
1

Noncommutation

Abstract
It is shown that the reason quantum variables do not commute is because the initial state of a quantum 

system is indeterminate.

1.0 Introduction
1.1 Commutation

The physical variables of a classical oscillator such as a vibrating string refer to point particles 
on one-dimensional trajectories so their order of multiplication as canonical conjugates makes no 
difference.  In other words, we say that classical variables commute.  This may be expressed 
mathematically as pq - qp = 0, where p is the momentum and q is the position.  
1.2 Non-commutation

In 1925 Heisenberg was surprised to find that quantum mechanical variables do not commute1. 
He expressed non-commutation formally as follows:

pq - qp = ћ                        1)      
where p and q are not numbers; but rather arrays of quantities, or matrices.  The diagonal elements are 
steady states while the off-diagonals are either absorptions or emissions.  The complete matrix has an 
infinite number of components and corresponds in its entirety to one of the dynamic variables of 
Newtonian theory.  Whereas classical variables are defined by a single number each component of the 
matrix is associated with any two of an infinite number of orbits.  

2.0 Quantum mechanical systems
2.1 Energy quantization

A physical system commonly used to illustrate non-commutation, and also the one used by 
Heisenberg, consists of a hydrogen atom stimulated by an electromagnetic wave.  If the electron is 
raised into a higher orbital so that the fields are quantized a photon is irreversibly emitted2.   This may 
be shown schematically by using an energy diagram (figure 1), where 1 and 2 denote energy levels and 
arrows refer to transitions.  On the left the energy of an electron increases and then decreases, while on 
the right the reverse occurs.  In each case a photon is emitted.  The photon's energy is given by the 
energy difference between the two energy levels.  A single energy level, an electron's energy state, has 
no physical significance since it cannot be detected.  Energy states can only be detected in pairs by 
means of energy differences.  Detection is possible when a photon is emitted so that emission refers to 
both energy states3.   The two processes are identical when described in terms of energy differences.  

2.2 Angular momentum of an atomic system
Now consider what happens when the same two energy exchanges are analyzed in terms of the 

momentum.  Using Compton's equation for the momentum of a photon, p=h/λ, the first exchange may 
be expressed:
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Angular momentum increases by an amount ђ when the electron is excited and is then reduced by the 
same amount when the atom returns to its ground state.  Thus this type of photon emission ends up with 
the atomic system in its ground state.  

The energy exchange on the right of figure 1 is described by the following expression:

The electron begins in an excited state, reverts to the ground state by emitting a photon, and is excited 
once again.  Thus the final state of the atomic system has an angular momentum that is greater than the 
ground state by an amount ђ. In both cases 2) and 3) a photon is emitted, but because the order of the 
physical variables changed the angular momentum of the atomic system described by 3) is greater than 
2).   Thus the physical variables do not commute.  It is not possible to avoid non-commutation by 
anticipating the order of physical variables because the state of a quantum system is unobservable.  We 
conclude therefore that quantum mechanical variables do not commute because the initial state of a 
quantum system is indeterminate. 

3.0 Conclusion
Equations 2) and 3) may also be used to interpret the Heisenberg energy matrix described in 1.2. 

Equation 2) represents the diagonal elements of the matrix which correspond to "steady states" in the 
Heisenberg interpretation.  They describe the change  of angular momentum that occurs when an 
electron leaves and then returns to the same orbital.  Equation 3) represents the off-diagonal elements 
of the matrix. 
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1 An historical account is found in J. Mehra & H. Rechenberg, op. cit., p. 226.  M. Jammer, The Conceptual  
Development of Quantum Mechanics 2nd ed. (NY: Tomash, 1989), p. 213.

2 For purposes of discussion only two orbitals are considered.
3 Because there is no such thing as zero energy absolute energy values do not exist.


