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Maxwell’s equations are the cornerstone in electrodynamics. Despite the fact 
that these equations are more than hundred years old, they still are subject to 
changes in recent publications. To get an impression over the historical devel-
opment of Maxwell’s equations, the equation systems in different notations are 
summarized. 
 

   

Introduction 
The complete set of the equations of James Clerk MAXWELL[15] are known in electrodynam-
ics since 1865. These have been defined for 20 field variables. Later Oliver HEAVISIDE[11] and 
William GIBBS[23] have transformed this equations into the today’s most used notation with 
vectors. This has not been happened without ‚background noise‘[3], then at that time many 
scientists – one of them has been MAXWELL himself – was convinced, that the correct nota-
tion for electrodynamics must be possible with quaternions[5] and not with vectors. A century 
later EINSTEIN introduced Special Relativity and since then it was common to summarize 
MAXWELL’s equations with four-vectors. 

The search at magnetic monopoles has not been coming to an end, since DIRAC[4] intro-
duced a symmetric formulation of MAXWELL’s equations without using imaginary fields. But 
in this case the conclusion from Special Theory of Relativity, that the magnetic field origi-
nates from relative motion only, can not be hold anymore. 

The non-symmetry in MAXWELL’s equations of the today’s vector notation may have dis-
satisfied many scientists intuitively. That could be the reason, why they published an ex-
tended set of equations. Sometime these extensions have been introduced for specific appli-
cations only. This essay summarizes the main different notation forms of MAXWELL’s 
equations. 
                                                           

* André Waser, Birchli 35, CH-8840 Einsiedeln 



 
Page 2 copyright © (2000) by André Waser;  www.andre-waser.ch 

 

Maxwell’s Equations 

The Original Equations 
With the knowledge of fluid mechanics MAXWELL[15] has introduced the following 20 
equations for the electromagnetic fields. The equations on the left correspond with the 
original text, the equations on the right correspond with today’s well known vector notation: 
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These original equations do not strictly correspond with today’s vector equations. The 
original equations, for example, contains the vector potential A, which usually is eliminated.  

Three Maxwell equations can be identified quickly as OHM’s law (1.6), the FARADAY-
force (1.4) and the continuity equation (1.8) for a region with electric charges. 
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The Original Quaternion Form of Maxwell‘s Equations 
 
In his Treatise[16] of 1873 MAXWELL has already modified his original equations of 1865. In 
addition Maxwell tried to introduce the quaternion notation by writing down his results also 
in a quaternion form. However, he has never really calculated with quaternions but only uses 
either the scalar or the vector part of a quaternion in his equations. 

 
A general quaternion has a scalar (real) and a vector (imaginary) part. In the example be-

low ‚a‘ is the scalar part and ‘ib + jc + kd’ is the vector part. 

 Q = a + ib + jc + kd   

Here a, b, c and d are real numbers and i, j, k are the so-called HAMILTON‘ian[7] unit vectors 
with the magnitude of √-1. They fulfill the equations 

 
 i2 = j2 = k2 = ijk = −1  
and 
 ij = k      jk = i      ki = j 
 ij = − ji      jk = − kj      ki = − ik 
A nice presentation about the rotation capabilities of the HAMILTON’ian unit vectors in a 
three-dimensional ARGAND diagram was published by GOUGH[6]. 

 
Now MAXWELL has defined the field vectors (for example B = B1i + B2j + B3k) as qua-

ternions without scalar part and scalars as quaternions without vector part. In addition he 
defined a quaternion operator without scalar part 

 
1 2 3

d d d
dx dx dx

i j k∇ = + +   ,  

which he used in his equations. Maxwell separated a single quaternion with two prefixes into 
a scalar and vector part. He defined this prefixes as 

 S.Q = S.(a + ib + jc + kd) = a 

 V.Q = V.(a + ib + jc + kd) = ib + jc + kd  

The original Maxwell quaternion equations are now for isotropic media (no changes except 
fonts, normal letter = scalar, capital letter = quaternion without scalar): 



 
Page 4 copyright © (2000) by André Waser;  www.andre-waser.ch 

 B V A.= ∇  (1.9) 

 E V vB A.= − −∇Ψ�  (1.10) 

 F V vB eE m.= + − ∇Ω  (1.11) 

 B H 4 M= + π  (1.12) 

 tot4 J V H.π = ∇  (1.13) 

 J CE=  (1.14) 

 1D KE
4

=
π

 (1.15) 

 totJ J D= + �  (1.16) 

 B H= μ  (1.17) 

 e S D.= ∇  (1.18) 

 m S M.= ∇  (1.19) 

 H = −∇Ω  (1.20) 
 
Beside the new notation, the magnetic potential field Ω and the magnetic mass m was men-
tioned here the first time. By calculating the gradient of this magnetic potential field it is 
possible to get the magnetic field (or in analogy the magnetostatic field. Maxwell has introdu-
ced this two new field variables into the force equation (1.11). 

The reader may check that the equations above identical to the previous published equa-
tions (1.1) to (1.7), except the continuity equation (1.8) has this time be dropped. From the 
above notation it is clearly visible why the quaternion despite the deep engagement for 
example of Professor Peter Guthrie TAIT[19] did not succeed, then the new introduced vector 
notation of Oliver HEAVISIDE[11] and Josiah Willard GIBBS[23] was much easier to read and to 
use for most applications. 

It is very interesting that Maxwell‘s first formulation of a magnetic charge density and the 
related discussion about the possible existence of magnetic monopoles became forgotten for 
more than half a century until Paul André Maurice DIRAC[4] again speculated about magnetic 
monopoles in 1931. 
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Today‘s Vector Notation of MAXWELL‘s Equations 
The nowadays most often used notation can be easily derived from the original equations of 
1865. By inserting (1.1) in (1.3) it follows the known equation 

 
t

∂
∇× = +

∂
DH j  (1.21) 

Equation (1.4) contains the FARADAY equation 
 ( )konstantμ== ×μ ⎯⎯⎯⎯→ = μ ×E v H E v H  (1.22) 

and the potential equation for the electric field 

 
t

∂
= − −∇ϕ

∂
AE  . (1.23) 

Together with the potential equation for the magnetic field (1.2) follows with applying the 
rotation on both sides of (1.23) 

 ( ) ( ) konstant

t t t
μ=∂ ∂ ∂

∇× = − ∇× = μ ⎯⎯⎯⎯→ ∇× = μ
∂ ∂ ∂

HE A H E  (1.24) 

From (1.2) follows further with the divergence: 
 konstant0 0μ=∇ μ = ⎯⎯⎯⎯→ μ∇ =H Hi i  (1.25) 

The six MAXWELL equations in today‘s notation are: 

FARADAY‘s law 
t

∂
∇× = +

∂
DH j  (1.26) 

AMPÈRE‘s law 
t

∂
−∇× =

∂
BE  (1.27) 

COULOMB‘s law ∇ = ρDi  (1.28) 

 0∇ =Bi  (1.29) 

 0 0 r= ε + = ε ε = εD E P E E  (1.30) 

 0 0 r= μ + = μ μ = μB H M H H  (1.31) 

with 

E: electrical field strength [V / m] 
H: magnetic field strength [A / m] 
D: electric displacement [As / m2] 
B: magnetic Induction [Vs / m2] 
j: electric current density [A / m2] 
ε: electric permeability [As / Vm] 
μ: magnetic permeability [Vs / Am] 

Please note that the MAXWELL equation of today have became subset of the original equations 
which in turn have got an expansion with the introduction of the magnetic induction (1.31). 
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Today traditionally not included in MAXWELL‘s equations are FARADAY‘s law and some-
time also OHM‘s law. The continuity equation (1.8) is rarely mentioned in literature. But this 
equation defines the conservation of charge: 

 ( ) ( ) 0
t t
∂ ∂ρ

∇ ∇× = ∇ +∇ = +∇ =
∂ ∂

H D j ji i i i  (1.32) 

The electric and magnetic field strengths are interpreted as physically existent force fields, 
which are able to describe forces between electric and magnetic poles. Maxwell has – analo-
gue to fluid mechanics – this force fields associated with two underlying potential fields, 
which are not shown anymore in the today‘s traditional vector notation. The force fields can 
be derived from the potential fields as: 

 
t

∂
− = ∇ϕ+

∂
AE  (1.33) 

 = ∇×B A  (1.34) 
with 

ϕ: electric potential field [V] 
A: vector potential [Vs / m] 

For a very long time scientists are convinced that the potentials do not have any physical 
existence but merely are a mathematical construct. But an experiment suggested by Yakir 
AHARONOV and David BOHM[1] has shown, that this is not true. There arises the question 
about the causality of the fields. Many reasons point out that the potentials  ϕ and A really are 
the cause of the force fields E and H. 

Including the material equations (1.30) and (1.31), and with consideration of Ohm‘s law 
 = σj E  (1.35) 

with 

σ: specific electric conductivity [1 / Ωm] = [A / Vm] 

the Maxwell equations become for homogenous and isotropic conditions (ε = constant, 
μ = constant): 

 

 
t

∂
∇× = ε + σ

∂
EH E  (1.36) 

 
t

∂
−∇× = μ

∂
HE  (1.37) 

 ε∇ = ρEi  (1.38) 

 0μ∇ =Hi  (1.39) 
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Real Expansions of Maxwell‘s Equations 

The HERTZ-Ansatz 
Recently Thomas PHIPPS[20] has shown that Heinrich Rudolf HERTZ has suggested another 
possibility to adapt Maxwell‘s equations. During Hertz life this was hardly criticized and his 
proposal was vastly forgotten after his death. Usually the differentials are partial derivative 
and not total derivatives as shown in the comparison (1.1) to (1.8) between MAXWELL‘s 
original equations and the today‘s vector notation. Now in the equations (1.26) and (1.27) 
HERTZ has substituted the partial derivatives ∂ with the total derivatives d. With this Hertz 
tried to treat Maxwell equations invariant to the GALILEI-transformation: 

 d
dt

∇× = +
DH j  (1.40) 

 d
dt

−∇× =
BE  (1.41) 

what wit the entity d
dt t

∂
= + ∇
∂

vi  becomes 

 
t

∂
∇× = + ∇ +

∂
DH v D ji  (1.42) 

 
t

∂
−∇× = + ∇

∂
BE v Bi  (1.43) 

Now the question arises about the meaning of the newly introduced velocity v. HERTZ has 
interpreted this velocity as the (absolute) motion of aether elements. But if v is interpreted as 
relative velocity between charges, then Maxwell‘s equations are defined for the case v = 0, 
hat can be interpreted that the test charge does not move in the observer‘s reference frame. 
Therefore Thomas PHIPPS explains this velocity as the velocity of a test charge relative to an 
observer. 

Consequently in equation (1.33) the partial derivatives have to be replaced wit the total 
derivatives, too. 

 d
dt t

∂
− = ∇ϕ+ = ∇ϕ+ + ∇

∂
A AE v Ai  (1.44) 

The invariance of (1.40) and (1.41) against a GALILEI-transformation for the case that no 
current densities j and no charges are present can easily be seen. For v = 0 (a relative to the 
observer stationary charge) always MAXWELL‘s equations will be the result: 

 
t

∂
∇× =

∂
DH  (1.45) 

 
t

∂
−∇× =

∂
BE  (1.46) 

For a GALILEI-transformation is r‘ = r – vt and t‘ = t; thus for v > 0 is: 
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from which for all v the equations 

 d
dt

∇× =
DH  (1.47) 

 d
dt

−∇× =
BE   

are valid. If the observer moves together with a test charge, this reduces again to the equa-
tions (1.45) and (1.46). The first EINSTEIN postulate[5] sais, that in an uniform moving system 
all physical laws take its simplest form independent of the velocity. That is fulfilled in the 
example above. In each uniform moving reference frame the observer always measures for 
example the undamped wave equation. 

The DIRAC-Ansatz 
The non-symmetry in MAXWELL‘s equation system always has motivated to extend this set 
of equations. The most famous extension has originated form DIRAC [3], who suggested the 
following extension: 

 et
∂

∇× = ε +
∂
EH j  (1.48) 

 mt
∂

−∇× = μ +
∂
HE j  (1.49) 

 eε∇ = ρEi  (1.50) 

 mμ∇ = ρHi  (1.51) 

Together with (1.51) this ansatz must lead to the postulation of magnetic monopoles, which 
until today never has been (absolutely certain) detected. As a consequence of this ansatz the 
force fields E and B are derived from potentials according to: 

 
t

∂
= ∇ϕ− −∇×

∂
AE C  (1.52) 

 
t

∂
= ∇φ− −∇×

∂
CE A  (1.53) 

where φ and C represent the complementary magnetic potentials. Therefore as another 
consequence there must exist two different kinds of photons, which interact in different ways 
with matter[14]. Also this has until today never been observed. 

 

The HARMUTH-Ansatz 
Henning HARMUTH[5] (and Konstantin MEYL[17])have gone a step further and suggested new 
equations, which differ to the DIRAC ansatz only in that point, that no source fields exists 
anymore. Harmuth has used this proposition to solve the problem of propagation of electro-
magnetic impulses in lossy media (impulses in media with low OHM dissipation) for the 
boundary conditions E = 0 and H = 0 for t ≤ 0: 
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t

∂
∇× = ε + σ

∂
EH E  (1.54) 

 s
t

∂
−∇× = μ +

∂
HE H  (1.55) 

 0ε∇ =Ei  (1.56) 
 0μ∇ =Hi  (1.57) 

with 

s: specific magnetic conductivity [V / Am] 

In his interpretation of this ansatz, MEYL has gone again a step further and declares the 
equations (1.54) to (1.57) to be valid in all cases. As a consequence there would exist no kind 
of monopoles, whether electric nor magnetic... The alleged electric monopoles (charges) are 
– according to Meyl – only secondary effects of electric or magnetic dipoles. 

From (1.54) to (1.57) HARMUTH[5]-GL.21 has derived the electric field equation to 

 ( )
2

2 s s 0
tt

∂ ∂
Δ −με − μσ + ε − σ =

∂∂
E EE E  (1.58) 

and has shown, that this equation can be solved for a certain set of boundary conditions. The 
same equation (1.58) is designated by Meyl as the fundamental field equation. 

The MÚNERA-GUZMÁN-Ansatz 
Héctor MÚNERA and Octavio GUZMÁN[19] have proposed the following equations (ω ≡ ct): 

 4
c

∂ π
∇× = +

∂ω
PN J  (1.59) 

 4
c

∂ π
∇× = − +

∂ω
NP J  (1.60) 

 4∇ = πρNi  (1.61) 

 4∇ = − πρPi  (1.62) 

with 
 ≡ −N B E  (1.63) 

 ≡ +P B E  (1.64)  
From this follows MAXWELL‘s equations (1.26)-(1.29) as shown below: 
FARADAY‘s law (1.26): (1.60) − (1.59) (1.65) 

AMPÈRE‘s law (1.27): (1.60) + (1.59) (1.66) 

COULOMB‘s law (1.28): (1.62) − (1.61) (1.67) 

 (1.62) + (1.61) (1.68) 
In this notation the current density J and the charge density ρ are not understood as electric 
only but merely as electromagnetic entities. With an analysis of MÚNERA and GUZMÁN it can 
be shown, that beneath the electric scalar field also a non-trivial magnetic scalar field should 
exist. 



 
Page 10 copyright © (2000) by André Waser;  www.andre-waser.ch 

Imaginary Expansions of Maxwell‘s Equations 

The Notation in Minkowski-Space 
In electrodynamics the relativistic notation is fully established. Because of the second 
EINSTEIN‘ian postulate[5] about the absolute constancy of the speed of light (therefore its 
independency of the speed of the light source or light detector) the four-dimensional notation 
has been developed. But the force field vectors E and H can not be used for four-vectors. But 
the potentials and the charge densities have been regarded as very optimal to formulate the 
electrodynamics in a compact form. If we first have an event vector 
 ict= + xX  
then it follows in MINKOWSKI-Space the invariance of the four-dimensional length ds 

 2 2
1 1 2 2 3 3ds dx dx dx dx dx dx dx dx c dtμ μ= = + + −  

and 

 ( )2
1 1 2 2 3 32

i 1d dx dx dt dx dx dx dx dx dx
c cμ μτ = = − + +  

From this follows the four-dimensional velocity vector to 

 ( )
2

2

d 1 ic
d u1

c

= = +
τ

−

uXU  

which gives the four-dimensional current density 

  ( )0
0 2

2

ic
u1
c

ρ
= ρ = +

−

uJ U  

With the four-dimensional gradient operator  

 4

1 2 3ic t x x x
∂ ∂ ∂ ∂

∇ = + + +
∂ ∂ ∂ ∂

i j k  

follows with 
 4 0∇ =iJ  
the continuity equation (1.8). With the four-dimensional vector potential 
 i= ϕ+ AA  

and with the D‘ALEMBERT operator 

 ( )
224 2 2

2 2 2 2

1 1
x xc t c tν ν

∂ ∂ ∂
∇ = = ∇ − = −

∂ ∂∂ ∂
,  

follows the relation 

 2 1
c

=, A J  
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But then the possibility for a compact and easy calculation within the MINKOWSKI-Space 
comes to an end. To include the electric and magnetic fields, the following definition 

 
AAF

x x
μν

μν
μ ν

∂∂
≡ −
∂ ∂

 

is used to determine the electromagnetic field tensor: 
  

 

3 2 1

3 1 2

2 1 3

1 2 3

0 B B iE
B 0 B iE

B B 0 iE
iE iE iE 0

− −⎧ ⎫
⎪ ⎪− −⎪ ⎪= ⎨ ⎬− −⎪ ⎪
⎪ ⎪⎩ ⎭

F  

With two equations with the components of the field tensor the four MAXWELL equations can 
be derived. With the first equation 

 
F F F 0
x x x
λμ μν νλ

ν λ μ

∂ ∂ ∂
+ + =

∂ ∂ ∂
 

follows for an arbitrary combination of λ, μ, ν to 1, 2, 3 the MAXWELL equation (1.29) 

 23 31 312 1 2

3 1 2 3 1 2

F F BF B B0 0
x x x x x x

∂ ∂ ∂∂ ∂ ∂
+ + = → + + = ∇ =

∂ ∂ ∂ ∂ ∂ ∂
Bi  

and if one of the indices λ, μ, ν is equal 4 it follows the MAXWELL equation (1.27). With the 
second equation 

 
F 1
x c
μν

μ
ν

∂
=

∂
J  

follow the non-homogenous MAXWELL equations (1.26) and (1.28). 
 
 

Simple Complex Notation 
One possibility to enhance the symmetry of MAXWELL‘s equations offers the inclusion of 
imaginary numbers. INOMATA[13] uses the imaginary axis only for the „missing“ terms in 
MAXWELL‘s equations. Thus they become: 

 

m m

t

i i
t

∂
= ε ∇ = ρ ∇× = +

∂
∂

= μ ∇ = ρ −∇× = +
∂

DD E D H j

BB H B E j

i

i
 (1.69) 

From this result an imaginary magnetic charge and an imaginary magnetic current density. In 
this notation the imaginary unit i is used for variables, which are not physically existent (i.e. 
are not measurable until now). Thus by using „i“ in the equations above the missing variables 
are placed into an imaginary (non existent) space i(x1, x2, x3). 
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Eight-dimensional, Complex Notation 
Elizabeth RAUSCHER[19] proposes a consequent expansion of the complex notation, so that for 
each field and for each charge density a real and an imaginary part is introduced. 

 

i
i

Re Im

Re Im

Re Im e m

Re Im e m

= +
= +
= + = +

ρ = ρ +ρ = ρ +ρ

E E E
B B B
j j j j j

 (1.70) 

Then, when using a correct splitting of the terms, two complementary sets of MAXWELL 
equations can be formulated. The real equations are: 

 t

0
t

Re
Re Re Re Re Re Re

Re
Re Re Re Re

∂
= ε ∇ = ρ ∇× = +

∂
∂

= μ ∇ = −∇× =
∂

DD E D H j

BB H B E

i

i
 (1.71) 

With an elimination of i on both sides we get for the imaginary parts: 

 
0

t

tIm

Im
Im Im Im Im

Im
Im Im Im Im Im

∂
= ε ∇ = ∇× =

∂
∂

= μ ∇ = ρ −∇× = +
∂

DD E D H

BB H B E j

i

i
 (1.72) 

As used by INOMATA also RAUSCHER uses the imaginary unit „i“ to sort the physical existent 
variables from the physical non existent ones. 

The Imaginary Quaternion Notation 
An other possibility is the mixture of quaternions and imaginary numbers, what has for 
example be done by HONIG[12]. With the vector potential and the current density 

 4 x y z

4 x y z

i A A A

i v v v

i j k

i j k

= ϕ+ + +

= ρ+ρ +ρ +ρ

A

J
 (1.73) 

follows with the operator 

 q i
t x x x

i j k∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
,  (1.74) 

and with the LORENTZ condition q 4A 0=i,  the MAXWELL equations with 

 
q

2
4 3 4i i i i

t t
∂ ∂⎛ ⎞= ∇ +∇ +∇× +∇× + − + = ρ+ =⎜ ⎟∂ ∂⎝ ⎠

E BA E B E B J Ji i,  (1.75) 

Actually this notation is very efficient. It is, for example, easily possible to formulate the 
LORENTZ force or equations of the quantum electrodynamics with this notation. But now the 
imaginary unit „i“ is not used to separate the observable variables from the non existent ones. 
Interestingly there does not exists one single real number at all. Each real number is asso-
ciated either with the imaginary unit „i“ or with the HAMILTON units i, j and k. With some 
additional rules also this notation can be expanded to eight dimensions. This should be 
presented in another paper. 
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Closing Remarks 
Different notations to the MAXWELL equations are presented. Depending on the application 
one or another notation can be very useful, but at the end the presented variety is not satisfac-
tory. 

Many discussions have been presented about the existence of magnetic monopoles. But 
either the electric field is only a subjective measuring caused by the relative motion between 
charges -–as it is said by the Special Theory of Relativity – or the magnetic force field can be 
derived from a scalar potential field. In the first case magnetic monopoles can not exist, in the 
second case they can exist. Despite of extensive experiments no magnetic monopoles have 
been found until now. So we can conclude, that no magnetic potential fields must be post-
ulated and that the non symmetry in MAXWELL‘s equations still are correct. 

Proposals to enhance the symmetry with imaginary numbers are interesting but covers the 
danger, that with the simple mathematical tool „i“ a symmetric formulation can be reached 
vastly, but that the physical models do become nebulous. 
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