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The structure of the Poincaré group gives, under all conditions, an equation of field helicity which
reduces to the Maxwell equations and also gives cyclic relations between field components. If the
underlying symmetry of special relativity is represented by the Poincaré group, it follows that the
Maxwell equations and the cyclic equations are both products of special relativity itself, and both
stem from the equation of helicity. This means that the symmetry of special relativity demands the
existence of longitudinal solutions of Maxwell’s equations under all topological conditions. In
particular, the fundamental spin component of the electromagnetic field is B(3), a longitudinal
magnetic flux density which is free of phase and which is a topological invariant.
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1. Introduction

The first principle on which this paper is based is that
a theory be developed according to its fundamental un-
derlying symmetry: for the electromagnetic field this is
the symmetry of special relativity [1–5], a sub symmetry
of general relativity. We accept the Poincaré group as the
group of special relativity, with ten generators and two
invariants [6]. The electromagnetic field is considered to
be a physical entity which is described by symmetry
guided relations between group generators according to
the following prescription [1–5]. Rotation generators are
those of magnetic field components; boost generators are
those of electric field components; translation generators
are those of four potential components. It is shown in
Sec. 2 that the Lie algebra of the Poincaré group leads to
relations between generator eigenvalues which, using the
above prescription, are consistent with the Maxwell
equations and recently inferred [1–5] cyclic relations
between field components.

Section 3 develops a helicity equation [7] from the
underlying symmetry of the Poincaré group as given in
Sec. 2. This equation has been inferred independently by
Dvoeglazov [8] and by Afanasev and Stepanofsky [9],
following the introduction of relativistic field helicity by
Ranada [10], and the earlier realization that helicity is a
topological invariant [11]. The transition from the static
symmetry characteristics of the Poincaré group to an
equation of motion (the helicity equation) is accom-
plished through the transition from momentum to coor-
dinate representation Pm  is replaced by i∂ µ, where Pµ is
the translation generator. This is synonymous with the

well known quantum hypothesis, which is a successful
calculating prescription in field theory and wave me-
chanics. This transition changes the fundamental group
identity [12],

P Wm
m~

= 0 (1)

to

i w∂ µ
µ~ = 0 (2)

giving the structure of the helicity equation (2) directly
from the operator identity (1)—the orthogonality identity
of the Poincaré group [12]. Here ~W µ  is the Pauli
Lyuban’ski (PL) operator and ~wµ  its eigenvalue. The
operator ~W µ  generates relativistic helicity, being the
tensor product of rotation and boost generators with Pµ.
Using the prescription developed in Sec. 2 it generates
the relativistic field helicity vector. The Maxwell equa-
tions and cyclic equations follow from this principle,
which applies the complete known symmetry of special
relativity [12] to the electromagnetic field.

Section 3 uses the principle to show that the helicity
of the field in the vacuum (charge free region) is given by
a PL vector whose only non-zero component is propor-
tional to B(3), and so the helicity of the field vanishes if
B(3) vanishes, as asserted in the received view of electro-
dynamics [13–15]. However, if the helicity vanishes,
there remains no physical or topological entity, i.e., there
is no field present at all, a self inconsistency. There exists
therefore a topologically invariant B(3) if there exists a
topologically invariant helicity. Thus B(3) is the phase free,
invariant, spin field of vacuum electromagnetism.
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It is no longer possible to accept the received view
(transverse components only) because this view leads to a
self inconsistency which cannot be rectified without the
introduction and recognition of B(3) as the fundamental
magnetic flux density. Transverse components exist be-
cause B(3) exists, and B(3) is the simplest representation of
the electromagnetic spin. Analogously, one axis of the
Cartesian frame exists because the other two exist, and so
on in cyclic permutation: in the last analysis therefore the
reason for the existence of B(3) is as simple as this.

2. Symmetry, B Cyclics and Maxwell Equa-
tions

In order to develop the structural characteristics of the
Poincaré group the opening part of this section is devoted
to its Lie algebra [12], i.e., to the commutative properties
of Pµ and ~W µ . It will be shown that the complete Lie
algebra is,

P Pm n, = 0 , (3)

P Wµ ν, ~ = 0 ,

for all µ and ν, and,
~ , ~ ~ ~ ~ ~ ,
~ , ~ ~ ~ ~ ~ ,
~ , ~ ~ ~ ~ ~ ,
~ , ~ ~ ~ ~ ~ ,
~ , ~ ~ ~

W W i W P W P i P W P W

W W i W P W P i P W P W

W W i W P W P i P W P W

W W i W P W P i P W P W

W W i W P W P i P

0 1 2 3 3 2 3 2 2 3

0 2 3 1 1 3 1 3 3 1

0 3 1 2 2 1 2 1 1 2

1 2 3 0 0 3 0 3 3 0

2 3 1 0 0 1 0

= - - = -

= - - = -

= - - = -

= - = -

= - =

e j e j
e j e j
e j e j

e j e j
e j ~ ~ ,

~ , ~ ~ ~ ~ ~ .

W P W

W W i W P W P i P W P W
1 1 0

3 1 2 0 0 2 0 2 2 0

-

= - = -

e j
e j e j

(5)

In order to derive Eqs. (3) to (5) we have used the
commutator relations

P J i g P g Pm r s m r s m s r, ,= -c h (6)

and
~ , ~ ~ ,W J i g W g Wm r s m s s m s r= -e j (7)

where g m n  is the metric tensor. In these relations the

Pauli Lyuban’ski vector is defined by [12–15],
~ : .W J Pm m n r s

n r se= -
1
2

(8)

Therefore and the PL four-vector is made up of sums of
quadratic products of operators (group generators). Its
~W0  component is the scalar helicity operator in particle

physics. The P and ~W  vectors form the two Casimir
invariants [12–15]

~ ,
~ ,
~ ,
~

W J P J P J P
W J P K P K P
W J P K P K P
W J P K P K P

0 1 1 2 2 3 3

1 1 0 2 3 3 2

2 2 0 3 1 1 3

3 3 0 1 2 2 1

= - - -

= + -

= + -

= + -

(9)

of the Poincaré group, the mass and spin invariant. All
particles, including the photon, are classified in terms of
these invariants.

In order to arrive at this Lie algebra we have used the
rules governing the algebra of commutator:

A B A
BC A C B C

AB A B A C
DE BC B EC E B B D E BD C

, , ,
, , , ,

, , , ,
, , , , , ,

=
= +

+
= + +

The algebra (3) and (4) shows that all components of Pm

commute with all components of ~Wn o-
Pn  in cyclic permutation. Within this seemingly

simple structure occur, however, cyclic relations such as,

P W i P P

P W i P P

P W i P P

1 2 3 0

2 3 1 0

3 1 2 0

, ~ , ,

, ~ , ,

, ~ , .

=

=

=

(11)

There are also cyclic relations inherent in the sub al-
gebra (3) to (5), in which the rotation matrix is defined as
a matrix of generators as follows,

J

K K K
K J J
K J J
K J J

J

K K K
K J J
K J J
K J J

m n

m n

: ,

:

=

- - -

-

-

-

L

N

MMMM

O

Q

PPPP

=
- -

- -

- -

L

N

MMMM

O

Q

PPPP

0
0

0
0

0
0

0
0

1 2 3

1 3 2

2 3 1

3 2 1

1 2 3

1 3 2

2 3 1

3 2 1

(12)

giving the duals:

~ : ,

~ :

J J

J J J
J K K
J K K
J K K

J J

J J J
J K K
J K K
J K K

m n m n r s
r s

m n m n r s
r s

e

e

= =

- - -

-

-

-

L

N

MMMM

O

Q

PPPP

= =
- -

- -

- -

L

N

MMMM

O

Q

PPPP

1
2

0
0

0
0

1
2

0
0

0
0

1 2 3

1 3 2

2 3 1

3 2 1

1 2 3

1 3 2

2 3 1

3 2 1

(13)

In the lightlike condition

P P P P Pm = =0 0 3 00 0, , , ,a f (14)

and
~ ,

~ ,
~ ,

~ .

W J P
W J P K P
W J P K P

W J P

0 3 3

1 1 0 2 3

2 2 0 1 3

3 3 0

= -

= +

= -

=

(15)

In this condition therefore,
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~ , ~ , ,W W P J K J K1 2 0 1 2 2 1 0= + - = (16)

which is consistent with the Lie algebra of the Lorentz
group

J J K K K J K J1 2 1 2 2 2 1 1 0, , , ,+ + + = (17)

Equation (16) is also consistent with
J K J K1 2 2 1 0+ = - = . (18)

The overall Lie algebra also contains an E(2) structure,
namely,

~ , ~ ~ ~ ,

, ~ ~ ,
~ . ~ ,

W W i W P W P

J W iW

W J iW

1 2 3 0 0 3

3 1 2

2 3 1

= +

=

=

e j
(19)

which in the lightlike condition becomes
~ , ~ , , ~ ~

~ , ~
,

W W J W iW

W J iW
1 2 3 1 2

2 3 1

0= =

=
(20)

the planar Euclidean group. The latter is the little group
in the lightlike condition [12–15]. It is seen that J3  is
non-zero and in the field interpretation B(3) is non-zero
in the E(2) group.

If there is a rest frame,

P Pm = 0 0 0 0, , ,a f , (21)

and Eq. (5) becomes an O(3) structure
~ , ~ ~ , ~ , ~ ~

~ , ~ ~
,

W W iP W W W iP W

W W iP W
1 2 0 3 2 3 0 1

3 1 0 2

= =

=
(22)

In the rest frame, however,
W W J P

W J P W J P
0 1 1 0

2 2 0 3 3 0

0= =
= =

, ,
, (23)

and the O(3) structure (22) becomes the cyclic Lie algebra
of the rotation generators of the Lorentz group. There-
fore a complete knowledge of the Lie algebra shows that
the E(2) and O(3) groups can be generated as sub algebra
of the Poincaré group’s Lie algebra.

The complete PL vector in the lightlike condition is
therefore

W P J Jm = -0 3 30 0, , ,a f , (24)

and if we accept the constraints,
J K J K1 2 2 1= - =, , (25)

which in the field interpretation are given by the Faraday
law of induction, i.e.

cB E cB E1 2 2 1= - =, . (26)

This is a simple illustration of the fact that the experi-
mentally verified Faraday law of induction leads to the
conclusion that a non-zero B(3) is needed for nonzero
field helicity. Since helicity is a topological invariant, B(3)

is non-zero topologically.
If we accept the first principle that all theories in spe-

cial relativity are based on the underlying Poincaré group,
we could proceed logically by deriving the equations of

the electromagnetic field from the group structure, as just
illustrated for the Faraday law. The Lie algebra includes
that of E(2) and O(3), and applies to all physical entities
and theories within special relativity, using vectors and
spinors. The notion of the relativistic helicity of the clas-
sical electromagnetic field is based on the existence of Pm

and ~Wm , and leads to the existence of B(3) as a topological

invariant. The same group structure shows that B(3)* must
always be related to B(1) = B(2)* topologically, and this
determines the way in which B(3) interacts with a fermion
[16] as in the inverse Faraday effect. Dvoeglazov has re-
cently developed several theories based on field and parti-
cle helicity and chirality [8]. Any generalization of the
Maxwell equations must take place within the Poincaré
group if we proceed within special relativity. In general
relativity the underlying symmetry group becomes the
Einstein group.

Part of the Lie algebra given above has the structure of
the four Maxwell equations, and another part gives the
structure of the cyclic relations between field components
now known to be an intrinsic feature of electromagnet-
ism [1–5]. For example, consider the commutators,

P J iP P J iP
P K iP

2 3 1 3 2 1

0 1 1

, , ,
,

= = -
=

. (27)

Using the coordinate representation of the translation
generator [12]:

P im m∂= , (28)

Eq. (27) becomes

∂ ∂ ∂ y y2 3 3 2 0 1 1, , ,J J K P- - =c h , (29)

where y  is an eigenfunction. Equation (29) can be re-
written as

∂ ∂ ∂ ∂ ∂ ∂ y
y

2 3 3 2 0 1 3 3 2 3 1 0

1

J J K J J K
P

- - - - -
=
b gc h , (30)

which is a relation between operators on y . We use

J j J j K k3 3 2 2 1 1y y y y y y= = =, , , (31)

where lower case letters denote eignevalues. We have

∂ y ∂ y ∂ y

∂ y ∂ y ∂ y

∂ y ∂ y ∂ y

2 3 2 3 3 2

3 2 3 2 2 3

0 1 0 1 1 0

j j j
j j j
k k k

b g b g b g
b g b g b g
b g b g b g

= +

= +

= +

,
,
.

(32)

It is now assumed that

J J K
j j k

3 2 2 3 1 0

3 2 2 3 1 0

∂ y ∂ y ∂ y

∂ y ∂ y ∂ y
b g b g b g
b g b g b g

+ +

= + +
, (33)

which is compatible with
∂ ∂ ∂ y y2 3 0+ + =b g constant . (34)

Equations (30) to (34) give the eigenvalue relation
∂ ∂ ∂2 3 3 2 0 1 1j j k p- - = , (35)

which is one component of the vector equation

— ¥ - =j
k

p
1
c t

∂

∂
. (36)
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This equation has the same structure exactly as the Am-
père law extended with Maxwell’s displacement current.
The eigenvalue j represents the magnetic field, k the
electric field, p the current (or potential vector). If we
write

y yf: = ei
0 , (37a)

where f  is a phase factor, then,

$J e j e ji i
3 0 3

0
0 3

f ff y yc h a f= = , (37b)

and so on. Therefore the eignevalues appearing in Eq.
(36) are phase dependent in general.

The complete set of operator relations leading to this
equation is

∂ ∂ ∂ y y

∂ ∂ ∂ y y

∂ ∂ ∂ y y

1 2 2 1 0 3 3

2 3 3 2 0 1 1

3 1 1 3 0 2 2

, , , ,
, , , ,
, , , .

J J K P
J J K P
J J K P

- - =

- - =

- - =

c h
c h
c h

(38)

Similarly, the Lie algebra

∂ ∂ ∂ y2 3 3 2 0 3 0, , ,K K J- + =c h , (39)

and so forth leads to the following relation between ei-
genvalues of the group generators

— ¥ + =k
j1

0
c t

∂

∂
. (40)

This equation has the same structure as the Faraday law
as discussed already.

The Lie algebra,

∂ ∂ ∂ y1 1 2 2 3 3 0, , ,J J J+ + =c h . (41)

gives

∂ ∂ ∂ ∂

∂ ∂
y1 1 1 1 2 2 2 2

3 3 3 3
0

J J J J
J J
- + -

+ -

F
HG

I
KJ =

b g b g
b g . (42)

Using
J j

j j j
1 1

1 1 1 1 1 1

y y

∂ y ∂ y ∂ y

=

= +

,
b g b g b g , (43)

and assuming that

J J J
j j j

1 1 2 2 3 3

1 1 2 2 3 3

∂ y ∂ y ∂ y

∂ y ∂ y ∂ y
b g b g b g
b g b g b g

+ +

= + +
, (44)

leads to the structure of the third Maxwell equation,
∂ ∂ ∂1 1 2 2 3 3 0j j j+ + = , (45)

 i.e. — ◊ =j 0
Finally,

∂ ∂ ∂ y y1 1 2 2 3 3 03, , ,K K K P+ + =c h , (46)

leads to
— ◊ =k 3 0p ,

assuming that

K K K
k k k
1 1 2 2 3 3

1 1 2 2 3 3

∂ y ∂ y ∂ y

∂ y ∂ y ∂ y
b g b g b g
b g b g b g

+ +

= + +
(48)

Therefore all four Maxwell equations emerge from the
Lie algebra of the Poincaré group, i.e.,

— ◊ = — ¥ + =

— ¥ + = — ◊ =

j k
j

j
k

p k

0
1

0

1
3 0

, ,

, .

c t

c t
p

∂

∂
∂

∂

(49)

It is important to note that the complete Poincaré group
(inclusive of the translation generator) is needed to obtain
the complete structure of the Maxwell equations. In par-
ticular, the structure of the group allows the existence of
the Lehnert current, which is the non-zero vacuum di-
vergence of the electric field in Maxwell’s equations [4].
This is seen in Eq. (49) through the term 3 0p . The
Lehnert current is therefore intrinsic within the structure
of the Poincaré group but not that of the Lorentz group,
in which there is no translation generator.

In particular, the boost operators take the place of
electric field components and the rotation generators take
the place of magnetic field components. This suggests
that the generators act on eigenfunctions to give field
components as eigenvalues. The Pm  generator is also an
operator [12] and Jm , K m and Pm are special cases of [12],

X i

x
a x

y
a y

z
a

y
z
a c t

a a a

a

a

a a a

a

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

: =

¢
+

¢
+

¢

+
¢

F

H

GGGG

I

K

JJJJ
= = =

=

0 0 0

0

1
(50)

Equation (10) defines the generator corresponding to the
parameter aa  of the r parameter group (a = 1 ,…, r);
and Xa  within the Poincaré group must be consistent
with the most general type of Lorentz transform

x x a/ m
n
m n m= +L , (51)

where L n
m  includes boosts and rotations, and where am

describes space-time translations.
The operator products P Pm

m , ~ ~W Wm
m , and P Wm

m~

are invariant under Lorentz transformation [1–5,12]. The
product P Wm

m~  is always zero by definition (Eqs. (1) and

(7)). It follows that the commutator relations (3) to (5)
must also be Lorentz covariant, and if they are zero in one
frame they are zero in all frames. The Lie algebra of the
Poincaré group is Lorentz covariant by definition, be-
cause the Poincaré group is the group of special relativity
itself. Since Pm  and Wm  are operators, the correct com-

mutator algebra must be used, represented by relations
such as Eq. (10).

The commutator of ~W0  and ~W1  is given for example
by

W W W J P J P J P
W J P W J P W J P

i W P W P

0 1 1 1 1 2 2 3 3

1 1 1 1 2 2 1 3 3

3 2 2 3

, ,
, , ,

= + +
= + +
= -a f

(52)
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3. Relativistic Helicity, B Cyclics and Max-
well Equations

The relativistic helicity of the classical electromagnetic
field is defined through the ~Wm  vector in Eq. (8), which

is the equation that essentially transforms the Lorentz
group into the Poincaré group by adjoining the operator
Pm [12]. Therefore the relativistic helicity cannot be de-

fined without consideration of space-time translation. In
the field interpretation it cannot be defined in terms of
the antisymmetric field tensor alone, and this is why B(3)

the field’s fundamental nature does not manifest itself in
the Lorentz group. It was well known that the Pm  op-

erator was not introduced until 1939 [6], so the B(3) field
could not have been understood during the formative
years of relativistic electrodynamics.

It is convenient to rewrite Eq. (8) using the dual de-
fined in Eq. (13):

a) ~ : ~W J P

J J J
J K K
J K K
J K K

P
P
P
P

m m n
n= - = -

- -

- -

- -

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP

0
0

0
0

1 2 3

1 3 2

2 3 1

3 2 1

0

1

2

3

(53a)

b) ~ : ~W J P

J J J
J K K
J K K
J K K

P
P
P
P

m m n
n= - =

- - -

-

-

-

L

N

MMMM

O

Q

PPPP
-

-

-

L

N

MMMM

O

Q

PPPP

0
0

0
0

1 2 3

1 3 2

2 3 1

3 2 1

0

1

2

3

(53b)

The products P Pm
m , ~ ~W Wm

m and P Wm
m~  are invari-

ants of the Poincaré group, which suggests that for the
classical electromagnetic field, there exists the helicity
four-vector [7–11],

~ : ~G G Am m n
n= (54)

whose structure is analogous to that of Eq. (53b), i.e.,

~ :G

B B B
B E E
B E E
B E E

A
A
A
A

B A B A B A
B A E A E A
B A E A E A
B A E A E A

m =

- - -

-

-

-

L

N

MMMM

O

Q

PPPP
-

-

-

L

N

MMMM

O

Q

PPPP

=

+ +

- +

+ -

- +

L

N

MMMM

O

Q

PPPP

0
0

0
0

1 2 3

1 3 2

2 3 1

3 2 1

0

1

2

3

1 1 2 2 3 3

1 0 3 2 2 3

2 0 3 1 1 3

3 0 2 1 1 2

(55)

It is clear that the ~G m  vector in the field interpretation
plays the role of the ~W m  vector in the particle interpreta-
tion of the electromagnetic entity, considered to be a
physical entity. From the field-particle dualism of ~G m

and ~W m  it is inferred that the quantities A Am
m , ~ ~G Gm

m ,

and A Gm
m~  are invariants of the Poincaré group. In par-

ticular,

P W A Gm
m

m
m~ ~

= = 0 , (56)

which expresses the orthogonality between operators.
Reinstating the unwritten eigenfunction,

P W Pm
m

m
mw

~ ~Y Y= =c h 0 , (57)

where ~w m  is the eigenvalue corresponding to the ei-

genoperator ~W m . Taking the coordinate representation
of Pm [12],

P im m∂: = , (58a)

means that

∂ w ∂ w w ∂m
m

m
m m

m
~ ~ ~Y Y Yc h c h= + = 0 . (58b)

If we assume that

∂ wm
m~ = 0 , (59)

a conservation equation is obtained for the eigenvalue of
the operator ~W m . If it assumed that the same conserva-
tion equation is true for ~G m , regarded as an eigenvalue,
the Maxwell equations result. This is demonstrated as
follows. The vector form of the equation

∂ m
m~G = 0 , (60a)

is, in S.I. units
1 1

00c t
A

c
∂

∂
A B B E A◊ + — ◊ + — ◊ ¥ =a f a f a f . (60b)

Now use the vector identities,
∂

∂

∂

∂

∂

∂t t t
A A A

A B A
B

B
A

B B B
E A A E E A

◊ = ◊ + ◊

— ◊ = — ◊ + ◊ —

— ◊ ¥ = ◊ — ¥ - ◊ — ¥

a f
a f

a f a f a f

,

,
,

0 0 0 (61)

to find that

1 1

1
0

0

0

c t
A

c t

c
A

A
B

E B B
A

E A B

◊ + — ¥
F
HG

I
KJ + — ◊ + ◊

- ◊ — ¥ + ◊ — =

∂

∂

∂

∂

a f .
(62)

A particular solution of Eq. (62) is

— ◊ = + — ¥ =

= - - — = — ¥ ◊ =

B
B

E

E
A

B A E B

0 0

1
00

, ,

, ,

∂

∂
∂

∂

t

c t
A

(63)

which lists two of the Maxwell equations, defines the
fields E and B in terms of Am , and uses the assumption

E B^ . Equation (63) is given in the received view as
relations between transverse fields E and B, the funda-
mental components of the electromagnetic field under
any condition. It is clear that Eqs. (63) are special solu-
tions of Eq. (60a), thus justifying the latter empirically.
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However, if the usual transverse solutions and trans-
verse gauge [12] are used in the definition of ~G m , Eq.
(55), we obtain,

A A E B B iB i
B

e

A iA i
A

e E iE
E

e

i

i i

0 3 3 3 1 2
0

1 2
0

1 2
0

0
2

2 2

= = = = = =

= = = =

,

, ,

f

f f
(64)

and
~ ? , , ,G m = 0 0 0 0a f , (65)

despite the fact that Eq. (64) is consistent with Eq. (63).
This is a fundamental paradox of the accepted theory

of classical electrodynamics: the use of transverse plane
waves and transverse gauge leads to the complete loss of
the vector dual of the field, i.e., ~G m  is a null vector for
transverse plane waves. This is inconsistent with the fact
that is a topological invariant, and plainly inconsistent
with the fact that the equations (63) were obtained from a
non-zero field vector ~G m  whose structure is as follows:
~ , ,

,G B A B A B A B A E A E A
B A E A E A B A E A E A

m =
+ + - +
+ - - +

F
H

I
K1 1 2 2 3 3 1 0 3 2 2 3

2 0 3 1 1 3 3 0 2 1 1 2

(66)
This structure contains longitudinal (3) as well as trans-
verse (1,2) components. Furthermore, the structure (66)
is derived directly from the field representation of the
Pauli Lyuban’ski vector in the Poincaré group. Without
~W m  or ~G m  the Poincaré group does not exist, and is

replaced by the Lorentz group. The helicity vector ~G m

originates therefore in the fact that the electromagnetic
field both rotates and translates. These considerations
suggest that Eq. (60a) provides solutions for fields that are
missing in conventional electrodynamics. One of these is
B(3), another is the Coulomb field, both of which are
absent from the particular solutions (64). From the defi-
nition of the Poincaré group

A G G A0
1
2

~ :m
m n r s

n r se= , (67)

is a non-linear and cyclic relation, which for simplicity
can be reduced to

~ ~G Gm m n
ne= , (68)

where e n  is a unit vector in four dimensions [1]. Equa-
tion (68) links the tensor and vector duals of Gn r , the
antisymmetric field tensor. From Eq. (68),

~Gm
me = 0 (69)

and this is the field interpretation of [12]
~W Pm

m = 0 , (70)

for the photon, or any other fundamental particle. The
latter is defined through the mass and spin invariants
P Pm

m  and ~ ~W Wm
m  respectively. Therefore if ~Wm  were

zero, the particle spin would be zero, in conflict with
empirical data. Similarly, the mass and spin invariants of

the classical electromagnetic field are proportional re-
spectively to e em

m  and ~ ~G Gm
m . These are both zero if

the field is massless, but this does not mean that e m  and
~Gm  are zero. These points of fundamental relativity and

topology are illustrated in the following development.
Firstly consider a unit lightlike e m  proportional to the

potential fourvector A m  considered to be a polar vector
proportional through the minimal prescription to the
energy momentum four-vector. There is freedom to
choose e m  as long as e em

m = 0 , a condition necessitated

by the fact that the electromagnetic field is considered to
be concomitant with a massless photon for the sake of
argument. This freedom to choose e m  is linked to the
well known gauge freedom in A m , i.e., we are free to
choose A m  to satisfy A Am

m = 0 . There are also condi-

tions to link A to B. The first of these is the well known
B A= — ¥ , which is satisfied by Eq. (64). However,
there are other equations that link B to A. For example, a
particular solution of Eq. (60b) is
∂

∂ t
AA B B E A◊ = — ◊ = — ◊ ¥ =a f a f a f0 0 00, , (70)

one which looks quite different from Eq. (63), but which
has the same source, Eq. (60a). Equation (70) is satisfied
by Eq. (64), and also by conjugate products of the com-
ponents therein. For example

— ◊ ¥ =E A*c h 0 (71)

Using the usual electromagnetic vacuum relations [1–
5]

E cB A
B

c0 0 0
0= = =, ,

k
k

w
(72)

where k  is the wavevector, w  the angular frequency and
c the speed of light, we obtain from the transverse solu-
tions in Eq. (64),

E A B B A A¥ = - ¥ = - ¥* * *i
c c

k k 3 . (73)

Equation (72) defines the B(3) field [1–5],

B B B A A3

0 0

a f* * *= - ¥ = - ¥
i

B
i

A
k

. (74)

Therefore we have established the required link between
the conservation equation (60a) and the B cyclics [1–5],
which in complex circular notation are written as

B B B1 2 0 3a f a f a f a f¥ = iB * , (75)
in cyclic permutation. From Eq. (73) and (71),

— ◊ =B 3 0a f , (76)
as required of a magnetic field if it is assumed that there
are no magnetic monopoles. Equation (75) is also consis-
tent with the fact that B(3) is longitudinal and phase free.

Equation (73) establishes the critically important dif-
ference between U(1) electrodynamics in which B(3) = ?0
and Poincaré group electrodynamics. In U(1) (Abelian)
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electrodynamics, the magnetic field is always the curl of
the vector potential; in Poincaré group electrodynamics it
can also be the non-Abelian cross product

- ¥i e hb gA A* [1–5]. The latter is a conjugate product

and is an empirical observable in magneto-optics. It is
therefore gauge invariant, i.e., is non-zero in any gauge.
To obtain it theoretically in a self consistent way, U(1)
gauge theory is replaced by non-Abelian gauge theory.
This inference has many consequences throughout field
theory, too numerous too develop here. For instance, the
quantum mechanical equivalent of the classical A A¥ *

occurs in non-Abelian quantum electrodynamics (q.e.d.)
in radiative correction terms. The latter may now be
interpreted as establishing the existence of the $B 3a f  op-
erator (the photomagneton [1–5]) to a high degree of
precision. The existence of $B 3a f  leads also to the accep-
tance of non Abelian q.e.d., which is still a heuristic theory
[12], and must be put on a rigorous basis. More generally
B(3), leads to the development of a non-linear q.e.d. in
which the artificial removal of infinities (renormalization
at all orders) may be rendered obsolete. Photon-photon
interaction terms in q.e.d. can now be interpreted as inter-
action between $B 3a f  operators on different photons, and
this is consistent with the empirical observation of Tam
and Happer [5] of interaction between circularly polar-
ized electromagnetic beams. The basic paradox of van-
ishing classical helicity in Abelian electrodynamics is
removed in non-Abelian electrodynamics because the
~G m  vector becomes

~ , , ,G B Bm = 3 30 0a f , (77)

and can be denoted conveniently by the simple, funda-
mental

~ ,G Bm = 0 3a f a fd iB , (78)

in the circular basis [1–5]. This result establishes B(3) as
the fundamental spin of the electromagnetic field on the
classical level.

The issue is no longer the existence of B(3), but its
future role as the archetypal non-Abelian field in electro-
dynamics. Field theory has evolved into an intricate uni-
fied structure, and into a no less intricate quantum elec-
trodynamics, without ever realizing the existence of the
fundamental four-vector (B(0), B(3)) of the classical elec-
tromagnetic sector. The task now is to make amends for
this oversight and to find new predictions as a result. The
fourvector (B(0), B(3)) is a latecomer on the classical scene,
and the correspondence principle demands that quantum
theories produce this new classical result selfconsistently.
This process may well result in several new fundamental
discoveries, for example linking B(3) to the existence of

the massive photon proposed by de Broglie and the mas-
sive magnetic monopole proposed by Dirac: establishing
logically the existence of both.
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