of 2.5 Watt-sec per collision, a measurable heat loss 
between inelastic collision events is counter to the inelastic colli-
sion models published in the literature. 

5. Conclusion 
The invariance of the velocity CMV  and the law of conserva-

tion of energy are found to apply directly to the ideal inelastic 
collision cases. It has been historically taught that the kinetic 
energy is not conserved in the inelastic collision case. This teach-
ing has prevailed in the classrooms of physics for nearly a cen-
tury now. A destruction or annihilation of energy, still taught in 
all too many physics lectures, is contrary to the law of conserva-

tion of energy. This study finds that the kinetic energy equations 
presented in the textbooks and lectures for the inelastic collision 

case totally omit the energy transfer terms,  21
1 12 CMM V V   

and  21
2 22 CMM V V  ; a clear misrepresentation of the ideal 

inelastic collision process. In the rest frame, the kinetic energy is 
by definition that quantity of energy that is deliverable to the rest 
frame if and only if the moving mass of initial velocity V were to 
reach the final velocity CMV . In the ideal inelastic collision case, 

it is clearly understood that the final velocity after an ideal inelas-
tic collision is precisely that of the velocity CMV . With this, it is 

clearly seen from the frame transfer model presented here that 
the energy transferred to the combined masses at collision is ex-
actly equal to the combined initial kinetic energy of the colliding 
masses before collision less the frame transfer of kinetic energy 
that takes place between the masses of different frames at colli-
sion as dictated by the law of conservation of energy. This center-
of-mass technique clearly shows that the kinetic energy is totally 
conserved and accounted for in the ideal inelastic collision case 
as well as in the elastic collision case. 
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