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A Field-Based Model of the Photon: Lorentz-Covariant Quantization 

Richard Oldani

Abstract 
The macroscopic Maxwell equations, which quantum mechanics uses to define 
radiation fields, are shown to be in violation of the special principle of relativity. 
This is resolved by applying Maxwell’s equations microscopically to each of the n 
constituent wave trains of a macroscopic wave. It is then shown that spontaneous 
emission may be accounted for by subjecting a bound electron to the combined in-
fluence of the n superimposed wave trains. If emission is induced by a coherent 
wave, then frequency-doubling phenomena are predicted. Several examples are 
cited, showing the pervasiveness of frequency doubling in nature. The evidence 
suggests further that quantum statistics is due to microscopic field fluctuations 
rather than photon counting. A manifestly covariant description of an electron 
transition is obtained in the form of a Lagrangian density, which is then quantized 
by applying appropriate limits of integration. A simple shift in these limits yields 
an independent field in free space, or photon, which is bounded by parallel sur-
faces separated by a distance equal to the wavelength and period. The implica-
tions of this photon model upon interference phenomena and the inverse square 
law are briefly discussed. A test of the inverse square law is proposed. 

Key words: spontaneous emission, microscopic radiation fields, relativistic quan-
tum mechanics, quantization, frequency doubling, inverse square law, photon, 
quantum electrodynamics, cutoff frequency, vacuum energy 

 
1. INTRODUCTION1 

The semiclassical theory of electromagnetic radia-
tion uses classical field concepts to describe the 
influence of an external radiation field on a system of 
molecules. This provides a plausible and correct 
account of absorption and induced radiation fields, 
but not of spontaneous emission, which must be 
described by a quantum-mechanical treatment of the 
sources.(2) However, quantum mechanics describes 
source behavior statistically. This led Einstein to 
comment,(3) “I find the idea quite intolerable that an 
electron exposed to radiation should choose of its own 
free will, not only the moment to jump off, but also its 
direction. In that case, I would rather be a cobbler, or 
even an employee in a gaming house, than a physi-
cist.” We shall attempt to understand these questions 
more clearly in the discussions that follow by analyz-
ing the interaction of a radiation field with a single 
molecule. 

The behavior of a molecule during emission is 
described in the Hamiltonian and Lagrangian formu-
lations of quantum mechanics by energy, even though 
observables are given in terms of field. Unitary 

transformations can cause different pictures to 
emerge, but energy remains the dominant physical 
variable throughout. The fields are later recovered by 
a second quantization of the wave-function. The 
question may be posed therefore whether anything is 
lost in transforming between descriptions by continu-
ous field and discrete energy quanta. In other words, 
does transformation theory give a complete descrip-
tion of field quantization? Fields are always applied 
locally, whereas energy, as defined by the wave-
function, may be nonlocal in its action. It is conceiv-
able that a more fundamental understanding of source 
behavior can be achieved by adopting the field view 
throughout. We begin by analyzing the microscopic 
structure of a radiation field. 

2. MICROSCOPIC RADIATION FIELDS 
2.1 Theoretical Foundations 

The electromagnetic wave that is detected macro-
scopically is believed to have the same fundamental 
structure as the microscopic fields of which it is 
composed.(4) However, detectors have surfaces 
containing large numbers of molecules that cause 



A Field-Based Model of the Photon: Lorentz-Covariant Quantization 
 

2 

field fluctuations to be smoothed over and the radia-
tion field to be observed through averaging processes. 
Therefore, even though Maxwell’s equations are 
defined microscopically, they are applied to radiation 
fields by continuous functions whose space-time 
volumes are large compared to the wavelength and 
period in what are referred to as the macroscopic 
Maxwell equations. This approach does not take into 
consideration the instantaneous effects that transverse 
fields may have upon matter due to microscopic 
fluctuations. Because it includes macroscopically 
determined properties such as coherence and photon-
counting statistics, a macroscopic wave singles out 
the laboratory frame as being preferred in a formula-
tion of Maxwell’s laws. Thus it may not be in con-
formance with the special principle of relativity, 
which states that all coordinate systems in uniform 
relative motion are equivalent for formulating the 
laws of nature. Einstein used this principle together 
with the absolute speed of light to justify the longitu-
dinal Lorentz invariance of an electromagnetic 
wave.(5) It has not been applied to transverse fields, 
which interact at unknown speed. 

The quantum-mechanical treatment of transverse 
radiation fields is given in terms of probability 
distributions in space and time of detection events 
that are recorded by photodetectors, film emulsion, or 
other detection devices. The statistical origin of these 
descriptions is viewed as fundamental, so that a 
physical cause is not specified, or in the case of 
spontaneous emission they have an undefined cause, 
the vacuum state. If instead a theory is desired that 
describes quantization locally in terms of field, it 
must specify the precise manner by which fields 
described on the microscopic level produce a macro-
scopic wave together with its statistical properties. In 
addition, it should give both an improved understand-
ing of electromagnetic phenomena and experimental 
predictions that can be tested. 
2.2 Wave Trains 

Consider a radiation field consisting of n wave 
trains of frequency ω0 traveling in the x direction, 
where each wave train is emitted by a single molecu-
lar oscillator. The oscillators emit randomly in space-
time, causing wave trains to intersect the y, z, t plane 
at random positions. Whereas a bound electron is 
assumed to be spatially and temporally symmetric in 
its field, the wave train it emits is asymmetric. A 
formalism based on ideal measurements is required 
that is able to include these distinctions of field while 
maintaining the degrees of freedom of the system. 

If the wave train is viewed as an independent field 
source, the transverse electric fields may be expressed 

as 

 0( , ) ( ) cos[ ],E r t E r kx tω ε= − +  (1) 

where r is the distance from the wave axis. This 
equation differs from that of most field sources 
because though fields diminish with r as is usual they 
are directed perpendicularly to the plane formed by r 
and the wave axis, while magnetic fields are parallel 
to it. Vector notation on the left side of (1) refers to 
the laboratory frame. It is not used on the right side 
because the orientation of a single coordinate system 
in empty space has no meaning physically. Effects 
such as polarization must be defined relative to two or 
more microscopic coordinate systems for them to be 
meaningful. 

The use of the wave axis as the origin of the electric 
field amplitude is necessary for a local theory of 
electromagnetic radiation, and it requires a fundamen-
tal change in our interpretation of an electromagnetic 
wave. Whereas the macroscopic wave varies periodi-
cally between positive and negative field values, the 
microscopic field does not have a preferred direction 
in the plane of oscillation yz so that all fields carry the 
same sign. This distinction between points of view is 
necessary because the wave train is conceived of here 
as behaving autonomously according to a local 
formulation of Maxwell’s laws and the special 
principle of relativity such that each wave train 
contributes independently to the combined wave by 
linear superposition. 

The wave train acts as a field source with time-
averaged axial symmetry. Due to the transverse 
nature of the fields and the Lorentz contraction, fields 
that fall off as 1/r2 do not exist. Therefore the re-
quirements of symmetry and special relativity theory 
suggest that the sinusoidal field amplitudes of a wave 
train extend to infinity, diminishing linearly with r. 
The fact that a photon may be instantaneously trans-
formed by pair production into two fields of infinite 
extent lends support to the concept of an infinite 
lateral field. This is because in order for the transfor-
mation to be physically consistent there must be an 
infinite field already present to initiate it. 
2.3 Radiation Fields 

If the molecules of a radiating gas move independ-
ently of each other, then the gas has 3n spatial degrees 
of freedom. The generalized coordinates of the n 
particles, together with their time derivatives the 
generalized velocities, may be represented by a single 
point in 3n-dimensional configuration space, where 
3n + 1 is now the number of independent coordinates 
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necessary to define the state of the system. 
In the case of the radiation field we shall limit our 

consideration to transverse electric field vectors 
traveling in the x direction. This reduces the number 
of independent coordinates needed to specify its state 
to 2n + 2. Fewer coordinates cannot be used without 
introducing an external coupling or averaging proc-
ess, thereby arbitrarily restricting the number of 
coordinate frames available to describe the field, in 
violation of the special principle of relativity. Thus 
the wave trains described by (1) are assumed to 
behave independently of the averaging effect of 
optical detectors. The combined macroscopic field of 
the n wave trains is due to superposition and is 
obtained by summing the effects of wave trains 
vectorially: 

 0
1

( , ) ( ) cos[ ] ,
n

i
i

E r t E r kx t iω ε
=

= −∑ +  (2) 

where fields and amplitudes take on instantaneous but 
unobservable values. The intensity of the microscopic 
field at a point in space-time is determined by the 
relative phase of wave trains and their distance taken 
perpendicularly from each wave train’s axis. The n 
transverse fields are combined vectorially in the yz 
plane so that field reinforcement and cancellation 
occur instantaneously in response to microscopic field 
values. In order for field intensity to be observed, the 
fields must be subjected to spatial and temporal 
averaging by detectors. However, fields that cancel 
when averaged may still be present at the microscopic 
level and can influence charged matter for times on 
the order of a wave period. It is hypothesized that 
these instantaneously acting microscopic fields 
correspond to what is referred to in quantum theory as 
the vacuum state |0〉 of the electromagnetic field (see, 
e.g., Ref. 6). It anticipates the need, which will be 
discussed later, to replace fictitious harmonic oscilla-
tors with real oscillators. 

The n components in (2) describe instantaneous 
fields on the microscopic level. Since superposition 
amplifies field effects, microscopic fields may attain 
an observable level instantaneously and yet be 
unobservable macroscopically. Therefore it is impor-
tant to analyze if instantaneous fields can influence 
matter and how this would differ from the influence 
of a spatially and temporally averaged macroscopic 
field. Although classical theory as presently formu-
lated can be used to explain microscopic fluctuations 
and field superposition, it is inadequate for interpret-
ing them. In subsequent discussions all fields will be 

assumed to act microscopically and instantaneously. 

3. FIELD-INDUCED EMISSION 
3.1 Frequency Doubling 

Let a gas consisting of molecules with two allow-
able energy levels, an excited state |2〉 and a base state 
|1〉, be introduced into the monochromatic radiation 
field described by (2). The bound electron receives an 
electric field contribution from each of the wave 
trains that varies in duration, amplitude, and spatial 
orientation in the yz plane. Thus each of the wave 
trains is perceived by the electron as a pulsating 
electric field. The combined influence of all the wave 
trains is to exert a pulsating force upon the electron 
that randomly changes its strength and its direction in 
the yz plane. 

It is well known that the emission of radiation with 
frequency ω0 can be induced by incident photons of 
energy E2 – E1 = hω0, that is, by stimulated emission. 
However, even when external radiation of frequency 
ω0 is unavailable, transitions should be possible if the 
instantaneous field intensity is sufficient to raise the 
electron to a higher energy level. This may occur 
when the fields of the n wave trains are combined by 
superposition, yielding a microscopic field intensity 
that is much greater than that of any single wave. The 
combined field may then cause a transition such that 
the electron’s energy increases by an amount E2 – E1. 
In other words, the electron transition converts field 
to energy by quantizing it in the form of a photon. 
Because energy is related to field by the relation E = 
hν = hc/λ, we may expect an observable relationship 
not only with respect to energy, but in the field 
properties as well. Therefore we shall forgo the 
customary nonlocal interpretation of emission in 
terms of harmonic oscillators in order to seek a local 
connection between the incident monochromatic 
radiation field and a single electron oscillator. 

The time-averaged influence of a sinusoidal wave is 
to induce simple electron oscillation. Each wave lobe 
in one direction is balanced by a second lobe in the 
opposite direction. However, if the amplifying effect 
of superposition is just sufficient to raise the electron 
to a higher energy level, then quantization will occur. 
In fact, a coherent wave of appropriate frequency 
should resonate with the natural frequency of the 
electron between energy levels. In other words, the 
combined superposed fields first elevate the electron 
to a higher energy state and then allow it to fall back 
as the field direction changes. When the electron 
returns to the lower state, energy comes into inde-
pendent existence in the form of a newly created 
photon. 
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Upon comparing a wave cycle to the cycle of an 
electron oscillator |1〉 → |2〉 → |1〉, we see that the 
quantization of a coherent wave leads to a doubling of 
frequency. One half cycle of the electron’s oscillation 
yields one complete cycle of radiation, or photon, 
such that the frequency of the emitted radiation is 
double that of the driven electron oscillator. Thus the 
secondary radiation will have half the wavelength λ0 
= λ/2 and twice the frequency ω0 = 2ω of the reso-
nant wave. If hω0 is the only transition level avail-
able, then emission will be attenuated or cease 
entirely when λ/2 < λ0. 

The imprecision of detectors will make these emis-
sions seem to occur spontaneously and randomly. It is 
hypothesized therefore that spontaneous emission in 
thermal sources is the result of instantaneous fluctua-
tions of field at the local level such that the time and 
direction of a photon’s release are exact even though 
they are indeterminate. Photon “entanglement” may 
be interpreted in terms of superposed instantaneous 
fields as field intensity that separates or divides (i.e., 
unentangles) when field sources separate. Thus in 
contrast to quantum mechanics a clear distinction is 
made between field intensity, which is continuous, 
and quantization, which is discrete. Field intensity is 
equal to the photon energy times the number of 
photons only in the macroscopic statistical view. In 
the microscopic view field intensity must be quan-
tized by an electron transition(s) to be observed, but 
this need not happen. 
3.2 Field-Induced Energy Transformation 

Frequency doubling is most easily detected if it 
occurs in a large number of molecules simultane-
ously. This is possible by eliminating losses such that 
transitions occur elastically. In fact, frequency 
doubling has been achieved in just this situation by 
passing laser light through a crystal.(7) In the experi-
ment the incident monochromatic radiation resonates 
with driven electron oscillators within the crystal to 
produce a monochromatic beam having twice the 
frequency. A variation of this phenomenon that has 
also been documented, “two-photon” absorption, is 
caused by the superposition of coherent waves having 
different frequencies. Due to the nonlinear nature of 
the output, both effects are described quantum 
mechanically; however, their prevalence is linearly 
dependent upon the intensity of the incident radiation. 
It suggests that these phenomena have a field-derived 
origin. Clearly both the classical and quantum proper-
ties of matter are necessary to explain the occurrence 
of frequency-doubling phenomena. 

The extreme generality of the assumptions underly-
ing field-induced emission suggests that it can occur 

anywhere in the electromagnetic spectrum. However, 
if it is observed in liquids and gases, it will be as an 
inelastic process with possibly distinct characteristics. 
We may seek evidence of driven electron oscillators 
that interact inelastically by looking for sudden, 
apparently discrete, increases in the flow of energy in 
response to a small or slowly increasing externally 
applied potential difference. Exactly these features are 
prominent in a wide variety of natural phenomena 
referred to as period doubling, where each doubling 
of period represents an increase in the total energy 
flow. We may interpret the period-doubling process 
as a doubling of the number of molecular transitions 
contributing to the energy flow in response to a very 
small externally applied potential. The most precise 
of the many experiments that document this phe-
nomenon uses liquid helium to which a temperature 
difference of a mere 0.001°C has been applied.(8) The 
pattern of the amplitudes and frequencies for increas-
ing energy flow (i.e., temperature difference) forms a 
spectrum that is analogous to the spectra of atomic 
emission.(9) Many other experiments exhibit the same 
type of periodicity in what is referred to as period 
doubling during the route to chaos. The energy 
changes are discrete but are so small as to cause them 
to be undetectable. Because they occur at the molecu-
lar level they demonstrate the prevalence of quantum 
phenomena in everyday experience, and we may 
conclude that classical laws describing continuous 
forms of energy are illusory. In other words, the 
continuity of classical laws is a result of the imperfect 
nature of the instruments of detection. 

In light-scattering experiments the frequency of 
incident and scattered light is the same in the limit of 
high quantum numbers. For low quantum numbers 
the frequency of scattered light coincides with the 
characteristic transition frequencies of the atom. Since 
both the classical and quantum theories use the 
macroscopic Maxwell equations to describe radiation 
fields, the wave-packet model of photons is appropri-
ate for describing these phenomena. However, light-
scattering experiments also exhibit frequency dou-
bling.(10) Because it has no clear physical interpreta-
tion, frequency doubling is often referred to simply as 
a classical harmonic. If instead we attribute it to the 
resonant superposition of waves, then it indicates that 
the incident light is partially coherent. Its prevalence 
in the scattered light may serve then as a measure-
ment of the degree of coherence. The microscopic 
Maxwell equations are called for so that photons 
consist of a single wave cycle. By requiring bound 
electrons to react to the instantaneous microscopic 
field during field-induced emissions and indeed in all 
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electromagnetic phenomena, we reject photon models 
that include coherence properties as a part of their 
description. Therefore we seek a model of the photon 
whose formal description is given in terms of the 
instantaneous evolution of fields. 

4. RELATIVISTIC QUANTUM MECHANICS 
4.1 Field Quantization 

The Hamiltonian formulation of quantum mechan-
ics was the first to be introduced because it is based 
upon classical equations of motion of nonrelativistic 
origin. The clarity that is gained by using the particle 
point of view is lost, however, in its description of 
fields that are introduced by means of fictitious 
harmonic oscillators. It has a further disadvantage 
since transitions between two states refer to the same 
time, causing space and time to be treated differently. 
Thus even though we know that emission is Lorentz 
invariant, the processes are described by noncovariant 
means. We wish to describe quantization by a mani-
festly covariant method that treats space and time 
equivalently. 

The Dirac equation fulfills the requirements of a 
relativistic theory for spin-1/2 particles, or fermions. 
Electron transitions, including those of pair produc-
tion, are obtained by a second quantization of the 
wave-function. However, the relativistic treatment of 
spin-0 particles, or bosons, is not discussed in the 
literature. This may be rectified if the creation of a 
photon during an electron transition can be described 
relativistically, i.e., in terms of instantaneous fields. 
We may refer to this as first quantization since it 
describes photon emission by the direct influence of 
field. 
4.2 Lagrangian Formulation 
4.2.1 Path Integrals 

The initial and final states of photon emission are 
steady states, so that the coordinates are diagonalized. 
Moreover, we know from frequency-doubling phe-
nomena that field-induced transition occurs in re-
sponse to the instantaneous evolution of fields. 
Therefore it should be possible to describe emission, 
whether spontaneous or otherwise, as an exact 
process in four dimensions. The path integral formu-
lation of quantum mechanics would seem to be an 
appropriate way of doing this since it uses ideal 
measurements and is expressed in relativistic form. It 
associates a probability amplitude with an entire 
motion of a particle as a function of time.(11) Let us 
examine how this method might be used to describe 
field-induced emission. 

Consider a transition that proceeds from |1〉 at time 

T to |2〉 at time t and is caused by the superposition of 
fields. Then the trajectory that the electron follows 
initially is classical and may be described by Hamil-
ton’s principle of stationary action: 

  (3) [ ( )] [ ( ), ( )] ,
t

T
S x t L x t x t dt= ∫

where L is the Lagrangian. Although classical trajec-
tories are characterized by stationary action, the 
minimum change in action for a transition is equal to 
. Thus the emission process |2〉 → |1〉 will result in a 

change in action S2 – S1 = . 
Emission must be described quantum mechanically, 

meaning that states are defined over all space at a 
particular instant and the electron follows all paths in 
its return to the base state. The probability that the 
electron will be found in a given space-time region by 
an ideal measurement is made up of the sum of the 
contributions, or probability amplitudes, one from 
each of the paths in that region. A single path ampli-
tude will serve to illustrate how these calculations are 
to be interpreted. We define the probability amplitude 
for an electron to leave from an initial position xT in 
|2〉 and to arrive at a final position xt in |1〉 to be 

 
0

lim exp( / ) [ , , ( )] ,t T t
x x i S t T

→
= −∫ x t dt  (4) 

where S[t, T, x(t)] is defined as in (3). This equation 
establishes a close formal relationship between 
classical and quantum mechanics for an emission 
process. The time t is continuous since it refers to 
sinusoidal variations in the photon’s fields, while ε is 
the time interval between particle position measure-
ments along the path. Thus t is an internally specified 
time that determines phase, while ε is determined in 
the laboratory frame. Because the electron follows all 
paths, contributions to photon creation arise from all 
points in space. 

The Feynman path integral formulation (4) of spon-
taneous emission by a single molecule is based upon 
ideal position measurements and the existence of 
undetectable microscopic fields. Its quantum-
mechanical counterpart, the Einstein A coefficient, 
gives the probability of emission from an ensemble of 
molecules. The Einstein B coefficient referring to 
stimulated emission is discussed elsewhere.(1) 

4.2.2 Quantum Electrodynamics 
The path integral method is not able to interpret 

emission in terms of the continuous evolution of 
fields because it is based upon the particle picture and 
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employs singular fields. The use of field singularities 
and the uncertainty principle is therefore implicit to 
its description of emission processes. These are 
shown to be equivalent in Ref. 12. However, singu-
larities are a constant source of difficulty in mathe-
matical theories because they are nonphysical. 
Infinities are thereby introduced and must be elimi-
nated by using the purely mathematical tool of 
renormalization. The fact that the removal of infini-
ties cannot be accomplished in a more satisfying way 
is a continual source of irritation in physics. 

Suppose that the basis for the path integral method, 
the probability of finding a particle in a particular 
region of space-time, is interpreted not as an ideal 
measurement but as a field property. In other words, 
we use as our guiding principle the idea that field 
properties and particle properties are different aspects 
of the same thing. In a field-based interpretation the 
contribution of a path, its probability amplitude, 
would be completely determined by the field or field 
geometry in that space-time region. The infinities in 
QED may then be removed in principle by replacing 
particle properties such as mass and charge with 
continuous, field-derived quantities. In a field-based 
interpretation the reason for a cutoff frequency is that 
at extremely small distances central force fields are 
no longer representative of particle dynamics. This 
would suggest that a two-particle model is not appro-
priate.(1) In the next section we will show how particle 
properties may be dispensed with completely, leading 
to a description of electron transitions based upon 
field alone. 
4.3 Lagrangian Density 

The path integral method of quantum electrody-
namics cannot be formulated in a consistent way 
within the conceptual framework of ordinary space-
time. To avoid the well-known difficulties associated 
with renormalization we seek to interpret the emission 
process by means of fields. Because the microscopic 
fields of an electromagnetic wave always carry the 
same sign, the influence of a radiation field upon a 
bound electron may be described by a Lagrangian 
density that is a function of the fields and their first 
derivatives. We apply Hamilton’s first principle, 
giving the action integral for an arbitrary classical 
region of space-time Ω: 

  (5) ( ) ( , ) ,rS L μϕ ϕ
Ω

Ω = ∂ Ω∫ d

d

where the ϕr refer to radiation fields. The conven-
tional method is to treat the system as having a 
continuously infinite number of degrees of freedom 

corresponding to the values of the fields ϕr, consid-
ered as functions of time.(13) The fields and the 
conjugate momenta are then subjected to canonical 
commutation relations. 

In the case of frequency doubling the ϕr may be 
identified with the wave train fields given by (2). The 
superposed fields are confined to the yz plane so that 
they reduce to n fields at the location of the electron 
with 2n degrees of freedom. The fields are quantized 
by imposing boundary conditions determined by the 
steady states |1〉 and |2〉. The four-dimensional volume 
Ω is now bounded by two space-like “surfaces” of 
infinite extent, (X, Y, Z) at initial time T and (x, y, z) 
at final time t: 

 
, , ,

, , ,

( ) ( , ) .
x y z t

r
X Y Z T

S L μϕ ϕΩ = ∂∫ Ω  (6) 

The boundary conditions give the initial and final 
electron positions. This description is fundamentally 
distinct from that given by (4), where the classical 
and the quantum aspects of emission are inextricably 
intertwined. It shows how quantization evolves in two 
successive stages, the first in terms of classical fields 
and the second as a quantized field. 

To complete our analysis of the emission process 
we seek a description of the photon in free space. This 
is accomplished by a suitable change of boundary 
conditions that allows it to be expressed as an inde-
pendent entity. If, for example, the photon is emitted 
along the x axis, then its relative position is deter-
mined by the time of emission T and its speed c. The 
limits of integration are now given by the parallel 
surfaces (Y, Z, T) and (y, z, t), which are the physical 
delimitations of its field. The surfaces are spaced 
apart a distance (X – x) and (t – T), determining the 
wavelength and period, and the fields within these 
surfaces extend laterally to infinity. 

In order to conform to a local application of Max-
well’s laws and the special principle of relativity, the 
Lagrangian density that describes single photons must 
be sinusoidal with fields oriented oppositely in the yz 
plane. Single photons or wave trains cannot initiate a 
detection event because they induce symmetrically 
opposed fields that are canceled by the temporal and 
spatial averaging common to all detectors. Therefore 
field superposition is the only means available for 
initiating electron transitions in detectors. It is hy-
pothesized that detection events in optical phenomena 
are not due to single photons or single wave trains, 
rather they are superpositions of field of the type 
described in Section 3.1. The discrete detection events 



Richard Oldani 
 

7 

in optics are viewed as discontinuities caused by the 
shell model of atoms rather than as properties of 
photons. Single photons detected in phenomena such 
as the Compton and photoelectric effects are attrib-
uted not to the effect of sinusoidal fields but instead 
to instantaneous exchanges of momentum that occur 
when the core of a photon strikes an electron, i.e., 
when Y ≈ Z ≈ 0. 

5. CONCLUSION 
5.1 Theory 

The macroscopic Maxwell equations were intro-
duced into quantum theory to describe the results of 
experiments that occur in the laboratory frame. This is 
in keeping with one of the founding principles of 
quantum mechanics that only what is observable 
should be included in a theory of nature.(14) However, 
the use of macroscopic fields in this way forgoes all 
possibility of introducing a microscopic viewpoint to 
interpret unobservable subquantum processes such as 
vacuum energy, frequency doubling, and period 
doubling. By extending the usefulness of quantum 
theory into the unobservable realm of microscopic 
fields, we achieve greater versatility and understand-
ing of its statistical equations. This may allow quan-
tum mechanics to be applied more incisively and in 
wider areas of research. 

There are also theoretical reasons for avoiding the 
laboratory frame when formulating natural laws. In 
celestial mechanics data obtained and recorded in the 
laboratory frame caused astronomers to mistakenly 
use the geocentric system to explain the motions of 
planets. Much later it became evident that due to its 
greater simplicity the heliocentric system was in fact 
the correct frame of reference for describing planetary 
motion. In other words, a field law formulated on 
Earth is then referred to the point of its physical 
origin, the Sun. A more complete discussion may be 
found in Ref. 15. The same reasoning may be applied 
to quantum mechanics. Maxwell’s equations, which 
were first defined and used in the laboratory frame, 
must then be referred to the point of physical origin, 
the field sources, to be interpreted. However, the 
electromagnetic waves that compose radiation fields 
are currently defined in free space independently of 
sources. We cannot obtain more from a wave equa-
tion than what is put into it initially. We conceive of 

particles as field sources, so unless the field laws are 
formulated relative to a source, or origin, it will be 
impossible to define a consistent photon model. 
Because wave and particle behavior are currently 
described separately, they must also be explained in 
distinct ways by using the duality and complementar-
ity principles. We have avoided ad hoc explanations 
of this type by assigning an origin to microscopic 
fields, as required by the special principle of relativ-
ity. 
5.2 Experiment 

In contrast to quantum theory, the photon model 
proposed here allows for diffraction and interference 
effects to be accounted for by a local application of 
the conservation laws. The rays of light in a double-
slit interference experiment are evenly distributed 
across the screen, indicating that momentum is locally 
conserved when photons pass through the slits. The 
intensity of fringes is determined by electron transi-
tions due to superpositions of photons’ fields, as in 
(2). Thus energy is conserved locally at the point of 
electron transitions rather than statistically in terms of 
the field intensity. In this way the field intensity, 
which is continuous, is clearly distinguished from the 
field energy, which is discrete. To demand that field 
be quantized before transition occurs is too restrictive 
since it would mean that only quanta of definite 
energy could cause transition. 

The inverse square law for point sources must be 
reformulated to include a linear dependence that is 
determined by the linearly superimposed fields. This 
will be combined with the usual inverse square 
component due to the spherical distribution of rays. 
Thus it is predicted that an accurate test of the inverse 
square law will reveal that the light intensity of an 
incoherent point source decreases more slowly than 
expected. In fact, a linearly diminishing time-
averaged component of starlight has already been 
observed in what is described as the “long versus 
short” anomaly.(16) Further tests of this effect may be 
carried out in the laboratory by comparing the inten-
sity versus distance of coherent and incoherent point 
sources. 
 
Received 29 April 2005. 

Résumé 
Les équations macroscopiques de Maxwell, que la mécanique quantique utilise 
pour définir les champs de rayonnement, sont montrées être dans la violation du 
principe spécial de relativité. Ceci est résolu en appliquant les équations de 
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Maxwell microscopiquement à chacun des trains de vague du constituant n d’une 
vague macroscopique. Il est alors montré que l’émission spontanée peut être ex-
pliquée en exposant un électron de limite à l’influence combinée des trains de 
vague du n superposé. Si l’émission est induite par une vague cohérente alors des 
phénomènes de fréquence double seront prédits. Plusieurs exemples sont cités 
montrant la force de persuasion de la fréquence double dans la nature. De plus, 
la preuve suggère que cette statistique quantique est due aux variations du champ 
microscopique au lieu d’un calcul de photons. Manifestement, une description de 
covariant d’une transition d’électron est obtenue sous forme d’une densité la-
grangienne qui est alors quantifiée par l’application de limites d’intégration ap-
propriées. Un changement simple dans ces limites produit un champ indépendant 
dans l’espace libre, où le photon, qui est limité par les surfaces parallèles sé-
parées à une distance égale de la longueur d’onde et du temps. Les implications 
de ce modèle de photon sur les phénomènes d’intervention et de la loi de l’inverse 
du carré sont discutées brièvement. Un test de la loi de l’inverse du carré est pro-
posé. 

 
Endnotes 
1 This paper is primarily concerned with spontaneous 

emission. The question of stimulated emission is 
taken up in Ref. 1. 
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