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Maxwell’s Equations: 
New Light on Old Problems 

D. F. Roscoe   
School of Mathematics and Statistics 
University of Sheffield   
Sheffield S3 7RH, UK 

Maxwell’s equations possess a certain generic structural 
property which is well-known, but rarely discussed. By 
considering this property as primary, we are able to derive the 
complete mathematical structure of Maxwell’s equations 
described in terms of the orthogonality properties defined 
between certain spaces of linear operators. But, we find that 
the classical theory, whilst recovered intact here, is incomplete 
in the sense that the recovered Maxwell field is irreducibly 
associated with an additional massive vector field. In the 
overall context, this massive vector field can only be 
interpreted as a manifestation of a classical massive photon. 
One immediate consequence is that the Lorentz force law must 
be generalized and can be trivially made perfectly Newtonian 
once the massive vector field is accounted for. 

1. Introduction 
1.1. Historical Overview 
Maxwell’s equations, encapsulating as they do over one hundred 
years of observation and experimentation, arguably represent the 
ultimatne synthesis of the scientific age. For all engineers, and for 
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some physicists, they are inevitably cast in Heavyside’s vectorial 
form—the so-called Maxwell-Heavyside equations. The concept of 
photon plays no part in this theory—everything is arbitrated by the 
electromagnetic field in conjunction with the Lorentz force law. 

During the first half of the 20th century, Maxwell’s equations 
were given a new compact formulation—the canonical covariant 
formulation which expresses the electromagnetic field tensor in 
terms of the four-vector potential. At one level, this last step 
seemed to be no more than an advance of notation more suited to 
the requirements of theoretical physics than the Heavyside 
formulation. However, by the middle of the 20th century, with the 
development of quantum electrodynamics (qed), it became 
recognized that the electromagnetic field, when defined in terms of 
the four-vector potential, is the gauge field which must be 
introduced to guarantee invariance of a certain action under a local 

(1)U  gauge transformation—and along with this there came a 
corresponding gauge particle, the massless photon. In this way, the 
insights of mid-20th century theoretical physics were seen to 
validate and expand the insights of mid-19th century theoretical 
physics. 

Notwithstanding the fact that qed requires photons to be 
massless and that there is no direct physical evidence that photons 
are anything other than massless, the idea of the massive photon is 
a persistent one that refuses to go away. At a fundamental level, for 
example, it is an implicit requirement of “pilot wave” 
interpretations of quantum mechanics and, as such, is primarily 
associated with the names of De Broglie [1,2], who originated the 
idea for single-particle systems and Bohm [3,4], who conceived it 
independently and subsequently extended it to multi-particle 
systems. 

Of course, the photon idea plays no explicit role in either 
interpretation of non-relativistic quantum mechanics but, if the 
pilot wave interpretation is ever to receive a fully consistent qed-
generalization (there has been much preliminary discussion: for 
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example, see Bohm & Hiley [5], Holland [6], Bell [7] or Cushing 
et al. [8]) then the photon must be conceived as a massive 
extended particle. It then becomes problematic that there has 
hitherto been no independent theoretical imperative for introducing 
the idea of the massive photon—thus, if massive photons are 
required for the theory, then they must be “put in by hand”, usually 
by constructing some variation of standard electromagnetic theory. 
A very recent example of this approach is provided by Vigier [9]. 

The present approach to the idea of the massive photon is 
distinguished from earlier approaches in the sense that, rather than 
modifying classical theory with ad hoc additions designed to give 
rise to some variety of the idea, we are able to show how an 
analysis based on certain generic properties of Maxwell’s 
equations—rather than on the equations themselves—leads to the 
unavoidable conclusion that the classical Maxwell field is 
necessarily and irreducibly associated with a massive vector field 
(that is, that wherever the Maxwell field exists, then so does the 
massive vector field and vice versa). The irreducible nature of the 
association leads to the obvious identification of the massive 
vector field as the classical description of the massive photon. 
1.2. Overview of present work 
The considerations of this paper were not driven by any attempt to 
obtain an “improved” electrodynamics, nor to address any 
hypothetical shortcomings of the classical theory. They were 
driven, rather, by a spirit of curiosity concerning the general 
structure of Maxwell’s equations: let us refer to this as Property A, 
defined below: 
Property A: The equations of the canonical covariant Maxwell 
theory can be expressed as identities arising from the mutual 
orthogonality which exists between certain linear operator spaces. 
This is shown in detail in §2.1. 
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Subsequently, by accepting the central position of the Poincaré 
group within modern physics (Property B say), we set about the 
general problem of how to derive theories which possessed both 
Property A & Property B—the expectation was that, by definition, 
we must recover Maxwell’s equations plus, perhaps, some other 
things. Maxwell’s equations are indeed recovered intact, but only 
in the context of being one-half of a bigger theory. That is, the dual 
requirements of Property A plus Property B lead to the 
unavoidable conclusion that we cannot have the classical Maxwell 
field in isolation, but that it is irreducibly associated with an 
additional massive vector field. 
1.3. Logical necessity and possible consequences 
It is worth emphasizing the logical necessity of the foregoing: 
• Maxwell’s equations possess both Property A and Property B; 
• A general search for theories possessing both Property A and 

Property B leads to the conclusion that the Maxwell field 
cannot exist in isolation—it is unavoidably and irreducibly 
associated with an additional massive vector field; where one 
is, the other is & vice versa. 

Thus, the logical situation is that, if we accept the Maxwell field at 
all, then we must necessarily accept that an additional massive 
vector field is irreducibly associated with it. 

It is this latter property which is of particular interest: 
specifically, whilst the “photon as particle” can never be recovered 
from a purely classical theory such as the one considered here, the 
irreducible association of a massive vector field with the Maxwell 
field is entirely new. It is also fascinating because it suggests the 
immediate possibility that the structure of the Lorentz force law 
might also need generalizing to account for the irreducible 
presence of this massive vector field. As we shall see in §10, this 
turns out to be the case and the generalized form can easily be 
structured so that it becomes fully Newtonian. 
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1.4. Notation note 
We use the convention that ( )1 2 3x x x, ,  represent the spatial axes 
and 4x ict≡  represents the temporal one with a correspondingly 
consistent notation for the four-vector current, aJ  and the 
electromagnetic field tensor, abF . 

2. Identities in Canonical Electromagnetic 
Theory 
2.1. Basic observations 
When expressed in terms of the field tensor, the microscopic 
Maxwell’s equations in the presence of charge are conventionally 
written 

 4ai
ai

F J
x c

π∂
= ,

∂
 (1) 

for a conserved current ( )icρ≡ ,J j , together with 

 0st tr rs
r s t

F F F
x x x

∂ ∂ ∂
+ + = .

∂ ∂ ∂
 (2) 

It is well known that, when the four-vector potential 
1 2 3 4( )φ φ φ φΦ ≡ , , ,  is introduced and abF  defined according to 

 b a
ab a bF

x x
φ φ∂ ∂

≡ − ,
∂ ∂

 (3) 

then (2) becomes identically satisfied. However, because J  in (1) 
is conserved then, from (1), we have 

 
24 0ijai

ai i j

FF J
x c x x

π ∂∂
= ⇐⇒ =

∂ ∂ ∂
 (4) 

so that these last two equations are mutually equivalent. But since 
the second of these equations is also an identity under the 
definition (3), then we can say that the covariant formulation of 
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Maxwell’s equations can be reduced to a pair of identities, (2) and 
the second of (4). The physics, of course, comes in when the 
conserved current, J , is identified with the flow of charge. 
2.2. Interpretation in terms of orthogonal operators 
If we now write (3) as 

 kb a
ab ab ka bF P

x x
φ φ φ∂ ∂

≡ − ≡ ,
∂ ∂

 

where the 1 4k
abP k, = ..  are linear differential operators, then the 

identities (2) and (4) can be formally expressed as 

 0ij kst tr rs
rst ij kr s t

F F F R P
x x x

φ∂ ∂ ∂
+ + ≡ = ,

∂ ∂ ∂
 

 
2

0ij ij k
ij ki j

F
Q P

x x
φ

∂
≡ =

∂ ∂
 (5) 

respectively, for linear differential operators abQ  and ab
rstR . Since 

an entirely arbitrary definition of 1 2 3 4( )φ φ φ φ, , ,  satisfies (5), it 
follows that 0ij k

ijQ P ≡  and 0ij k
rst ijR P ≡ ; that is, the canonical 

covariant form of Maxwell’s equations can be considered based on 
algebraic orthogonality properties between sets of linear 
differential operators. 

In the following, we use this insight into the nature of 
Maxwell’s equations to write down a Lagrangian formulation of 
the most general theory possible that is defined over a two-index 
field and which leads to equations which are essentially identities 
in the above sense for Maxwell’s equations. 

3. A Lagrangian Density 
We argue, in Appendix A, that the Lagrangian density which leads 
to the required theory must have the general structure: 
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0 1

0 1

0 1

ij ji ij ij
k k k k

kj jk kjik ik ki
i j i j i j

kj jk kjik ik ki
j i j i j i

L
x x x x

x x x x x x

x x x x x x

α α

β β

γ γ

∂Ψ ∂Ψ ∂Ψ ∂Ψ
= +

∂ ∂ ∂ ∂
∂Ψ ∂Ψ ∂Ψ⎛ ⎞∂Ψ ∂Ψ ∂Ψ

+ + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∂Ψ ∂Ψ ∂Ψ⎛ ⎞∂Ψ ∂Ψ ∂Ψ

+ + + ,⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 

where 0 1 0 1 0 1( )α α β β γ γ, , , , ,  are arbitrary constants. However, it 
turns out that this density contains a large amount of redundancy; 
specifically, all the independent structure is retained if only one of 

0 1( )α α,  is non-zero and only one of 0 1 0 1( )β β γ γ, , ,  is non-zero. 
Consequently, the working density can be assumed to be 

 ij ji kjik
k k i jL

x x x x
λ
∂Ψ ∂Ψ ∂Ψ∂Ψ

= − + ,
∂ ∂ ∂ ∂

 (6) 

for free parameter λ− ; the minus has been used for later 
convenience. From this, the corresponding Euler-Lagrange 
equations can be found as 

 
2

2 0ai ib
ab i b a i ix x x x x

λ ∂Ψ ∂Ψ∂ ∂⎡ ⎤− Ψ + + = , ≡ ,⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦
 (7) 

which is a system of partial differential equations for abΨ . Since 
no assumptions have been made concerning the structure of 

1 4ab a bΨ , , = .. , it can be assumed to contain sixteen degrees of 
freedom; suppose we represent these degrees of freedom as sixteen 
sufficiently differentiable functions, ( ) 1 16k ct kα , , = ..x  which are, 
as yet, undetermined and then write 

 
16

1
( ) ( )k

ab ab k
k

ct U ctα
=

Ψ , = , ,∑x x  (8) 
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where, by analogy with k
ab ab kF P φ≡  defined in the previous section 

and in anticipation of the final result, the two-index objects k
abU  are 

to be treated as undetermined linear differential operators. 
Substitution of (8) into (7) gives 

 
16

2

1

( ) 0
k k

k ai ib
ab ki b a

k

U UU ct
x x x

λ α
=

⎧ ⎫⎡ ⎤∂ ∂∂⎪ ⎪− + + , =⎨ ⎬⎢ ⎥∂ ∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭
∑ x  (21) 

where the object { }...  is to be considered as a linear differential 
operator acting on ( )k ctα ,x . We now consider ways of satisfying 
this equation identically: Since λ  is an undetermined parameter 
and the k

abU  are undetermined differential operators, then they can 
be chosen to satisfy the manifestly Poincaré-invariant relations 

 2 1 16
k k

kai ib
abi b a

U U U k
x x x

λ
⎡ ⎤∂ ∂∂

+ = , = .. .⎢ ⎥∂ ∂ ∂⎣ ⎦
 (22) 

Now define the notation 1 4a
aX x a≡ ∂/∂ , = .. , 

11 12 13 44( )k k k k k TU U U U≡ , , ,...,U  and sixteen symmetric matrices 
1 4mn m nσ , , = .. , each of dimension 16 16× , according to (50) in 

Appendix B; then (22) can be written as 
 2 1 16k k

ij i jX X kσ λ= , = ..U U  (11) 

where summation is assumed over i  and j . Noting that the 
eigenvalues of ij i jX Xσ  (treated as an algebraic matrix) must be 
simple multiples of the d’Alembertian, i iX X≡ , then (11) is 
seen to have the formal structure of an algebraic eigenvalue 
problem. Consequently, non-trivial solutions for kU  can only exist 
when 2λ  is an eigenvalue of ij i jX Xσ ; in this case, kU  is the 
corresponding eigenvector and must have the structure of a column 
of differential operators. 

Finally, we note how the symmetry of the matrices, ijσ  means 
that, if mU  and nU  are eigenvectors corresponding to distinct 
eigenvalues, then 0m n

ij ijU U = , where summation over i and j is 
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implied. It is these orthogonality relations which give rise, amongst 
other things, to the classical equations of electrodynamics. 

4. The Eigensystem 
Using (22), the eigensystem (11) can be written as 
 2 1 16k k k

a i ib b i ai abX X U X X U U kλ+ = , = ... ,  
and for which we find only five distinct eigenvalues corresponding 
to λ =2, 1, 1, 0 and 0 respectively. The corresponding 
eigenspaces, which have dimensions one, three, three, three and six 
respectively, are denoted as 1( )syR , , 3( )skR , , 3( )syR , , 3( )skG ,  and 

6( )syG , . We shall show that: 
• classical electromagnetism arises from 3( )skR , ; 
• the electromagnetic dual arises from 3( )skG , ; 
• the equations of electromagnetism arise from the 

orthogonalities 1 3( ) ( )sy skR R, ,⊥  and 3 3( ) ( )sk skG R, ,⊥ ; 
• 3( )syR ,  gives rise to a non-zero mass vector field which is 

irreducibly associated with the electromagnetic field. We shall 
argue that this vector field can only be sensibly interpreted as a 
classical representation of the massive photon. 

Only the eigenspace 6( )syG ,  plays no obvious role in the present 
discussion. The eigenspaces are described as follows: 

4.1. Eigenspace 1( )syR , , 1 2λ =  

1( )syR ,  is a one-dimensional subspace of eigenvectors associated 
with the eigenvalue 1 2λ =  and the subspace is defined by the 
single operator 
 1

ab a bU X X=  (12) 
which is symmetric with respect to the indices ( )a b, . 
Consequently, when 2λ =  in (7), the solution (8) becomes 
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 1
1( )ab abU ctαΨ = , ,x  

so that abΨ  is defined over a scalar field. 

4.2. Eigenspace 3( )skR , , 2 1λ =  

3( )skR ,  is a three-dimensional subspace of eigenvectors associated 
with the eigenvalue 2 1λ =  and a basis for the subspace is given by 
 ( ) 2 3 4k

ab a rb b raU X X kδ δ= − , = , ,  (13) 

where, for (2 3 4)k = , ,  then r  takes any three distinct values from 
the set (1 2 3 4), , , ; for example, (1 2 3)r = , , ; these eigenvectors are 
skew-symmetric with respect to the indices ( )a b, . Consequently, 
when 1λ =  in (7), the solution (8) corresponding to 3( )skR ,  
becomes 

 
4

2
( )k

ab ab k
k

U ctα
=

Ψ = ,∑ x  

so that abΨ  is defined over a vector field. 

4.3. Eigenspace 3( )syR , , 3 1λ =  

3( )syR ,  is a three-dimensional subspace of eigenvectors associated 
with the eigenvalue 3 1λ =  and a basis for the subspace is given by 
 ( ) ( ) 5 6 7k

ab a r sb s rb b r sa s raU X X X X X X kδ δ δ δ= − + − , = , ,  (14) 

where for (5 6 7)k = , , , then ( )r s,  is three distinct pairs chosen 
from (1 2 3 4), , , . The basis is most conveniently chosen by picking 
any one of the four digits and pairing it with the remaining three: 
for example, ( ) (1 4) (2 4) (3 4)r s, = , , , , , . These eigenvectors are 
symmetric with respect to the indices ( )a b, . Consequently, when 

1λ =  in (7), the solution (8) corresponding to 3( )syR ,  becomes 

 
7

5
( )k

ab ab k
k

U ctα
=

Ψ = ,∑ x  
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so that abΨ  is defined over a vector field. 

4.4. Eigenspace 3( )skG , , 4 0λ =  

3( )skG ,  is a three-dimensional subspace of eigenvectors associated 
with the eigenvalue 4 0λ =  and a basis for the subspace is given by 

( ) ( ) ( ) ( ) 8 9 10k r s t
ab ra sa sb tb rb sb sa ta

a b

X X XU k
X X

δ δ δ δ δ δ δ δ⎛ ⎞
⎜ ⎟
⎝ ⎠

= − − − − − ; = , ,

 (15) 
where typically, for (8 9 10)k = , ,  then ( ) (2 3 4) (1 3 4)r s t, , = , , , , , ,  
(1 2 4), , ; these eigenvectors are skew-symmetric with respect to the 
indices ( )a b, . Consequently, when 0λ =  in (7), the solution (8) 
corresponding to 3( )skG ,  becomes 

 
10

8
( )k

ab ab k
k

U ctα
=

Ψ = ,∑ x  

so that abΨ  is defined over a vector field. 

4.5. Eigenspace 6( )syG , , 5 0λ =  

6( )syG ,  is a six-dimensional subspace of eigenvectors associated 
with the eigenvalue 5 0λ =  and a basis for the subspace is given by 
 ( ) ( ) 11 16k

ab r sa s ra r sb s rbU X X X X kδ δ δ δ= − − ; = ...  (16) 

where, typically, for 11 16k = ...  then ( ) (1 2) (1 3)(1 4) (2 3)r s, = , , , , , , ,  
(2 4) (3 4), , ,  and abδ  is the 4 4×  unit matrix; these eigenvectors are 
symmetric with respect to the indices ( )a b, . Consequently, when 

0λ =  in (7), the solution (8) corresponding to 6( )syG ,  becomes 

 
16

11
( )k

ab ab k
k

U ctα
=

Ψ = , .∑ x  

As we have already noted, and as we shall see in the 
following, 6( )syG ,  is the only solution of (22) which does not play 
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any obvious part in the electromagnetic theory being discussed 
here. 

5. The Electromagnetic Field From 3( )skR ,  
5.1. The Orthogonality Relationships 
In this section we show that Maxwell’s equations arise naturally as 
a direct consequence of the orthogonality relations 
 1 30 ( ) ( )E D E D

ij ij sy skU U R R, ,≡ , ∈ , ∈U U  (17) 

 3 30 ( ) ( )B D B D
ij ij sk skU U G R, ,≡ , ∈ , ∈U U  (18) 

given at (39) in Appendix B and where 1( )syR , , 3( )skG ,  and 3( )skR ,  
are defined at (12), (15) and (13) respectively. 

The most general tensor which can be formed from 3( )skR ,  is 
given by 

 
4

2
( )k

ab ab k
k

F U ctα
=

= , ,∑ x  (19) 

 ( ) 2 3 4k
ab a rb b raU X X kδ δ≡ − ; = , ,  

where r  takes any three distinct values from (1 2 3 4), , ,  and where, 
because of the skew-symmetry of k

abU , then abF  is also skew-
symmetric. Since 1( )syR ,  consists of the single operator a bX X , 
then (17) with (19) implies 

 
2

0ij
i j ij i j

F
X X F

x x
∂

≡ = ,
∂ ∂

 (20) 

from which it immediately follows 

 where 0ai i
ai i

F JJ
x x

∂ ∂
= , =

∂ ∂
 (21) 
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for some conserved current J . Similarly, denoting the elements of 
3( )skG ,  by ab

rstΔ , the relation (6) together with (7) gives directly 

 1 0
2

ij st tr rs
rst ij r s t

F F FF
x x x

∂ ∂ ∂
Δ ≡ + + = .

∂ ∂ ∂
 (22) 

If J  in (21) is interpreted as the 4-current density, then (21) and 
(22) are Maxwell’s equations for the electromagnetic field tensor, 

abF . That is, Maxwell’s equations are seen to arise as a direct 
consequence of the orthogonality between the invariant subspaces 

3( )skR , , 1( )syR ,  and 3( )skG , . Consequently, in the form of (8) and 
(22), they impose no constraints (beyond differentiability) on the 
three-vector 11 12 13( )α α α≡ , ,A —this vector field can have arbitrary 
structure. Since (21) is in a one-to-one relationship with the 
identity (20) it must also be an identity and not a field equation as 
it is commonly interpreted. The practical use of (21), of course, 
arises from the identification of J with a measurable quantity—the 
four-vector current—which then allows the computations of the 
fields. 

6. Recovery of the canonical four-vector 
formalism 
Although one of 1 2 3 4( )X X X X, , ,  refers to the temporal axis and 
three refer to the spatial axes, specific associations of the indices 
with particular axes have not yet been made. In the following, we 
show how a simple transformation of 2 3 4( )α α α≡ , ,A :- 
• allows the identification of the temporal axis; 
• identifies 2 3 4( )α α α≡ , ,A  as the classical magnetic vector 

potential; 
• reduces the presented formalism directly to the canonical 

formalism. 
The expression (7) for the field tensor, abF , is unconventional 
insofar as it derives directly from a manifestly covariant treatment 
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but is not expressed in terms of the usual four-vector potential; 
instead, it is expressed in terms of an uninterpreted three-vector 

2 3 4( )α α α≡ , ,A . In the following, by showing how abF , defined at 
(19), can be transformed into the conventional four-vector 
formalism, we are able to identify A  with the magnetic vector 
potential of the classical theory whilst, at the same time, 
identifying the temporal axis. We begin by noting, from (19), that 
 ( ) 2 3 4k

ab a rb b raU X X kδ δ≡ − , = , ,  

where r  takes any three values from (1 2 3 4), , , . It is quite obvious 
that the action of picking three from four here has the effect of 
making the omitted integer special in some sense which is not yet 
immediately clear. It transpires that this process effectively 
associates the omitted index with the temporal axis and the three 
chosen indices with the spatial axes. For convenience, we begin by 
defining the object r

abP  according to 
 ( ) 1 4r

ab a rb b raP X X rδ δ≡ − , = .. ,  (23) 

and similarly define the notation that any operand of r
abP  is denoted 

by 1 4rA r, = .. . In terms of this notation and after choosing 
( )l m n, ,  as any three from (1 2 3 4), , , , then (19) becomes 
 l m n

ab ab l ab m ab nF P A P A P A= + + .  (24) 
Additionally, from (23), we readily obtain the identity 
 ( ) ( )r

ab r a rb b ra r a b b aP X X X X X X X Xδ δ≡ − ≡ −  

so that, under the assumption that the order of differentiation never 
matters, we can write the identity 
 1 2 3 4

1 2 3 4 0ab ab ab abP X P X P X P X+ + + ≡ .  (25) 
and, using this, define the three-vector ( )l m nA A A′ ≡ , ,′ ′ ′A  
according to 
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 r
r qr

q

XA r l m nA AX
= + , = , ,′ ′  (26) 

where, since q
qX x≡ ∂/∂ , then 1 qX/  indicates integration with 

respect to qx . Equation (24) can now be rewritten as 

 l m nl m n
l q m q n qab ab ab ab

q q q

X X XF P P PA A A A A AX X X
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − + − + − .′ ′ ′ ′ ′ ′⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Using the identity (25) then this last equation can be written as 
 l m n q

l m n qab ab ab ab abF P P P PA A A A= + + +′ ′ ′ ′  

 1 2 3 4
1 2 3 4ab ab ab abP P P PA A A A= + + +′ ′ ′ ′  (27) 

which, with (23), is easily shown to reduce to 
 b aab a bF X XA A≡ − .′ ′  
This latter expression is simply the standard form of abF  in terms 
of the four-vector potential 1 2 3 4( )A A A A, , ,′ ′ ′ ′ . It is now obvious 
that ( )l m nA A A≡ , ,A , used at (1) to define ′A , is simply the 
magnetic vector potential of the classical theory and that the 
arbitrary scalar, qA′ , introduced at (26) is just the scalar potential 
usually associated with the electric field. This, in turn, implies that 
the index q is necessarily associated with the temporal axis and the 
indices ( )l m n, ,  are necessarily associated with the spatial axes. 

To summarize, the new formalism based upon 3( )skR ,  is 
expressed entirely in terms of the classical magnetic vector 
potential and the canonical formalism is recovered when an 
arbitrary scalar field is introduced via a certain linear 
transformation. We discuss the implications of this circumstance in 
the concluding section. 
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6.1. The explicit representation of abF  in terms of E  
and B . 
In general, we have, from (19), 

 

4

2
( )

( ) 2 3 4

k
ab ab k

k

k
ab a rb b ra

F U ct

U X X k

α

δ δ
=

= , ,

≡ − , = , , ,

∑ x
 

where r  is chosen as any three of (1 2 3 4), , , . For convenience, we 
choose the basis ( ) (1 2 3)r l m n≡ , , = , ,  as (2 3 4)k = , ,  so that, by the 
considerations of §6, the indices (1 2 3)r = , ,  are associated with the 
spatial axes, the index 4r =  is associated with the temporal axis 
and 2 3 4( )α α α≡ , ,A  is identified as the magnetic vector potential. 
For the magnetic and electric fields, using the standard notation 

23 31 12( )F F F≡ , ,B  and 14 24 34( )i F F F− ≡ , ,E , we find 

 2 3 3 2 3 1 1 3 1 2 2 1

4 1 4 2 4 3

( )
( )
X A X A X A X A X A X A

i X A X A X A
= − , − , − ,

− = − ,− ,− .

B
E

 

Thus, we see how, whilst the magnetic field takes its standard form 
in terms of the magnetic vector potential, the form of the electric 
field in the covariant 3( )skR ,  formalism differs from the 
conventional structure in the absence of the scalar potential 
component. 

7. The Dual Field of Electrodynamics From 
3( )skG ,  

The most general tensor generated by 3( )skG ,  is given by 

 
10

8
( )k

ab ab kG U ctα= ,∑ x  (28) 
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( ) ( ) ( ) ( ) 8 9 10k r s t
ab ra sa sb tb rb sb sa ta

a b

X X XU k
X X

δ δ δ δ δ δ δ δ⎛ ⎞
⎜ ⎟
⎝ ⎠

= − − − − − ; = , ,

 
where, typically, for (8 9 10)k = , ,  then  ( ) (2 3 4) (1 3 4)r s t, , = , , , , , ,  
(1 2 4), , . If, for the sake of convenience, we define 

8 9 10 1 2 3( ) ( )A A Aα α α, , ≡ , , , and use the given basis for ( )r s t, , , then 
it is easily found that 

 

4 3 4 2 2 3 3 2

4 14 3 3 1 1 3

1 2 2 14 2 4 1

3 2 2 3 1 3 1 2 2 1 1 2

0
0

0
0

ab

X A X A X A X A
X A X A X A X A

G
X A X A X A X A

X A X A X A X A X A X A

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟=
⎜ ⎟− −
⎜ ⎟

− − −⎝ ⎠

 

A consideration of this skew-symmetric object soon shows that it 
is no more than a re-ordering of the terms of the electromagnetic 
field tensor—which suggests an electrodynamic interpretation of 

abG . In fact, it is easily shown that ab abmn mnG Fε=  where abmnε  is 
the Levi-Civita permutation tensor. Thus, abG  is the dual of abF . 

8. Wave Structures Supported by the 
Magnetic Vector Potential 
It is shown that, according to the generalized electrodynamics, 
wavy solutions for the magnetic vector potential are composed of 
two distinct kinds of wave: the first kind is a propagating 
transverse wave, whilst the second kind, which is novel, is a 
stationary longitudinal wave. It is shown that the propagating 
transverse component corresponds identically to those solutions 
which arise in the conventional formalism when the Coulomb 
gauge is used. The stationary longitudinal component has no 
counterpart in the conventional formalism. 
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Using the notation 1 2 3 2 3 4( ) ( )A A A α α α≡ , , ≡ , ,A  in (19) and 
the basis (1 2 3)r = , , , then (21) can be written as 

 ( )
3

1

a
i a ri i ra r

r
X X X A Jδ δ

=

− =∑  

which—upon remembering a
aX x≡ ∂/∂ —can be written as the two 

equations 
 ( )2 −∇ ∇⋅ = −A A J  (29) 

 ( ) 44 J
x
∂

∇ ⋅ = .
∂

A  

Given J and hence A via (4), the second of these equations 
provides a definition of 4J . Consider now, a wave given by 
 0 exp( )wave i= ⋅ ,A A n x  
where 1 2 3 4( )n n n n≡ , , ,n , 1 2 3 4( )x x x x≡ , , ,x  and 0A  is a constant 
three-vector. The requirement that waveA  satisfies (4) with 0=J  
leads to the system of equations 
 0 0ˆ ˆ( ) ( )⋅ = ⋅n n A n A n  (30) 
where 1 2 3ˆ ( )n n n≡ , ,n  and, from this, we can form the scalar 
equation 
 0 0ˆ ˆ ˆ ˆ( )( ) ( )( )⋅ ⋅ = ⋅ ⋅ .n n n A n A n n  (31) 
This latter equation has two possible solutions which, together, 
form a basis for the homogeneous solutions of (29): 

Case 1: The Transverse Wave: 0 0ˆ =⋅n A  
In this case, (30) only has a non-trivial solution if 0⋅ =n n . 
Consequently, this solution is given by 
 0 0ˆexp( ) 0 0T i= ⋅ , ⋅ = , ⋅ = ,A A n x n n n A  (32) 
which corresponds to a transverse wave propagating with speed c . 
Since, as noted in the previous section, there is no electric scalar 
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potential in 3( )skR ,  and since 0ˆ 0 0T⋅ = →∇ ⋅ =n A A , then this 
component of the general solution of (4) corresponds exactly to 
those solutions which arise from the conventional formalism when 
the Coulomb gauge is chosen. 

Case 2: The Longitudinal Wave: 0 0ˆ ≠⋅n A  
In this case, (31) gives ˆ ˆ⋅ = ⋅n n n n  and this can only be true if 

4 0n = . From (30) we now get the equation 
 0 0ˆ ˆ ˆ ˆ( ) ( )⋅ = ⋅n n A n A n  
which is easily seen to have the solution 0 ˆα=A n  for arbitrary α . 
To summarize, this solution is given by 
 ˆ ˆ ˆexp( )L iα= ⋅A n n x  (33) 
where 1 2 3ˆ ( )x x x= , ,x  and this corresponds to a longitudinal 
stationary wave. This wave is easily shown to give 0= =E B , so 
that a non-trivial magnetic vector potential can be associated with a 
zero electromagnetic field. 

To summarize, we arrive at the conclusion that the magnetic 
vector potential supports two kinds of waves in free space: a 
propagating transverse wave (which corresponds exactly to the 
Coulomb gauge solutions of the conventional formalism) and a 
stationary longitudinal wave (which has no counterpart in the 
conventional formalism) so that the general wavy solution to the 
homogeneous form of (29) is given by 
 ( ) ( )wave T Lct= , + ,A A x A x  
where TA  is the transverse wave propagating with speed c  and 

LA  is the stationary longitudinal wave. The component TA  gives 
rise to propagating transverse electromagnetic fields and the 
general phenomenology that, when such a field is created, any 
charged particle anywhere will eventually feel its effect. The 
component LA  gives rise to a zero electromagnetic field 
( 0= =E B ) and so no electromagnetic effect at all is propagated; 
since the stationary wave cannot pass through an arbitrarily placed 
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charged particle then the only way an effect can be observed is that 
the charged particle must pass through the stationary wave. 
8.1. A Material Vacuum? 
It has been shown how, according to the generalized 
electrodynamics, the magnetic vector potential supports a 
stationary longitudinal wave, as well as the conventional 
propagating transverse wave. The classical theory has managed to 
assimilate the idea of an electrodynamic wave propagating in the 
absence of any supporting medium—if only because there is, at 
least, a sense of something travelling and things can be conceived 
as travelling through empty space. However, the idea of stationary 
longitudinal waves in the absence of any kind of supporting 
medium presents an entirely new level of incomprehensibility 
since, now, nothing is travelling anywhere. In Appendix D, a 
possible solution to this perceived problem is obtained by showing 
how (29) supports a non-wavy 0=J  solution which has a ready 
interpretation as a classical description of a fluctuating material 
vacuum. The magnetic vector potential waves discussed in §8 can 
then interpreted as disturbances of this material vacuum. 

9. A Non-Zero Mass Photon From 3( )syR ,  
In this section, we show that 3( )syR ,  implies the existence of a 
massive vector field constructed from the elements of 3( )skR , , the 
electromagnetic field. By showing that this vector field is 
irreducibly associated with the electromagnetic field, we are led to 
the obvious interpretation that this massive vector field is a 
classical representation of the massive photon. 
9.1. The Massive Vector Field 
The basis for 3( )syR ,  is given at (14) and the most general field 
which can be formed from the operators lying in this subspace is 
given by 
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7

5
( )k

ab ab k
k

V U α
=

= .∑ x  (34) 

If we define 
 t

rs r st s rtP X Xδ δ= −  (35) 
then the basis for 3( )syR , , given above, can be written as 
 ( ) 5 6 7k b a

ab a rs b rsU X P X P k= + ; = , , ,  (36) 
where for (5 6 7)k = , , , then ( )r s,  is chosen as in §4.3. With this 
notation and defining 

 
7 7

5 5
( ) ( )a b

a rs k b rs k
k k

V P ct V P ctα α
= =

= , , = , ,∑ ∑x x  (37) 

then (21) can be expressed as 
 ( )ab a b b aV X V X V= + .  (38) 

Since the single element of 1( )syR ,  is orthogonal to every 
element of 3( )syR ,  and since abV  is the most general field which 
can be formed by the operators lying within this latter subspace 
acting over a vector field, then operating 1( )syR ,  onto (34) gives 
immediately 

 
2

0ij
i j ij i j

V
X X V

x x
∂

≡ = ,
∂ ∂

 

from which it immediately follows 

 where 0aj i
aj i

V JJ
x x

∂ ∂
= = ,

∂ ∂
 

for some unspecified current J . Using (38) this latter equation can 
be expressed as 



 Apeiron, Vol. 13, No. 2, April 2006 227 

© 2006 C. Roy Keys Inc. — http://redshift.vif.com 

 j a
aj a j

V V J
x x x

∂⎛ ⎞∂∂
+ = .⎜ ⎟∂ ∂ ∂⎝ ⎠

 (39) 

However, since, from (35), 0i
i rsX P ≡  then, from the definition of 

aV  at (37) and the definition of t
rsP  at (35), we can easily see that 

 0j
j j j

V
X V

x
∂

≡ = ,
∂

 (40) 

so that (39) becomes 
 2

a aV J= .  (41) 
However, since 0i

iJ x∂ /∂ =  and 0i
iV x∂ /∂ = , we can write 

0
a a aJ mV J= +  for some constant m  and conserved current 0

aJ ; 
finally, therefore, (41) can be written as 
 2 0

a a aV mV J= + .  (42) 
This latter equation implies that 3( )syR ,  is associated with a 
massive vector field. 
9.2. Does the vector field represent a classical 
photon? 
The first thing to notice, as reference to (23) shows, is that the 
operator t

rsP  defined at (35) and in terms of which the vector field 
is defined at (37), is the fundamental operator of 3( )skR , —the 
operator space which acts over the magnetic vector potential to 
generate the electromagnetic field. Specifically, for the 
electromagnetic field tensor, we have 

 
4

2
( )r

ab ab k
k

F P ctα
=

= ,∑ x  (43) 

where r  varies with k  whilst, for the massive vector field, we 
have 
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7

5
( )a

a rs k
k

V P ctα
=

= ,∑ x  (44) 

where ( )r s,  varies with k  as in §4.3. Now form the inner product 
of aV  with the four components 1 4i iA , = ..′  defined at (26), to 
obtain 

 
7

5
( )i

i ii rs k
k

V P ctA A α
=

= , .′ ′∑ x  

But, by (27), i
irs rsF P A= ′  and so this latter equation becomes 

 
7

5
( )ii rs k

k
V F ctA α

=

= , .′ ∑ x  (45) 

First choice of basis: If we fix the basis of (36) by choosing 
( ) (1 4) (2 4) (3 4)r s, = , , , , ,  and use the notation 5 6 7( )α α α≡ , ,a  and 

14 24 34 1 2 3( ) ( )F F F i E E E, , = − , ,  then (7) gives 
 iiV iA = − ⋅ .′ E a  (46) 
But, from (44), any constant 5 6 7( ) 0α α α≡ , , ≠a  implies 0aV = . 
Thus, either 0=E  or E is orthogonal to a in this particular case. 
However, since a and E are independent (cf. eqns (43) & (44)) then 
a  can be chosen to have arbitrary orientation relative to E so that 
the possibility ⊥E a  is excluded. Consequently, 0aV =  implies 

0=E . 
Second choice of basis: By contrast, if we fix the basis of (36) by 
choosing ( ) (2 3) (3 1) (1 2)r s, = , , , , ,  and use 

23 31 12 1 2 3( ) ( )F F F B B B, , ≡ , ,  then, by similar arguments, 0aV =  
implies 0=B  also. 

To summarize: since 0aV =  implies 0=E  and 0=B , then 
the absence of the massive vector field implies the absence of the 
electromagnetic field. Consequently, the massive vector field is 
always present in the presence of the electromagnetic field. The 
only possible conclusion is that the massive vector field must 
necessarily be identified with a classical non-zero mass photon. 
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9.3. Constraints for the massive photon 
The object 

 
7

5
( )a

a rs k
k

V P ctα
=

= ,∑ x  (47) 

has been identified as a non-zero mass photon from which it is 
clear that it has only three degrees of freedom expressed in terms 
of the three functions 5 6 7( )α α α≡ , ,a . In the following, we show 
that each of the components of a  must satisfy the Klein-Gordon 
equation. 
With the basis ( ) (1 4) (2 4) (3 4)r s, = , , , , , , then (21) gives 
 14 14 24 15 34 16

a a a
aV P P Pα α α= + +  

which, after expanding the operators a
rsP  gives 

 [ ]1 2 3 4 4 14 15 16 14 15 16( ) ( ) ( )V V V V X α α α α α α, , , = − , , ,∇ ⋅ , ,  

 ↓  

 [ ]4 4( )V X, = − ,∇ ⋅ .V a a  (48) 

Consequently, we find 
 2 2 2

4 4( ) ( )V X, = − ,∇ ⋅ .V a a  (49) 
We now consider how a  must constrained to ensure (49) assumes 
the form of (42). A consideration of (11) shows that the most 
simple possibility is given by the condition 2 m=a a  for some 
parameter m  since then, use of (48) reduces (49) to 
 2

4 4( ) ( )V m V, = ,V V  
which is (4) without the conserved current. That is, the three 
functions, 14 15 16α α α, , , which define the massive photon field aV  
must each satisfy the Klein-Gordon equation. 
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10. Massive Photons and Mechanical Reaction 
The eigenvalue 1λ =  is associated with two distinct three-
dimensional subspaces of eigenvectors, 3skR ,  and 3syR ,  of which 
the first has been identified with the electromagnetic field and the 
second with a field of classical massive mass photons. The general 
solutions associated with each of these subspaces are given by 

 

4

2
7

5

( )

( )

k
ab ab k

k

k
ab ab k

k

F U ct

G U ct

α

α

=

=

= , ,

= , ,

∑

∑

x

x
 

respectively. However, since they are both associated with 1λ = , 
then the most general solution associated with this particular 
eigenvalue is 
 ab ab abF GΨ = + .  
Now, according to the Lorentz force-law, the four-force generated 
by an electromagnetic field on a charged particle, e , with four-
velocity V is given by a i aiF eV F c= / . Thus, if the idea of the 
Lorentz force is to be generalized, then the most general solution 
associated with 1λ = , ab ab abF GΨ ≡ +  must give rise to a total 
system force of 

 a i ai i ai
e eF V F V G
c c

= + .  

The natural question now is what does i aieV G c/  represent? It is 
well known that, according to the Lorentz force law of classical 
electrodynamics, the net electromagnetic forces generated by two 
charged particles on each other are not equal and opposite—that is, 
even in the case of non-relativistic motions, the classical 
electrodynamic description of a mutually interacting charged 
particle-pair does not satisfy Newtonian conservation principles. 
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Consequently, dynamical reactions, and the freedom to include 
them, are missing from classical electrodynamics. Since we have 
already identified abG  with an irreducible field of massive photons 
and since we know that an accelerated charged particle radiates 
electromagnetically, then the obvious interpretation is that the 
massive photons of the theory are these radiated photons and that 

i aieV G c/  represents the reaction force associated with these 
accelerated photons; that is, it describes the reaction on the particle 
of charge e  of its own action on the source of the field abF . 

Thus, suppose that a non-relativistic system consists of just 
two charged particles, 1e  and 2e  with respective four-velocities 

(1)
aV  and (2)

aV , and that each particle generates electromagnetic 
fields (1)

abF  and (2)
abF  respectively, and generates a reaction to the 

action on itself through the reaction fields (2)
abG  and (1)

abG  
respectively. Then, the respective forces acting in the vicinity of 
each particle are: 

 

(1) (1) (2) (1) (2)1 1

(2) (2) (1) (2) (1)2 2

a i ai i ai

a i ai i ai

e eF V F V G
c c
e eF V F V G
c c

= + ,

= + .
 

If action and reaction are to be equal and opposite in this non-
relativistic system, then we must have 
 (1) (2) 0a aF F+ =  
which, given the fields (1)

abF  and (2)
abF , represent a constraint on the 

reaction fields (1)
abG  and (2)

abG . 

11. Conclusions 
11.1. General comments 
The work of this paper began by noting that classical 
electrodynamics possesses two generic properties—Property A and 
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Property B—and then searched for general theories possessing 
these properties simultaneously (cf. §1.2, 1.3). The analysis 
recovered the Maxwell field, as expected and required, but also 
gave the surprising result that it cannot exist in isolation, but must 
always be associated with an additional massive vector field. The 
irreducible nature of this association led us to identify this massive 
vector field as the classical representation of the massive photon. 

This approach opens the door on many possibilities, and we 
have briefly discussed one of them: specifically, that the 
difficulties associated with the fact that the Lorentz force law does 
not conform to Newtonian ideals are removed when this law is 
generalized to account for the presence of the new vector field. 
11.2. Relationship with the canonical viewpoint 
Classical electrodynamics has arisen, primarily, as the synthesis of 
laboratory-based experience and, in its covariant four-vector 
formulation, the electromagnetic field has a very beautiful 
interpretation as the (1)U -gauge field of the superbly successful 
quantum electrodynamics (qed) with the corresponding gauge 
particle being the massless photon. Thus, against the positive 
aspects of the ideas discussed herein, we must weigh the fact that 
the idea of the massive photon is radically at variance with 
classical qed. So, the question arises of whether it is possible to 
reconcile the results of this paper with qed and all that that theory 
represents. This author believes the answer to be positive, and 
argues as follows: 

It was shown, in §6, that the new covariant formalism, based 
on the three-dimensional linear space of operators 3( )skR , , is 
expressed purely in terms of the classical magnetic vector potential 
and makes no reference to the scalar potential. Thus, there can be 
no discussion of electrostatics in the 3( )skR ,  formalism. But the 
canonical theory, and hence the possibility of electrostatics, is 
recovered by the introduction of an arbitrary scalar field—
identifiable as the classical scalar potential—into the 3( )skR ,  
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formalism. We now note that the theory of electrostatics assumes 
the existence of a charge distribution, Q say, which is at rest in 
some particular inertial frame. The theory then considers the 
effects of Q on some other charge, q say, under the assumption that 
q does not affect the state of motion of Q. Thus, in effect, the 
theory of electrostatics is a test-particle theory—it is an 
idealization that, in literal practice, can be approached but never 
attained. We can then conclude that any theory for which the scalar 
potential is an essential component (e.g., the canonical covariant 
four-vector formalism) contains, at some fundamental level, the 
assumptions of a test-particle theory. Thus, we would argue that 
the covariant 3( )skR ,  formalism can be reconciled with the 
canonical four-vector formalism under the hypothesis that the 
transition from the former to the latter is the transition from a “real 
world” electromagnetism to its test-particle idealization. 
11.3. Empirical evidence for non-zero mass photons? 
The idea that photons might be massive is not new—Vigier [15], 
for example, argues that the long sequence of inferometer 
measurement made over several decades by Michelson, Morley 
and Miller [11,13,12,14] are actually consistent with a non-zero 
photon mass, and put an upper bound of about 6810 kg−  on this 
mass. Vigier’s interest in this is well known since, as a one-time 
student of DeBroglie, he has long recognized that the latter’s 
interpretation of quantum mechanics probably requires photons to 
be massive—and vice versa, for if photons are found to have non-
zero mass, then the standard interpretation of quantum 
mechanics—and with it, the whole standard model of particle 
physics—will have question marks raised over it. 
11.4. Astrophysics 
From an astrophysical point of view, the stakes are also high—the 
standard interpretation of cosmological redshift requires that it 
arise purely from expansion. But the only direct evidence 
supporting this interpretation comes from using the standard 
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candles to verify Hubble’s law—but this can only be done out to 
very modest distances—this direct evidence is actually 
extrapolated over many decades when it comes to discussing the 
physics of very high redshift objects. The standard argument 
against non-expansion mechanisms is that there is no conceivable 
alternative mechanism which would not broaden spectra, nor leave 
images unblurred. Since spectral lines are sharp and since images 
are remarkably un-blurred, it is inferred that redshift must be an 
expansion effect. However, such arguments are predicated directly 
upon the notion of the massless photon. Once massive photons are 
admitted, many different alternative mechanism become, at least in 
principle, possible. 

Appendix A. The Lagrangian density 
The required Lagrangian density was arrived at via the following 
considerations: 

• The identities which occur in the canonical covariant 
formulation of electromagnetism arise because, when abF  
is defined as it is from the four-vector potential, the field 
equation and the Jacobi identity define self-cancelling sums 
of permutations of fixed-order differential operations on the 
arbitrarily defined four-vector potential. It is 
straightforward to see that, in the general case, a necessary 
condition for a differential expression to become an identity 
in this way is that the expression concerned must be 
homogeneous in the differential operators it contains 
(differentially homogeneous) and, when such expressions 
arise from variational principles, then the corresponding 
Lagrangian densities must also be differentially 
homogeneous. 
Since the necessary skew-symmetry of the electromagnetic 
field tensor in any covariant formulation ensures that the 
identity 
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 0ij
i j

F
x x
∂

=
∂ ∂

 

is satisfied, then we are led to consider only those 
variational principles which give rise to equations which 
are second order in the field over which they are defined. 

• Finally, in order to guarantee the algebraic orthogonality 
properties that we require, we must add in the general 
constraint that any variational principle must be invariant 
with respect to the interchange of any of its indices—this is 
also necessary to ensure that changing the labels of axes 
has no effect. 

Putting these considerations together, the most general density is 
given by 

 

0 1

0 1

0 1

ij ji ij ij
k k k k

kj jk kjik ik ki
i j i j i j

kj jk kjik ik ki
j i j i j i

L
x x x x

x x x x x x

x x x x x x

α α

β β

γ γ

∂Ψ ∂Ψ ∂Ψ ∂Ψ
= +

∂ ∂ ∂ ∂
∂Ψ ∂Ψ ∂Ψ⎛ ⎞∂Ψ ∂Ψ ∂Ψ

+ + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∂Ψ ∂Ψ ∂Ψ⎛ ⎞∂Ψ ∂Ψ ∂Ψ

+ + + ,⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 

where 0 1 0 1 0 1( )α α β β γ γ, , , , ,  are arbitrary constants. This is easily 
shown to contain a large amount of redundancy. 

Appendix B. The Orthogonality Relations 
The orthogonality relations within the system are given because 
they provide an insight into the nature of Maxwell’s equations, as 
we have seen in §9. 

The algebraic eigensystem (11) is given by 
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 ij
i j k kX Xσ λ⎛ ⎞

⎜ ⎟
⎝ ⎠

=U U  

where 11 12 13 44( )k k k k kU U U U= , , ,...,U , where ( 1 4)ab a bσ , = ...  are 
sixteen matrices each of dimension 16 16×  whose elements in row 
( )i j,  and column ( )r s,  are given by 
 ab

ij rs ia rb sj ja sb riσ δ δ δ δ δ δ: = + ,  (B.1) 

where the columns are taken in order 
(1 1) (1 2) (1 3) (1 4) (2 1) (4 4), , , , , , , , , ... ,  and where abδ  is the 4 4×  unit 
matrix. These matrices are easily shown to be symmetric so that, 
consequently, we have 

 
Tij ij

i j i jX X X Xσ σ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= .  

We can conclude from this that eigenvectors lying in distinct 
subspaces of the eigenspace are orthogonal with respect to the 
ordinary vector scalar product; that is, if A B C, , ,U U U  DU  and 

EU  are such that 
 6 3( ) ( )A sy B skG G, ,∈ ; ∈ ;U U  

 3 3 1( ) ( ) ( )C sy D sk E syR R R, , ,∈ ; ∈ ; ∈ ,U U U  

then 
 0T T T T

A B A C A D A E= = = =U U U U U U U U  

 0T T T
B C B D B E= = =U U U U U U  

 0T T
C D C E= =U U U U  (B.2) 

 0T
D E = ,U U  

where, by TU U , we effectively mean ij ijU U , with summation over 
the indices ( )i j, . 



 Apeiron, Vol. 13, No. 2, April 2006 237 

© 2006 C. Roy Keys Inc. — http://redshift.vif.com 

Naturally, these relations are directly verifiable by direct 
reference to the definitions of the eigenvectors given at (12), (16), 
(15), (13) and (14) respectively. 
Appendix C. A Material Vacuum? 
It has been shown how, according to Poincaré-invariant 
electrodynamics, the magnetic vector potential supports a 
stationary longitudinal wave, as well as the conventional 
propagating transverse wave. The classical theory has managed to 
assimilate the idea of an electrodynamic wave propagating in the 
absence of any supporting medium—if only because there is, at 
least, a sense of something travelling and things can be conceived 
as travelling through empty space. However, the idea of stationary 
longitudinal waves in the absence of any kind of supporting 
medium presents an entirely new level of incomprehensibility 
since, now, nothing is travelling anywhere. In Appendix D, a 
possible solution to this perceived problem is obtained by showing 
how (29) supports a non-wavy 0=J  solution which has a ready 
interpretation as a classical description of a fluctuating material 
vacuum. The magnetic vector potential waves discussed in §8 can 
then interpreted as disturbances of this material vacuum. 
Appendix D. The Material Vacuum 
For 0=J  and defining 1 2 3( )x x x≡ , ,x , it is easily shown how (29) 
has a relativistically invariant non-radiated solution, given by 

 

( )0 1 01

2 2 2
0 0 0

2 2 2
1 1 1

( ) ( )

( ) ( )

c t t

c t t

= Δ −Δ ,

Δ ≡ − − − ,

Δ ≡ − − − ,

A A

x x

x x

 

for an arbitrary constant vector 01A  and origins 0 0( )ct,x  and 
1 1( )ct,x  which satisfy 0 0Δ >  and 1 0Δ >  but which are otherwise 

arbitrary. Consequently, the general solution of this type is given 
by 
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 ( )
0 0 1 1

0 1 01 0 0 1 1( )vac
ct ct

ct ct
, ,

= Δ − Δ , , ,∑ ∑
x x

A A x x  (D.1) 

where the summation is intended to be over all admissible 
spacetime origins, 0 0( )ct,x  and 1 1( )ct,x  and it has been assumed 
that the constant vector 01A , which is a function of these origins, is 
such that the summation is uniformly convergent. 

An understanding of the meaning of this solution can be had 
by considering the expanding surface 
 2 2 2 2

0 0( ) ( )c t t k− − − = ,x x  
for k  some real constant, generated by a single term in (D1). It is 
easily shown that the radial speed of such an expanding surface 
increases from 0  to c  on the range 0k| |≤| − |< ∞x x . It follows 
that vacA , which is defined by (D.1) at the spacetime point ( )ct,x  
by summing over all admissible origins 0 0( )ct,x  and 1 1( )ct,x , is a 
sum over an infinity of instantaneously intersecting surfaces 
expanding from all possible directions and at all possible 
subluminal speeds. In this way, we generate a classical image of a 
continually fluctuating relativistically invariant material vacuum; 
for example, see Dirac [10]. Consequently, it is suggested that the 
solution (D.1) can be interpreted as a classical model of the 
material vacuum within which magnetic vector potential waves can 
be interpreted as disturbances. It is to be noted that this material 
vacuum model is also applicable in the conventional 
electrodynamic theory. 

Finally, it should be remarked that the non-radiated field vacA  
should give rise to non-zero electromagnetic effects through (19). 
The reality, which is that such effects are only found at extremely 
low levels in the quantum fluctuations of the vacuum, puts 
constraints on the constants in (D.1). 
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