
Mass Changes and Potential-Energy Changes Unified  
 
 In conventional SRT, mass is said to increase with speed according to the factor γ 
in the equation . Also, the energy of m is expressed E = mcomm ×= γ 2. It is customary to 
identify E in this latter equation as the combination of rest energy and kinetic energy.  
This note examines the implication of assuming E also includes a particle’s potential 
energy, and the additional implication of ‘potential mass’ in all m = E/c2.  The Bohr Atom 
Theory is used for a test.    
  
Energy Storage Between Two Charges 
 

The force f12 between two charges can be expressed as the rate of change of 
energy with respect to distance: 
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Thus, Coulomb’s Law may be considered as a simple ordinary differential equation of the 
first order [1]. For two charges of magnitude e its solution is: 
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where k = 1/4πεo, r is the distance between the two charges, and C is a constant. 
 It is customary to set C = 0 and deal only with relative changes in E12. This note 

examines the implication of a different choice for C. Conventional physics takes the rest 
mass of an electron or positron as constant and separate from the electric field.  By 
contrast, this author chooses instead to relate the mass to the field through the parameter 
C. The proposed relationship is different for like versus unlike charges. 

For unlike charges (say an electron and a positron, which have equal charge 
magnitude e but opposite sign), this author assumes C(unlike) = 2mec2. This assumption sets 
the potential mass of the electric field equal to the isolated rest masses of the two charged 
particles, in effect, making them “one and the same”. 

To analyze like charges (say two electrons), consider a scenario where a positive 
and a negative charge, both of magnitude e, are bound closely together, and relate to a 
third charge, also of charge e, at some distance. If the ‘bound charges’ were brought from 
a near infinite to a very near zero distance with respect to the third charge, the unlike 
charge relationship would lose an amount of energy equal to 2mec2 while the like charge 
relationship would gain 2mec2 of energy. This is because at any distance the bound-
charge system experiences no electrical force with the third charge, and thus no change of 
total energy. The energies of each type of relationship (like and unlike) compliment each 
other. So at near infinite distance, in the like charge relationship the energy must be Eee =  
ke2/r → 0, and then Clike = 0. 

Continuing the development of formulae for the unlike-charge electron-positron 
system and using the above assumption: 
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The distance r obtained by setting Eep = 0 in (3) is: 

 1 



                                           2cm2
ke

e

2

=r  

The author represents this distance r by the symbol Rk. It is one-half times the commonly 
known electron radius, re = ke2/ mec2: 
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After all the values are substituted in (4), Rk = 1.4089697x10-15 m. 
Also, the author defines the symnbol Ek to be C for unlike charge relationships: 

                                                        Ek ≡ 2mec2                                                              (5) 
After values are substituted into (5), Ek = 1.6374529x10-13 J. Substituting (4) and (5) into 
Coulomb’s Law for charges of magnitude e, we have force: 
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and energy  (3): 
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Our first observation of (7) is that energy Eep  is positive for all r ≥ Rk. Also, the 
corresponding Eee would be positive for all r. The author defines the energy, Eep to be 
zero for r < Rk (negative energy does not exist, except mathematically). Eq. (7) describes 
the stored potential energy in the electron-positron system. Dividing (7) by 2c2, the 
potential mass of one of the particles in the electron-positron system would then 
becomes: 
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Eq. (8) shows that potential mass could vary as a function of r. 
Table 1 collects the formulae thus far. These formulae are presented first so that 

new constants, Ek and Rk, could be used in the development below for support of the 
potential mass variation concept. For example, if the charged particle has a mass greater 
than me, like a proton, then its mass is increased or decreased according to mp – meRk/r.                  
 

Table 1. Static force, energy, and mass formulae for two particles with charge 
magnitude e.                                                    
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* Increase or decrease in quantity from whatever it starts with at very large r. 
 

                                                                                                               
Bohr Theory as Support for Mass Variation Concept 
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 A computer model of the Bohr Atom was written using the formulae of Table 1, 
Bohr’s assumption that the total angular momentum is nh, the formula for centrifugal 
force, relativity, and some Dirac factors (very minor modification to Bohr Theory). Table 
2 gives the Bohr-atom computer-model results for light spectral frequency and mass 
variations  between energy states n = 1 and n = 20.  The measured wavelength is 914.039 
and the unit of mass is the kg.  
 

Table 2. Bohr-atom computer-model results. 
Assumption         Computed Å   %error  ‘Mass’ of photon (kg)  Mass loss of atom (kg) 
Mass constant      914.024          0.0016   2.418164855x10-35      (2.418358396x10-35) 
Mass varies          914.0484        0.0010   2.418100381x10-35       2.418100396x10-35 
 
 There is little difference in the computed light wavelength between energy states 
n = 1 and n = 20 whether one assumes that the mass varies (due to potential energy 
changes), or that it is constant. However, Table 2 shows that in Bohr Atom Theory, the 
mass-constant concept is inconsistent with mass and energy conservation: the total mass 
of the atom actually increases when the photon is emitted.  By constrast, the concept of 
mass variation due to potential energy changes is consistent with energy-mass 
conservation; i.e. the mass loss of the atom is equal to the mass-energy equivalent of the 
emitted photon. Thus, this analysis supports the mass-variation concept.                                                  
 As the electron of the hydrogen atom falls from an excited state to a lower energy 
state, its potential mass is converted to kinetic mass. It has a higher speed. This potential 
mass loss is roughly equal to the kinetic mass it gains so the total mass of the electron 
remains nearly constant. The energy for the emitted light photon comes mainly from the 
potential mass loss of the proton. Also, we see in this analysis that potential mass of the 
electron can be augmented with kinetic mass.  
 
Conclusions 
 

1. The concept of mass variation with potential energy variation is not inconsistent 
with energy-mass conservation in Bohr Atom theory. 

2. The concept of there being stored energy-mass between unlike charged particles 
at distances greater than Rk, including distances approaching infinity, is supported.  

3. The static charge formulae of Table 1 are useful.  
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