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Below are listed eight facts which indicate that outer space is not a empty vacuum. These eight different 
phenomena of nature all give evidence that leads one to doubt that the outer space surrounding us a true va-
cuum. 

1. Space has temperature, and a vacuum by the nature not can have temperature. 

2. In space there are the whirlwinds, one of which our Galaxy (Milky Way). Whirlwinds on the Earth in wa-
ter and in the atmosphere have been well known (Cyclones, anticyclones, hurricanes). And for a long 
time whirlwinds have been known in Jupiter’s atmosphere. Whirlwinds in Saturn’s atmosphere and Nep-
tune’s atmosphere have been found recently, whirlwinds on the Sun are also known. In a vacuum there 
are no whirlwinds as far we know. 

3. A viscous liquid has convection cells, for the first time described by B.H. Benard and John William Strutt, 
and 3rd Baron Rayleigh.   Such cells are well-known to be much like honeycombs. These convection  
cells, whose parameters depend on the criterion of validity of John William Strutt, 3rd Baron Rayleigh 
and Ludwig Prandtl have been repeatedly observed in laboratories for a variety of liquids of various de-
grees of viscosity. Huge cells, outwardly similar to huge honeycombs have been found out on The North 
Pole of Saturn in 2007 and on the South Pole of Saturn in 2009. The least diameter of such honeycombs is 
approximately 25,000 kilometers. Considerably larger cells having also the form of honeycombs have 
been found for the first time by the Estonian astrophysicist Jaan Ejnasto in 1968. The defining size of these 
cells is nearly 100 - 200 Mpc. And this one additionally strongly indicates that space  is a definite envi-
ronment, but not a vacuum. 

4. In addition to liquids and gases, space contains various emptynesses and these mptinesses  are of the or-
der 10-30 Mpc., Voids, and the larger of order 150-200 Mpc., Supervoids. In 2008 an emptiness whose size 
attained 3000 Mpc. has been found. 

5. In 2009 in space solitons have been found . It is ell-known that solitons exist in  liquids, in the atmosphere 
of the Earth, in  optical materials and finally also in space. 

6. In water and air, the well-known phenomenon of the attached weight exists. A similar phenomenon is 
observed  in accelerators in which a vacuum is almost realized. 

7. In 2010 it was shown that the hydraulic jump-phenomenon, which occurs in the bottom bief of dams, is a 
good physical model of a white hole. This term names a certain area through which nothing passes. 
White holes have not found yet experimentally in outer space, however their existence is postulated cer-
tain physical hypotheses. This is one more analogy between liquid and space. 

8. In 2010 it was discovered that the biggest ring of Saturn – through which pass huge waves even more 
similar to the huge waves arising in space and determining the spiral structure of galaxies. 

 

1. Introduction 

Certain of these phenomena are discussed in more detail in a 
monograph by A. V. Rykov [6].  There is an English translation of 
this book. We note that one of the above listed facts speaks of the 
phenomenon which began to be discussed soon after the writing 
of this monograph. Above we have noted that many profession-
als and interested people having a huge interest in these matters 
have viewed on the Internet these unusual photos taken from 
onboard the spaceship Cassini in 2007 and 2009. They found 
huge true hexagons on the northern and southern poles of the 
planet. In April 2010, the physicists Ana Claudia Barbosa Aguiar 
and Peter Read from Oxford University in Britain, observed a 
similar kind of a hexagon in their laboratories. But there was 
even earlier a hexagon on Northern Pole of Saturn found early in 

1978 during the flight the Voyager.  At the time, the unusual 
form was written off as a nearby storm in the atmosphere of Sa-
turn. New results, in particular that a hexagon has been photo-
graphed by Cassini in  high resolution and also without a storm 
nearby furnished reason to believe that hexagon formation was 
caused by hydrodynamic effects in the atmosphere of Saturn. In 
the seventies of the 20th century the Estonian astrophysicist Y. 
Einasto together with M. Yivaar and Togo has shown that con-
gestion Galaxies tend to be grouped into thin, extended forma-
tions, called a congestion of galaxies which being joined and 
branching form in space cellular structures. By the end of 20 cen-
tury the research of the Estonian astrophysicists Y. Einasto, 
M.Yivaar, A. Saar and the American astrophysicists P. Pibls, O. 
Gregory and L. Tompson have shown that the most large-scale 
heterogeneity in distribution of galaxies has a cellular character. 
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In the boundaries, these cells, galaxies, and their congestions are 
found, but inside emptiness are concentrated.  The sizes of the 
cells are 100-200 Mpc, the thickness of the boundaries of the cells 
is 3-4 Mpc. That in space such cells are found testifies in favor of 
these being there. 

Certain effects similar to the hydrodynamic effects take place 
in the atmosphere of Saturn. In July, 2009 a member of the staff of 
UNESCO, Paris Y. Einasto, received the Marseilles Grassman 
award for their foundational contributions in the description of 
the cellular structure of the Universe. In that organization, he has 
originated the idea that the presence of such effects is caused by 
outer space not being a vacuum, but being filled by a dark sub-
stance. There are now no answers to questions: what is the dark 
substance and why it has not been discovered until now (March 
2011)?  There are only hypotheses. 

As a result of numerous assumptions, there is an opinion 
which divides physicists, and the author can become mixed up 
with neutrino theory.  In order to approach  the resolution of this 
question, we will consider the theory of convection cells in the 
light of the evidence contained in the works stated in/1-5/. In 
that place, this approach is referenced in the extensive bibliogra-
phy concerning this question. 

Organized research concerning convection movements in a 
horizontal liquid layer begins with Benard's works in 1900.  In 
originating the explanation of the occurrence a pole in of the six-
coal cellular structures similar on honeycombs, Benard analyzed 
a role of viscosity of a liquid and superficial tension. 

In the first theoretical research concerned the problem of the 
occurrence of convection in a horizontal layer of a liquid, Ray-
leigh investigated the case of two free borders in 1916.  He has 
established that the transition from a heat conductivity mode 
(thermo diffusion or a conduction) to mode convection in a hori-
zontal layer of a liquid of a finite thickness, when warmed from 
below, occurs at some critical value. 

This dimensionless constant was named subsequently the 
number of Rayleigh and can be given as 
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In this paper, the symbol     will designate the dimension of the 

quantity specified inside the brackets.  The standard abbrevia-
tions m for meters and gr for temperature gradient will be used. 

   Liquid volume expansion factor, -1gr    . 

g   Gravity acceleration, 2m secg    , on Earth 29.81m sec . 

t   Temperature difference between the bottom and top sur-
face of a layer, grt    . 

d   Thickness of a horizontal layer, md    . 

   Kinematic viscosity of a liquid, 2m sec    . 

a   Thermal diffusivity of liquid heat conduction, 2m seca    . 

The relation of the last two parameters 
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is called the criterion of Prandtl for the given environment.  Ray-
leigh has constructed a theory of convection cells in a liquid 
layer, ignoring the phenomenon of the superficial tension in a 
liquid.  The necessity of the consideration of a gradient superfi-
cial tension has originally resulted from (M. J. Block’s) work.  He 
has shown that cellular convection exists in a horizontal layer. 

This can occur when the temperature gradient is 10 times.  
This is less, than it is required under the theory of Rayleigh.  As a 
result of M. J. Block's work we have come to the conclusion that 
the cells of Bernard observed in experiments, were formed as a 
result of a change of superficial tension, which it is caused by 
non-uniformity of temperature on a liquid’s free surface. 

   Tangential force on area unit surfaces, 2N m Pa     . 

, ,x y zV V V  Projections of liquid velocity, m secV    . 

   Hydrodynamic factor viscosity, 3N-sec m    . 

Then concerning the conditions in a free surface at 0zV  , we 

can write 
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Using the equation of divergence of liquid 
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And differentiating first Eq. (3) with respect to x and then se-
condly with respect to y, we obtain 
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According to [1], the superficial tension it is linearly con-
nected with temperature, and consequently 

   0t t    , (6) 

where 
t
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is the temperature factor of the superficial ten-

sion. 
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Such parity has been observed by F. A. Garifullinym [1].  It is 
impossible to call Eq. (7) a formal equation because this equality 
includes two unknown functions  , ,t x y z and  , ,zV x y z  in-

volved in this equality. 
We will show further, how in our opinion, it is possible to 

add to it, and to further to solve it.  We have already mentioned 
above that the true hexagon is the most widespread form of sta-
tionary convection cells.  And concerning them, we now will 
terminate our discussion.  The defining the size of such cells is 
their diameter.  For example, the horizontal diameter of a honey-
comb cell made of wax, is nearly 5.3-5.7мм. 

If made from this material by a drone, such a cell is approx-
imately 1.5 times larger. The similar size of a cell in soap water 
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was described by James Thomson in 1888. I have already dis-
cussed the sizes of convection cells in the atmosphere of Saturn 
and in the large-scale structures of the Universe. 

So our problem consists in this: to introduce the equality (7) 
and on the basis of it to construct an algorithm, allowing us to 
find the defining sizes of convection cells R. 

Knowing the radial size of a cell, it is possible to observe the 
configuration of a cell, which will look like a true hexagon. It is 
possible to write this hexagon in Cartesian coordinates as 

   22 3y R x   at 
2
R

R x     

 2 23
4

y R  at 
2 2
R R
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Let's return to the definition of the size of convection cells; to 
begin with let's convert Eq. (7) to cylindrical coordinates, and 
then we will consider the idle time case, it being an initial prob-
lem which is axially symmetrical. Then instead of (7), we have 
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r  radial coordinate r m   . 

d  vertical thickness layer in which occurs convection. 

zV  vertical projection of speed stream of a liquid. 

 ,z zV V r z dimension is already known. 

t   axial symmetrical temperature in the specified layer of a 
liquid  ,t t r z . 

The stationary temperature field in such layer of a liquid sa-
tisfies the following equation. 
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Here one assumes that it is in the vertical that convective heat 
transfer is carried out, and this convection is in the radial direc-
tion, and it is characterized by the factor known as the thermal 
diffusion a. 

As a result, we have obtained a system of two equations in 
partial derivatives, from which basically it is possible to find two 
unknown functional solutions which satisfy the known condi-
tions on boundaries of the area, which can be written down as 

   1,0 ; 0t r t r    . (11) 

Here 1 constt   is the so-called temperature of input. We will 

consider it constant.  As Eq. (10) includes the first derivative with 
respect to the vertical co-ordinate, it is possible to specify only 
one condition on the bottom surfaces of a layer 0z  , the tem-
perature on a free surface of a layer z d , should be obtained in 
the course of the solution of the system of the Eqs. (9, 10). 

Upon approaching infinity, the temperature and the tempera-
ture gradient fade and consequently let's set 
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And these conditions will be enough to find distribution of tem-
peratures in the investigated layer. We approach the solution of 
this problem through the use of a method of consecutive approx-
imations. As a first approximation in Eq. (10) it is assumed that 

  0, constzV r z V  , as then Eq. (10) with boundary conditions 

(11) and (12) determine the analytical method.  Actually, follow-
ing [7], let's apply to the equation 

  
2

0 2
1

; 0 ; 0
t t t

V a z d r
z r rr

   
          

 (13) 

the transformation of Hankel 
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with the associated equation 
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Further we will magnify both members of Eq. (13) by a factor 
 0r J r and we will integrate over r with limits from 0 to  .  As 

a result, the left side of (13) 
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will be displayed so we can integrate it once by parts. As a result 
we have 
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Here 0I , put after expression means that in  0
t

ar J r
r
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 this 

expression should be substituted into first using r    and then 
substituted into using 0r  , and further the second obtained 
expression should be subtracted from the first to evaluate this 
definite integral. 

Using the second of the boundary conditions (12) to find the 
integral of the right side of (16), once again we will apply integra-
tion by parts.  And then using the first of the boundary condi-

tions (12),  0 0 0
t
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, we will obtain 
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Here in the integral on the right, we substitute for this 
integral from the equation: 
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This includes the same expression  2
0J r  , but  0J r is 

Bessel's function of zero order, and consequently 
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and using this result Eq. (13) will be transformed to the form 
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whose solution is obvious. 
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The constant 1C  we will be determined by the boundary condi-

tion (11).  Then we have 
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And, using the reference equation, we will find 
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According to (9) and (13) we write 
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For zV , we will write down following boundary conditions: 

the first 

   0,0zV r V  (23) 

means that on the bottom surface convection the stream has con-
stant speed.  And the second 

  , 0zV r d   (24) 

means that on a free surface the z d  and the vertical compo-
nent of the convection a stream vanishes.  In satisfying these 
conditions, we will arrive at a first approximation.  The distribu-
tion of the speeds in the investigated layer is given by 
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where 
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The convection cells’ radii will be found from the condition that 
the radial component of a convection stream on the external bor-
der of this cell.  At it is, if Rr  , this vanishes, that is, 

 ( , ) 0rV R z  . (28) 

The radial component of a convection stream will be found 
from the condition that the divergence, written down in cylin-
drical co-ordinates is 
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 is already known to be 
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The last expression is not to conflict with the subsequent state-
ment. 

Let's assume  ,f z r  and the transcendental equation interest-

ing us, from which basically it will be possible to find the size of 
a cell, can be written as 

  
0

, 0
R

r f r z dr  . (31) 

The solution of such a transcendental equation can be unique 
or not, and it reflects that fact that one or several cells will pos-
sess the same axis of symmetry as the basic cell.  Also this will 
take place in each of the subsequent cells. This is visible, for ex-
ample, in photos received by the probe Cassini. 

I will remind the reader that this only the first approximation. 
Actually, having obtained the temperature distribution in a layer 
from expression (20), it is necessary to substitute it, not into (13), 
but into (10), and to re-obtain a new distribution of speeds, which 
then again is substituted into the equation (7) and so on. And 
such a problem can be only solved numerically. The obtained 
first approximation can be iterated so as to compute the result 
accurately enough by means of the writing of special programs 
for the computer. Such programs will allow us to estimate the 
sizes of cells, knowing all the initial parameters. It will allow us 
to test these programs, comparing their results to the data from 
the experiments stated [2-5].  And then it is possible to begin to 
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solve the following problem: knowing the sizes of convection 
cells in the atmosphere of Saturn and in Space, then to (probably) 
estimate the initial parameters of the environment: the viscosity, 
the thermal diffusivity, the factor of the superficial tension, the 
temperature convection of a stream, the initial speed of a convec-
tion stream, and the thickness of a convection layer. The parame-
ters of the atmosphere of Saturn (probably) will be possible to 
estimate in advance, and the parameters of the dark matter will 
be possible, most likely, to find only in such a way. 

In addition, we will return once again to numerical realization 
of the first approach. The cruz of the matter is that the Eq. (20) 
and the subsequent equations contain the integral 
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which following [8, p. 698, № 14], is equal here to 
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denominator there is a gamma function evaluated at zero which 
at this point contains a singularity that complicates the further 
use of this expression.  But it is possible to considerably simplify 
the Eq. (20) and the subsequent equations, if one assumes that 

   1
2 2

,0
t

t r
r







 (32) 

where  and   are some parameters, m    and m    .  This 

means that the temperature on the bottom surface is not constant, 
and a local variation of temperature takes place..  After being 
heated, the situation is closer to the physical picture of the phe-
nomenon being considered. 

According to [8, p. 696, № 6.554], we have 

 0
2 2

0

( ) 1
exp( ), 0, 0

r J r dr

r


  





   
 .  

And the Eq. (20) will be transformed into the form 
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t r z t z J r d
V
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

   , (33) 

which is much more elementary than (20). And the Eq. (30) will 
become 
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 (34) 

From the equation of indissolubly and from the condition 
that, on the external border cells, the radial component of the 
convection stream is equal to zero, we have  
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( , ) ( , ) 0

R
z

r
V

V R d r r d dr
R z


  

  (35) 

where R is the radial size of the convection cells. 
According to [8, p. 648, № 5.56], the last integral is possible to 

be expressed  in the form of analytical dependence and conse-
quently we will have a transcendental equation from which basi-
cally it is possible to obtain 
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 (36) 

The radial size of the convection cells R is unknown to us.  In 
Eq. (36),   is a dimensionless variable of integration. 
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