
College Park, MD 2011 PROCEEDINGS of the NPA  1 

Eccentricity Functions in the Higher Degree and 
Order Sectorial Gravitational Harmonic Coefficients 

 Ioannis Haranas Omiros Ragos Michael Harney 
 Department of Physics and Astronomy Dept. of Mathematics, University of Patras 841 North 700 West 
 York University, 4700 Keele Street GR-26500  Patras, GREECE Pleasant Grove, UT, 84062 
 Toronto, Ontario, M3J 1P3, CANADA e-mail: ragos@math.upatras.gr e-mail: michael.harney@signaldisplay.com 
 e-mail: ioannis@yorku.ca 

 
In the study of an Earth orbiting satellite, the terms of the series expansion of the Earth’s gravitational po-

tential can be expressed as functions of the eccentricity of the satellite.  These functions are also known as eccen-
tricity functions.  The series expansion of these functions given by Kaula [2] appears to result in instabilities at 
high eccentricities.  When calculating the eccentricity functions, researchers resort to numerical integration 
techniques instead.  The approach followed in this contribution bypasses the problem of instability at high ec-
centricities by using a Hansen coefficient definition.  As a test, we first calculate analytical expressions for vari-
ous known eccentricity functions and then we proceed with the calculation of the eccentricity functions asso-
ciated with degree and order 20, 30, 40, 50 sectorial harmonic coefficient expansion of the gravitational poten-
tial.  Our calculation demonstrates the efficiency of Hansen coefficient approach that differs from that given by 
Kaula.  It is efficient, fast, and can easily be performed with the help of a personal computer, with no instabili-
ties at higher eccentricities. 
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1. Introduction 

The first kind of eccentricity functions related to the satellite 
theory, appears in the expression of the disturbing potential due 
to the primary body.  These functions are denoted as   , ,p qG e  .  

Following Giacaglia [1] we write the eccentricity functions in the 
following way 
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where ,n m
kX  are the so called Hansen coefficients defined as fol-

lows 
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where e  is the eccentricity of the orbiting satellite, b = 
2/(1 1 )e e  ,   J k e  is the Bessel function of the first kind of 

argument ke , and  ,s t   are the upper limits of the sums.  The 
derivation of the G  functions in terms of an infinite series is ex-
plained in Kaula [2] and Caputo [3]; their results are based on the 
works of Cayley [4] and Tisserand [5].  The series of a particular 
G is identified by the integer indices , ,p q .  The first index   is 

the degree of the spherical harmonic expansion of the disturbing 
potential.  The second index p  can be positive or zero, and satis-

fies the relation p   .  The third index q  can be negative or posi-

tive, and its magnitude determines the power of the first term in 
the infinite series.  Finally, most of the eccentricity functions de-
fined by Eq. (1) exhibit symmetry properties. 

The eccentricity functions  , ,p qG e  express the satellite ec-

centricity effect on the harmonic coefficients mC  and mS  of the 

disturbing potential.  They arise from circular to elliptic trans-
formations of the orbital radius r  and the true anomaly f  of the 

satellite to its semimajor axis a , the eccentricity e , and the mean 
anomaly M . 

These orbital elements originally appear in the series expan-
sion of the Earth’s gravitational potential.  For small eccentrici-

ties, we have that    q
pqO G e e  [6].  The calculation of eccen-

tricity functions plays a vital role in the Earth and planetary 
gravity field modeling.  In high degree and order gravity models, 
high order eccentricity functions are calculated.  Other authors 
like Gooding and King-Hele [7] calculate the eccentricity func-
tions using a numerical quadrature of the integral [8] 
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where E  is the eccentric anomaly.  The integration is performed 
using a Newton-Cotes formula of the form: 

    0 1 2 3 4 7 32 12 32
90

b

a

b a
f x dx f f f f f


     , (4) 

where   0.25if f a i b a   , 0,1,2,3,4.i   An advantage of the 

numerical techniques is that they help avoid instability problems.  
In particular, the formulation presented in Kaula [2] can result in 
unstable results at high eccentricities.  Although his mathemati-
cal formulation is rigorous, their direct evaluation from the series 
summation becomes inaccurate on a computer of finite precision 
[8].  It is therefore important to have an effective way of obtain-
ing analytical as well as numerical results for these functions, a 
way that does not suffer from instabilities and inaccuracies at 
high eccentricities.  The goal of this contribution is to establish, 
test, and offer an analytical method of evaluating the eccentricity 
functions that is fast, efficient, and precise.  To achieve our goal, 
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we adopt Giacaglia’s formulation given in Eq. (1) as a possible 
way of obtaining the eccentricity functions.  Then, with the help 
of a personal computer, we proceed in testing for the validity, 
and efficiency of Eq. (1) by calculating various eccentricity func-
tions.  In particular, we derive known analytical results for satel-
lite eccentricity functions that are already tabulated in Kaula [2].  
A gravitational field model requires the calculation of zonal, sec-
torial, and tesseral spherical harmonics coefficients.  These coeffi-
cients are defined as follows: zonal 0,  0m  , sectorial m  
and tesseral 0m  .  To demonstrate our approach, we pro-
ceed only with the calculation of higher degree and order eccen-
tricity functions associated with the calculation of sectorial spher-
ical harmonic coefficients.  We could have equally chosen any 
other kind of eccentricity functions associated with the rest of the 
coefficients involved in the gravitational potential modeling.  
This choice of indices m  by no means constitutes a limitation 
in the applicability of Eq. (1), and such index choices will consti-
tute a future contribution.  Eccentricity functions of higher de-
gree might exist in gravitational models of higher harmonics in 
the case of the Earth and other planets (e.g. Mars), but to the best 
of our knowledge they are not easily accessible.  Next, we pro-
ceed with the derivation of m  20, 30, 40, 50 degree and order 
eccentricity functions that we were not able to find them tabu-
lated in the standard bibliography.  Of course, this is only a small 
number of eccentricity functions when compared to those re-
quired in the modeling of the Earth or any planetary gravitation-
al field model.  Such a calculation is helpful in satellite gravity 
field modeling, where fast analytically and numerically compu-
ting eccentricity functions values is necessary. 

2. Eccentricity Function Calculation 

With reference to Lemoine [8], we say that the formulas given 
by Kaula [2] become computationally unstable if high eccentrici-
ty values are used in numerical calculations.  First, we test Eq. (1) 
by verifying the known tabulated eccentricity function calcula-
tions.  For that, we choose to test Eq. (2) by calculating  2,2,1G e  

and  6,6,4G e  respectively.  Therefore, using the corresponding 

Hansen coefficients, Eq (1) gives: 

   3, 2
12,2,1G e X 

  (5) 

   7, 6
26,6,4G e  

  . (6) 

After summing Eq. (2) from 0 to 6, and substituting the cor-
responding index values 2, 13,  -  -n    m k  and 7n   , 

-6,  -2m k   as well as the value of the parameter b we obtain 
up to O(e6): 
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and 
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Next, using Eq. (7) and (8) we obtain a series expansion of or-
der six in eccentricity that involves the Bessel function.  Finally, 
with the help of Mathematica 5.2 for Windows, the series expan-
sion of Eqs. (7) and (8) simplify to: 
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The calculated eccentricity functions are identical to those 
given in Chao [9] and also Kaula [2], with the only difference that 
our results contain terms of higher order in eccentricity i.e., 

5( )O e  and 6( )O e  something that was our choice. 

3. Eccentricity Function Results 

We calculate and tabulate the eccentricity functions   , ,p qG e  , 

associated with the m  = 20, 30, 40, 50 degree and order har-
monic coefficient expansion of the gravitational potential using 
Mathematica 5.2 for Windows.  As a demonstration, we obtain 
the eccentricity functions  40,21,2G e  and  50,25,0G e .  This is 

achieved via the Hansen coefficient expansion that is eventually 
related to a Bessel function of the first kind.  Following identical 
steps with those indicated in Eq. (5) and (6) we obtain: 
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Next, we expand Eq. (11) in series of eccentricity up to order 
six and adding the resulting terms, Eq. (11) simplifies to 
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Similarly, following the same approach we obtain 
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which also simplifies to 
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We now proceed with the calculation and tabulation of eccen-
tricity functions associated with 20,  30,  40m  , 

50 degree and order harmonic expansion. 

 

, ,p qG  ,n m
kX    , ,p qG e   

  p   q  n  m  k   
20 10  0 -21  0  0 1+105e2+26565e4/8+221375e6/6+… 
20 11  2 -21 -2  0 171e2/2+14421e4/8+1081575e6/32+… 
20 12  4 -21 -4  0 969e4/4+14535e6/2+… 
20 13  6 -21 -6  0 6783e6/16+… 

Table 1.  Eccentricity functions for 20m   using the Hansen coefficient definition. 

, ,p qG  ,n m
kX    , ,p qG e   

  p  q  n  m k   
0 12 -6 -31   6  0 118755e6/16+…. 
30 13  -4 -31   4  0 23751e4/16+2826369e6/32+…. 
30 14  -2 -31   2  0 203e2/2+8932e4+1328635e6/4+… 
30 15   0 -31   0  0 1+465e2/2+15345e4+1014475e6/2+... 
30 16   2 -31 -2  0 203e2/2+8932e4+1328635e6/4+… 
30 17   4 -31 -4  0 23751e4/16+2826369e6/32+… 
30 18   6 -31 -6  0 118775e6/16+… 
30 29 28 -31 -28  0 0 
30 30 30 -31 -30  0 0 

Table 2.  Eccentricity functions for 30m   using the Hansen coefficient definition. 

, ,p qG  ,n m
kX    , ,p qG e   

  p   q  n  m k   
40 17   -6 -41  6  0 32626231e6/64+…. 
40 18   -4 -41  4  0 82251e4/16+8142849e6/16+… 
40 19   -2 -41  2  0 741e2/4+223041e4/8+110405295e6/68+… 
40 20    0 -41  0  0 1+410e2+185115e4/4+10181325e6/4+… 
40 21    2 -41 -2  0 741e2/4+223041e4/8+110405295e6/68+… 
40 22    4 -41 -4  0 82251e4/16+8142849e6/16+… 
40 23    6 -41 -6  0 32626231e6/64+… 

Table 3.  Eccentricity functions for 40m   using the Hansen coefficient definition. 

, ,p qG  ,n m
kX    , ,p qG e   

  p   q  n  m  k   
50 22   -6 -51 6  0 1747977e6/8+… 
50 23   -4 -51 4  0 59269e4/4+15731793e6/8+… 
50 24   -2 -51 2  0 294e2+67522e4+50135085e6/8+… 
50 25    0 -51 0  0 1+1275e2/2+878475e4/8+144948375e6/16+… 
50 26    2 -51 -2  0 294e2+67522e4+50135085e6/8+… 
50 27    4 -51 -4  0 59269e4/4+15731793e6/8+… 
50 28    6 -51 -6  0 1747977e6/8+… 

Table 4.  Eccentricity functions for 50m   using the Hansen coefficient definition. 
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4. Conclusion 

Using Mathematica 5.2 for Windows, we tested Giacaglia’s 
definition of the eccentricity functions.  Next using the same de-
finition we calculated various high degree and order eccentricity 
functions, required in the gravitational field modelling.  To en-
sure the workability of Giacaglia’s approach, in this contribution 
we derived with success two different eccentricity functions.  
First  2,2,1G e , which is one of those tabulated by Kaula [2], and, 

then  6,6,4G e  which is one of those tabulated by Chao [9].  After 

the workability of the method was established, we proceeded 
with the goal of our paper, which was the calculation of the ec-
centricity functions associated with higher order sectorial har-
monic coefficients.  In particular we successfully calculated and 
tabulated the various eccentricity functions associated with the 

m  = 20, 30, 40, 50 degree and order harmonic coefficient ex-
pansion of the gravitational potential.  Since people today use 
numerical methods in calculating these functions, and taking into 
account that Kaula’s formulas become computationally unstable 
at high eccentricities, this contribution based on Giacaglia’s result 
offers an alternative, efficient, and fast way of calculating the 
required functions and at the same time provides analytical re-
sults that are stable at high eccentricities. 
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