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Abstract 
 A novel view of space, time, and inertial frames that maintains the 

absolute nature of time is presented. One but arbitrary inertial frame say S, is 
considered stationary and identified with the absolute space, while all other 
inertial frames are moving relative to S. The constancy of the light’s velocity in 
free space within each inertial frame is postulated and employed to link time 
durations measurements to geometric distance. The geometric distance in the 
chosen stationary frame plays the decisive role in the determination of time and 
distance in all inertial frames. A unique time prevails in all inertial frames, but 
distance between a moving object in S and a stationary observer in S is identified 
by the optical length of a light trip from the object to the observer; this distance 
functions as the geometric distance in the frame in which the object is at rest 
when the latter frame is considered stationary. The arbitrariness of the chosen 
stationary frame guarantees that all inertial frames are equivalent, and according 
the physical laws are the same in all. The so-called scaling transformations which 
relate the geometric distances in S and in a moving frame are derived and applied 
to explain the Doppler’s effect and the lifetime of meta-stable particles 
phenomenon. The quantitative predicted Doppler’s effect, which is in a striking 
agreement with the Ives-Stilwell experimental results, coincides with the 
relativistic prediction for longitudinal motion, but yet predicts complete absence 
of a traverse effect. The direction of the light trip is observed from a moving 
frame to be tilted from its direction in the stationary frame by the aberration 
angle; a fact which is employed to explain the phenomenon of stellar aberration. 
The true status of the Lorentz transformations as an equivalent form of the scaling 
transformation is illuminated. In a forthcoming part of this work, a second type of 
scaling transformations corresponding to given beginning and end of a light’s trip 
in a stationary frame is derived and employed to explain the Michelson and 
Morley experiment, the Michelson and Gale experiment, and the Sagnac effect. 
The translative nature of the latter effect is explored and studied in detail. The 
pioneer anomaly which can be explained by Euclidation of optical measurements 
will be discussed separately.  
Key words: contiguity, universal space, scaling transformations, illusive Lorentz 
transformations. 
1.Introduction 

The Newtonian conceptions of space and time are modified to incorporate 
observations through light’s signals. The absolute Newtonian nature of distance 
and time is carried over to what we call proper time and proper distance. In 
contrast with the geometric distance (and geometric time) which are frame 
dependent, the proper time and distance are absolute. The proper distance 
between an object and an observer, which depends on their relative velocity, is 
determined in terms of the familiar geometric distance by means of what we call 
the scaling transformations. Our novel conception of space and time is 
characterized by the following: 
(i)Time measurements are linked to spatial measurements through a constant 
light’s velocity, which is postulated to hold within every inertial frame.  



 

(ii) One arbitrary inertial frame S is considered stationary and identified by the 
absolute space, while all other inertial frames are moving relative to S. The 
absolute space may be corresponded with any other inertial frame, say s, without 
any bearing on the transformations that relate geometric distances in S and s 
regardless of which frame we choose to be stationary.  

Based on the above requirements and the implicit assumption regarding the  
Euclidean nature of the absolute space we employ the geometric distance in the 
stationary frame to endow any other inertial frame ݏ, through light’s signals, with  
distance and time intervals such that the speed of light is also c within s.  

The chart of logic that leads to the transformations between the geometric 
distances in the two frames can be summarized as follows:  
- We start by identifying one arbitrary inertial frame S, which is initially 
coordinated using a given unit of geometric length, with the absolute space. 
Utilizing the postulate that light propagates rectilinearly in all directions within 
(inside) S at a constant speed c we set up a global time in S using the familiar 
procedure of clock synchronization [1]. A frame such as has been described will 
be called a timed or universal frame.  
- If b is source of light moving at a constant speed ݑሬԦ in S then the scaling theory 
determines the optical or proper duration t of a light’s trip ሺܾ  ܽܤ ݐ א ܵ ՜ ܱ א ܵሻ 
in terms of its geometric length หܱܤሬሬሬሬሬԦห ൌ ܴ. It is t what is measured for the latter 
trip in the universal frame S and in any other inertial frame. We shall see that the 
optical duration t is generally different from the geometric duration of the trip in 
S, which is by definition ܶ ؠ ܴ ܿ;⁄   they are equal however when the source of 
light is at rest in S. 
- A basic concept of the scaling theory is that time flows equably in all inertial 
frames, and in particular in S and in the frame s in which the source of light b is 
stationary. If o is an s-observer which is contiguous to the S-observer O when 
light arrives at O, then the light’s trip ሺܾ א ܤ ݐܽ ݏ א ܵ ՜ ܱ א ܵሻ in S is the same 
as the light’s trip ሺܾ א ܤ ݐܽ ݏ א ܵ ՜ ܱ א ݋ ݀݊ܽ ܵ א  ሻ, which occursݏ
conclusively within s, and hence its duration is the same in S and s. When looking 
at this trip from the stationary S the Galilean law of velocity addition is employed 
to calculate its optical or proper duration t which must be the same in s. In order 
to get velocity of light also c in s, we should associate with this trip the optical 
length ݎ ൌ  in s.  Because the source of light b is at rest in s, the geometric ݐܿ
length of the latter trip in s, when s is considered stationary, is identical to its 
optical length r.  
- In the same way by which the geometric length R in S of the above light trip 
gives rise to the optical length r, which is identified by the geometric length of the 
trip in s, the geometric length r of the virtual trip ሺݐܽ  ܤ ܾ ՜  ሻ in s, with B is the݋
source of light, should induce when s is considered the stationary frame an optical 
length of the trip in s that is equal to its geometric length R in S. It useful to stress 
that geometric duration and length of a light’s trip are simply two equivalent 
measures of the same quantity which is either length or duration. 
- Since every inertial frame can be identified with the absolute space, the 
transformations we seek should be the same whether we identify S or s by the 
absolute space.  

The implementation of the above view of space and time yields an 
anisotropic transformations, called the scaling transformation of first type (STI), 
between the geometric and optical characters of a light trip in S, or equivalently, 
between the geometric distances in S and s. The STI will be employed to explain 



 

the meta-stable particles’ lifetime phenomenon, Doppler’s effect, drag effect and 
aberration. The scaling transformations of second type (STII) are concerned with 
the case in which the beginning and the end of the trip are known in S and in s 
from start. Although neat explanations, based on the scaling theory, of the drag 
effect, Sagnac effect, Michelson and Morley experiment, Michelson and Gale 
experiment, Doppler’s effect, and the stellar aberration had already appeared in 
earlier works [2V,VI,VIII,IX,X], more profound explanations of these effects and 
experiments will be presented here and in forthcoming parts of this work.  
2. Global Time 
 Consider an arbitrary inertial frame ܵ ؠ ܱܻܼܺ. The coordinates system is 
assumed to be already calibrated using a given unit of length, say LS. The 
existence of the Cartesian system of coordinates OXYZ in S requires an implicit 
assumption that the geometry of the space is Euclidean [3]. The geometric 
distance between two points ܣ א ܵ and ܤ א ܵ, or geometric length of a rod AB 
stationary in S,  refer to the result ܮ஺஻ obtained by laying the unit of length LS in S 
along the rod repeatedly from one end till reaching the other by multiples and 
fractions of LS. This can be done rationally (or it had already been done) and 
takes no time. If ܴ ൌ ܴ௚.  is the geometric distance of the point B from O, then ܵܮ
the dimensionless quantity ܴ௚ is the radial coordinate of B.  

The unit of time, though arbitrary, is chosen as the duration, say 
“second”, between two consecutive ticks (or readings) of identical clocks that run 
at synchrony with each other. Contemplating in the last statement, we may be 
astounded by the fact that we really have defined nothing concerns the world 
outside the clocks [4]. In order that a unit of time, say a second, bears a meaning 
as far as motion in S is concerned, it should be correlated to what can happen 
during “a second” in the world outside the clocks [4], and more precisely, it 
should quantify the amount of the spatial displacement intrinsic to some reference 
physical phenomenon, such as the propagation of light from an arbitrary point in 
S, or be related to a free reference (spherical) body that is not translating in S but 
rotating about its axis [2XII]. A “second” must thus be corresponded with (and 
actually could be measured by) the distance traveled by light within S during the 
period of a second in the former case, and with the angle at which the reference 
body rotates relative to the remote universe in the latter [2XII]. Time 
measurements therefore must be reducible to specific types of spatial 
displacement’s measurements. 

Employing the postulate that light propagates rectilinearly within the 
inertial frame S in all directions at a constant velocity c, synchronization of the 
clocks in S can be materialized in a measurable meaning. Indeed, we can now 
proceed with the Newtonian view and imagine that as soon as S is furnished with 
a system of coordinates through geometrical means, a system of synchronized 
timing is immediately established with respect to one timer, say ܱ א ܵ. This 
means that, in the same way we envisage rationally the assignment of a triplet 
ሺܴ, ,׎  ሻ to each point B in S, we can also imagine that a timer can be placed atߠ
each point ܤ א ܵ which is synchronized with ܱ א ܵ and runs uniformly at the 
same rate as the master timer, and accordingly with all other timers. Indeed, due 
to the latter postulate a global timing in S can be practically established, with the 
notion of an "instant ଴ܶ" has a global meaning in S, in the sense that if an event 
takes place at ܤ଴ሺܴ଴, ,଴׎ ,ሺܴܤ ଴ሻ  at ଴ܶ then it will be detected atߠ ,׎  ሻ through aߠ
light signal emanating from ܤ଴and arriving at B at the instant ܶ ൌ ଴ܶ ൅



 

ฮ ሬܴԦ଴ െ ሬܴԦฮ ܿ⁄ . Thus every S observer B assigns to the event of light’s emission the 
same instant ଴ܶ ൌ ܶ െ ݎ ܿ⁄ , where r is his spatial separation from ܤ଴ and T is the 
time read at the clock B when light is received. It follows that the concept of time 
arrow -past, present, and future- has a global meaning in S, and any two or more S 
observers have the same temporal ordering of the events monitored by them. In 
particular, the notions of simultaneity and non-simultaneity are well-defined 
global concepts in S.  
 It is emphasized that Newton’s global time was assumed to be readable at 
each point of space [2XII]. The synchrony of all point-wise timers was partially 
circumvented through appealing to a universal timer formed by the fixed stars in 
the firmament. This seems to be a generalization of the approximately uniform 
global time set up in the region from which almost all our observations are 
conducted, namely the earth surface. The earth’s global time is induced by the 
configuration of the firmament relative to the earth. It is also stressed that no 
synchronization in the real sense is to be done in order an inertial frame becomes 
timed.    

Synchronization in a uniformly rotating frame, or more accurately, in the 
part from which observations are conducted, can be achieved without appealing to 
light’s signals [2XII]. An approximate example of this is the earth’s surface. The 
existence of a global time in non-inertial frames motivates the following 
definition: 
Synchronous frames: A frame s, not necessarily inertial, is said to be 
synchronous if it is endowed with a global time. In other words, the frame s can 
be furnished by a system of clocks that remain synchronous according to a 
specific criterion not requiring necessarily light signals. 
3.  Distance and Simultaneity by Contiguity 

We proceed here to closely model the Newtonian conceptions of absolute 
space and time in a measurable way, but with observation through light signals is 
still discarded.  

Assume that the inertial frame ܵ ؠ ܱܻܼܺ is synchronous. The following 
discussion which will be confined to the X-axis is valid allover S. Suppose that 
ܵ ؠ ܺ′ܱܺ is furnished with a lattice of points ሼܺ௡. ܵܮ ൌ  േ݊. ,ܵܮ ݊ ൌ 0,1,2, … ሽ 
with LS is the length of a bar which we choose a unit of distance in S. Let 
ݏ ؠ  be an inertial frame in standard configuration with S and translating ݖݕݔ݋
uniformly relative to S. According to the Newtonian concepts, the length of a 
rigid rod is the same when measured from any inertial frame. This applies in 
particular to the unit length rod LS, which accordingly enjoys the same identity in 
all inertial frames. Any two points in s can be thought of as the ends of a rigid rod 
in s, and the distance between them, say ݑ.   .will be the same in s and S ,ܵܮ

But how can we judge practically that  two copies of LS, the first is  stationary 
in S and the second is moving, say stationary in s, have the same length? In the 
synchronous frame S the answer is simple: if the ends of the moving rod occupies 
at an instant of time ଴ܶ ൌ 0 the points ܣ א ܤ ݀݊ܽ ܵ א ܵ then the distance between 
the latter points in S should be LS. Because of the absence of synchronized clocks, 
or global time, in s, the reasoning we have just applied in S, seems to break down 
in s when a rod LS that is stationary in S is considered. This is because s is not yet 
endowed with a global time. We shall show however that this reservation is not 
necessary and that the same clocks employed to read time in S are also qualified 
to indicate the same instants of time in s. In fact we shall demonstrate that the 
absoluteness of time follows from the absoluteness of length.  



 

Consider a rod ob of length u.LS stationary in s. Because length is absolute, 
the length of this rod is also u.LS in S. Suppose that at an instant  ܶ0 ൌ 0 in S the 
rod occupies the interval ሾܱ, ሿܤ ؠ ሾ0, ሿݑ ؿ ܺ′ܱܺ, with the points ݋ א ܾ and ݏ א  ݏ
are contiguous to ܱ א ܵ and ܤ א ܵ respectively. The latter points can be imagined 
to be the ends of a rod OB stationary in S.  The frame s admits that the contiguity 
of ݋ א ܱ and ݏ א ܵ [or instead, b and B] signifies the same instant of time in both 
frames, and he has no objection to denote this instant, as S did, by ଴ܶ ൌ 0,  but he 
may doubt that the contiguity of b and B [the contiguity of o and O] took place at 
the instant of contiguity of o and O [b and B]. To eliminate this doubt we assume 
the contrary: (the contiguity of o and O) took place before (after) (the contiguity 
of b and B). In the first (second) case, s will find the length of OB less (greater) 
than u.LS, which is a contradiction, since length is absolute. It follows therefore 
that if it was found at ܶ0 ൌ 0 in S that (݋ א ܱ is contiguous to ݏ א ܵ) and (ܾ א  is ݏ
contiguous to ܤ א ܵሻ then the same compound event takes place at the same 
instant in s, which we denote by ݐ ൌ ܶ0 ൌ 0. Since at the instant ܶ0 ൌ 0 in the 
synchronous frame S there corresponds to every point ܤ א ܵ a contiguous point 
ܾ א  all clocks in s must read when o is contiguous to O the same instant of time ,ݏ
ݐ ൌ 0. Therefore, when o and O are contiguous, we have 
ሺ3.1ሻ           ܺ ൌ ,ݔ ܻ ൌ ,ݕ ܼ ൌ ,ݖ ܶ ൌ ݐ ൌ  ,ݏ ݀݊ܽ ܵ ݊݅ ݁ݎ݄݁ݓݕݎ݁ݒ݁ 0
with ሺܺ, ܻ, ܼሻ and ሺݔ, ,ݕ  ሻ are the coordinates of an arbitrary contiguous pointsݖ
ܤ א ܵ and ܾ א  .respectively ݏ

Suppose that the frame ݏ ؠ  is also furnished by a lattice of points ݔ݋′ݔ
ሼݔ௡. ܵܮ ൌ ݊. :ܵܮ ݊ ൌ 0, േ1, േ2, …  ሽ, and let’s redefine the unit of time TS in S by 
the period during which a point ݔ௡ of s which is at the instant ܶ0 ൌ 0 contiguous 
to ܺ௡ moves to become contiguous to the point ܺ௡ାଵ ൌ ௡ݔ ൅ 1. By the concept of 
inertial frames, and because length is absolute, the last relation applies to every 
lattice point n of s which moves to the lattice point ݊ ൅ 1 of S.  The new state of 
contiguity corresponds to the displacement ܵܮ ൌ ܶܵ of each point of s. Note that 
the unit of time in S has been defined now through spatial displacement of s 
relative to S; it can be specified either by the period TS during which an s-object 
is displaced by LS in S, or by the difference in readings of two clocks in S, 
separated by the distance LS, when the same s-object passes by. Thus time and 
distance have the same dimension. In a similar way to what was proven earlier, 
there corresponds to the new instant of time ܶ. ܶܵ ؠ ∆ܶ. ܶܵ ൌ 1. ܶܵ in S an 
instant of time ݐ. ܶܵ ؠ .ݐ∆ ܶܵ in s at which the new state of contiguity is also 
realizable in s, and which results from displacing each lattice point n of S, initially 
contiguous to the lattice point n in s, by the same magnitude LS but in the 
opposite direction to become contiguous to the point ݊ െ 1 in s. But as 
determined in s, ܵܮ ൌ .ݐ∆ ܶܵ. Comparing the last two expressions of the equal 
displacements we get ∆ݐ. ܶܵ ൌ 1. ܶܵ. Since LS, and accordingly ∆ܶ. ܶܵ ؠ ܶܵ can 
be chosen arbitrarily, we permanently have ∆ܶ ൌ  It follows therefore that ,ݐ∆
accepting length as absolute results in time flowing equably in S and s.  

The following remarks help to illuminate the concept of absolute time by 
contiguity: 
-To each instant of time ଴ܶ in S there corresponds a unique state of contiguity 
between S and s which is characterized by the following: all events of the form 
ሺܾ א ܤ ݋ݐ ݏݑ݋ݑ݃݅ݐ݊݋ܿ ݏ݅ ݏ א ܵሻ are simultaneous in s and in S. This defines a 
unique instant of time in s which is conveniently denoted by ଴ܶ (though it may be 
denoted by another number). A new state of contiguity corresponding to relative 
displacement  



 

|∆ܺ|ଵ. ܵܮ ൌ .ଵ|ݔ∆| ܵܮ ൌ  ܵܮ
defines a unit of time TS in both frames, and corresponds to the instant of time 
ሺ ଴ܶ ൅ 1ሻܶܵ in S and in s. If T is any real number, then the relative displacement  

|∆ܺ|. ܵܮ ؠ ܶ|∆ܺ|ଵ. ܵܮ ൌ .ଵ|ݔ∆|ܶ ܵܮ ൌ ܶ. ܵܮ ൌ ܶ. ܶܵ 
corresponds to the period of time ܶ. ܶܵ elapsing in both frames. 

Thus there corresponds to each given arbitrary instant of time T in the 
synchronous frame S a unique instant of time T in s, which signifies the same 
instant of time in both frames. This implies in particular that simultaneity is 
absolute, in the sense that it is frame independent. An instant of time ܶ in both 
frames is fully meaningful and may be identified by a unique state of 
simultaneous contiguity of the points of s and S as realized in both frames.   
- Since the frame s yields itself to synchrony by means of contiguity to the 
synchronous frame S, we may consider both frames as equivalent in terms of 
which is a hypothesis and which is a conclusion. In other words, it makes no 
difference to the result whether we start from S or from s as being synchronized 
by hypothesis and then conclude that other frame is also synchronized by means 
of contiguity. It follows that one system of synchronized clocks in one frame will 
be sufficient to determine time in both frames. Thus and regardless of his state of 
motion, any observer registers the time shown on the S-clock which is just 
contiguous to him. Of course, it makes no harm to imagine an additional s-system 
of clocks with each clock is always at synchrony with the S-clock that is 
contiguous to it, or each registering ܶ ൅ ଴ܶ where ଴ܶ is constant. What matters 
really is that the S- and s-clocks register the same period ∆ܶ of time.  
- In practical applications it is convenient to take ܵܮ ൌ  and define the   ,ݎ݁ݐ݁݉ 1
unit of time “ܶܵ ൌ  by the period taken by light to travel the distance ”݀݊݋ܿ݁ݏ ܽ
ݏݎ݁ݐ݁݉ ܿ ൌ 3 ൈ 10଼݉. Thus 1 ݉݁ݎ݁ݐ ൌ  The numerical value of .ܿ/݀݊݋ܿ݁ݏ
light’s velocity in these units is ܿ ൌ ݀݊݋ܿ݁ݏ ⁄.ݎ݁ݐ݁݉  Now if the frame s is 
displaced u meters in a second then ∆ܺ ݉݁ݏݎ݁ݐ ൌ ݏݎ݁ݐ݁݉ ݑ ൌ ௨

௖
 In T .ݏ݀݊݋ܿ݁ݏ

seconds the frame s is displaced by ∆ܺ ሾ݉ሿ ൌ ݑ ቂ݉
ݏ ቃ ܶሾݏሿ, which is the familiar 

expression of displacement using the familiar units.  
- The induction of time and distance in an inertial frame s through its state of 
contiguity with the synchronous frame S amounts operationally to the following: 
Assume that at ଴ܶ as determined in S, the points ܽ א ܾ and ݏ א  are contiguous to ݏ
ܣ א ܵ and  ܤ א ܵ respectively. Now 

-We define the time reading at an every point  ܾ א  in s by the reading of the ݏ
contiguous clock at  ܤ א ܵ.  

-We define geometric distance ݀ሺܽ, ܾሻ between a and b in s by ܦሺܣ,  ,ሻܤ
where D is the geometric distance in S.  

The scaling theory retains equal time readings for contiguous clocks but 
modifies the second Newtonian requirement to incorporate a constant speed of 
light. 
4. Timed Inertial Frame- Universal Space   

Let us consider the set of all inertial frames. It is clear what motion of a 
frame with respect to another means, but what needs elaboration is that the 
concept of a frame being at rest. The latter concept requires the existence of an 
independent entity with respect to which the state of being at rest is referred. This 
entity is reminiscent of Newton’s absolute, or physical, space; it corresponds to 
the physical space when referred to a frame set up by a force-free (i.e. far from 
matter) observer and not rotating relative to the fixed stars.  Any given frame S 



 

defined by the latter statement is an inertial frame that can be identified by 
Newton’s absolute space, and thus considered stationary, while all other inertial 
frames are then moving relative to S, and accordingly relative to the fixed stars. 
Recalling that light propagates within the stationary frame S at a constant velocity 
c, the frame S which is already furnished by a coordinate system through 
geometric measurement can be endowed with a global time, with synchronization 
is carried out in the familiar way [1]. All other frames which are moving with 
respect to S derive their global time from S by contiguity.  We thus define a timed 
frame S by a stationary inertial frame in which a global time has been set up. 
Since the state of being stationary can be assigned to any inertial frame, the 
absolute, or physical, space in its Newtonian sense as the unique standard of rest 
has to be abandoned, or else, modified to admit identification with any inertial 
frame of fixed stars, but one at a time. However, the role of the absolute space as 
a unique standard of orientations is retained. The latter requirement is essential to 
single out inertial frames from rotating frames. The physical space which can then 
be corresponded by one arbitrary stationary frame S will be referred to as “the 
universal space”; it is universal because every observer participating in any 
observation has agreed to consider it as the standard of absolute rest, and has 
yielded to project the global timing in S, by contiguity on his own frame.  

We may think ideally of a timed frame as any laboratory S, sufficiently far 
from all matter, and not rotating with respect to the remote universe. The unit of 
length - a meter - which serves to set up coordinates ܱܻܼܺ in the laboratory, 
serves also, when combined with the constancy of the speed of light within S, to 
define a unit of time and to synchronize all timers in S. The system of coordinates 
and synchronized timing in the laboratory can be extended indefinitely. With all 
other frames employing the S timing and admitting S as the standard of rest, S 
becomes a timed  inertial frame.  

Starting from a timed inertial frame S a global time can be set up by 
contiguity in any other inertial frame s. Consequently one system of clocks in S is 
sufficient to determine time in S and in any other inertial frame. The last 
statement implies that simultaneous events in S are also so in any other inertial 
frame. It is important however, to note that the frame S is an arbitrary inertial 
frame, in the sense that one should be able at any stage to view the other frame s, 
if inertial, as the timed inertial frame, and thus identifiable with the universal or 
physical space.  

Global time in a timed frame S is compatible with geometric 
measurements. Indeed, when we say that the length of a rod that is stationary in S, 
or the geometric distance between its two ends A and B in S, is L, we mean that 
have we measured this length by a calibrated ruler, or by a light signal and two 
synchronized clocks situated at A and B, the two results will be L. In the second 
type of measurement, the length of the rod is ܮ ൌ ܿܶ, where T is the period taken 
by light to cross this rode from one end to another regardless of which end we 
choose as the initial point of the light signal. We will thus refer to L and T 
appearing in the latter equation as geometric length and geometric duration of 
either of the light trips ሺܣ א ܵ ՜ ܤ א ܵሻ, or ሺܤ א ܵ ՜ ܣ א ܵሻ. Benefiting from 
the compatibility of global time with geometric measurements in S, geometric 
distance in S, and in particular coordination of S, can be carried out either by (i) 
employing geometric measurements to determine the length of a baseline through 
the origin O, and then measuring the distance between any point ܤ א ܵ and O, by 



 

triangulation, or (ii) using a clock at O to determine half the period of the return 
light trip ሺܱ ՜ ܤ ՜ ܱሻ,  say T; the sought distance will be ܴ ൌ |ܤܱ| ൌ ܿܶ. 
5. Universality of Physical Laws 

Since any inertial frame can be identified with the physical space, the 
description of the physical world from any inertial frame, with measurements are 
conducted within this frame, should be the same. For geometric length within any 
inertial frame, copies of a rod in one frame can be transported to all frames and 
act as a unit of geometric length. Or instead, the equivalent of this rod’s length in 
wavelengths of the stationary emission of a specific spectral line can be used as a 
unit of length within any frame. The unit of time is then the same in all inertial 
frames. Under this arrangement, any physical experiment in a frame S yields the 
same results of a similar experiment conducted within another frame s. The 
sameness of physical laws when formulated within any inertial frame will be 
referred to as the universality of physical laws.  

The above paragraph does not contradict what was asserted that there is 
only one stationary frame at a time. In fact as long as the configuration of any 
physical system in an inertial frame S is determined through measurements within 
S, then as far as S is concerned any other inertial frame adopted by another set of 
observers is illusionary; the frame S have a direct access for measurements 
pertaining to any physical system, and the observers in any other inertial frame s, 
are as if not existing. The same thing is true for the s observers for whom the 
frame S can be dismantled, with their measurements are not affected. The frames 
which we have described with measurements of spatial and time intervals are 
carried out within each frame, are called independent inertial frames. If for 
instance two spaceships S ad s, employing the same unit of length, are employed 
as inertial frames then any experiment conducted within each will yield the same 
results.  

It is only when the same physical phenomenon is observed through light 
(or electromagnetic) signals from two different frames, then either frame, but not 
both, can be considered timed and identifiable with the universal space while the 
other is moving in the universal space.  
6. Absolute Light’s Trips in the Universal Space 

If a source of light b has an arbitrary vector velocity ݑሬԦ relative to the 
inertial frame ܵ ؠ ܱܻܼܺ, we may choose without loss of generality the velocity 
vector in the direction of the X-axis, for we may always rotate the  S-axes so that 
the X-axis is in the direction of  ݑሬԦ ൌ ଓԦ, where iݑ

r
is the unit vector of the X-axis. 

Let ݏ ؠ  be an inertial frame whose axes are parallel to those of S, and ݖݕݔ݋
moving with respect to S at a constant velocity ݑሬԦ ൌ ݑଓԦ ሺݑ ൐ 0ሻ, so that the source 
b is stationary in s. We endow the frames S and s with systems of spherical 
coordinates ሺܴ, ,ߠ ,ݎሻ and ሺ׎ ,′ߠ ߠሺ ߠ ሻ respectively, with′׎ ′ሻ is the azimuth angle 
between the X-axis (x-axis) and the radius vector ሬܴԦ ሺݎԦሻ. The latitude angles 
 will be suppressed because of the axial symmetry of the motion about ′׎ and ׎
the X-axis (Fig.(6.1)).  

Assume that the source of light b which is stationary in s emits, when at 
,ሺܴܤ ,ߠ  ሻ in S, a spherical pulse of light. When light arrives at O, it reaches also׎
an s-observer whom we choose the origin o of s. Two S and s observers who are 
contiguous when hit by the pulse are called conjugate observers. Similarly, two 
sources, each emitting a pulse of light when contiguous, are called conjugate 
sources.  



 

The situation we have displayed has the following features:  
(i) In a given frame S, a source of light b is moving. Or equivalently, in the 
inertial frame s in which the source is stationary, an inertial observer O, attached 
to a frame S, is moving at velocity ሺെݑሬԦሻ. 
(ii) Light is emitted from b when at ܤ א ܵ.   
(iii) On arriving at ܱ א ܵ light arrives at the conjugate observer ݋ א  While O is .ݏ
already given, o emerges at the instant light arrives at O; it is the s-observer that is 
contiguous to O when light is received at O and hence by o. But we may equally 
imagine that when light arrives at ݋ א ܱ it also arrives at ݏ א ܵ, and thus ݋ א  is ݏ
already known while ܱ א ܵ is known when light arrives at o.  

The S frame can be considered at rest throughout the light's trip which 
starts from (B when occupied by the source b) and ends up at (O and o), while b is 
moving at velocity ݑሬԦ ൌ  ଓԦ in S. Also the s frame can be claimed the stationaryݑ
frame during the duration of the trip which starts from the point (b when was at B) 
and ends up at (o and O), while S is moving at velocity െݑሬԦ ൌ െݑଓ ሬԦ. Since each 
frame is entitled to claim itself stationary, and thus identifiable with the universal 
space, while the other is moving, all observers (the S and s observers) accept that 
light emanated "at the same time" from one and the "same point" in the universal 
space and ended at the same time at the same point.  
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           Fig.(6.1).  The path of the trip ሺܾ ܽܤ ݐ ՜  ሻ in the universal space݋ ݀݊ܽ ܱ
                            whether identified by S or by s . 

 
To elaborate, the phrase ሺܾ א ܤ when at ݏ א ܵሻ defines in each frame a 

pair composed of a location and an instant of time, or what we shall call a 
universal point, and denote by ሺܾ ܽܤ ݐሻ. Thus a true source of light gives rise to a 
universal point, which is a frame independent entity that embodies the same 
instant of time in both frames together with an S- and s-locations that are 
coincident in the universal space at the instant of contiguity of b and B. Similarly 
the end point of the pulse in one frame determines a conjugate end in the other 
frame, and accordingly, another universal point. It follows that all observers 
concede to the fact that there is one and the same trajectory in the universal space 
associated with a given light's trip, which starts from ሺܾ ܽܤ ݐሻ and ends at 
ሺܱ ܽ݊݀ ݋ሻ ؠ ሺܱ,  ሻ. In other words, the single pulse traces a universal straight݋
path connecting the universal points (b at B) and (O,o). The last fact is valid 
whether S or s is considered stationary and thus identified by the universal space.  



 

A direct consequence of the last statement is the following: If ሺߠ,  ሻ are׎
the directional angles of the path in S when considered stationary and ሺߠԢ,  Ԣሻ are׎
its directional angles in s when s is considered stationary, then  
ߠ                                           (6.1) ൌ ߠ ׎      ,′ ൌ    .′׎
The velocity of the source, or equivalently the relative velocity of S and s, does 
not appear in the last relations. This implies that, had the frame S been replaced 
by another frame ܵଶ in standard configuration with the former, the directional 
angles of the path would not change: ߠଶ ൌ ′ߠ ൌ ଶ׎      ,ߠ ൌ ′׎ ൌ  .׎
7. The Anisotropic Scaling Transformations of the First Type   

Let b be a source of light moving in an inertial frame ܵ ؠ ܱܻܼܺ at a 
constant velocity ݑሬԦ, with the X-axis of S is taken along ݑሬԦ ൌ ݑ) ଓԦݑ ൐ 0ሻ.  Let s be 
an inertial frame which is moving relative to S at a constant velocity ݑሬԦ ൌ  ଓԦ, andݑ
hence the light’s source b is stationary in s. Now, we set out to determine the 
transformations which allows for each frame, S or s, to be considered stationary 
while the other is moving.  
 Assume that when at ܤ א ܵ the source b emits a pulse of light. When the 
pulse arrives at the point (or observer) ܱ א ܵ, it arrives also at its s-conjugate 
point (or observer) ݋ א ܱ  which is contiguous to ,ݏ א ܵ at the moment the pulse 
hits O (or when the pulse arrives at ݋ א ܱ it also arrives at its S-conjugate ݏ א ܵሻ. 
We choose now the axes of s such that ݏ ؠ  are in standard configuration ݖݕݔ݋
with ܵ ؠ ܱܻܼܺ. Each of the conjugate observers O and o is entitled to consider 
his frame stationary relative to the fixed stars and thus identifiable with the 
universal space while the other frame is moving relative to his own frame. Each 
observer, O and o, assigns to the pulse path the same beginning ሺܤ, ܾሻ and the 
same end ሺܱ,  ሻ. In other words the pulse follows a universal path connecting the݋
universal points ሺܤ, ܾሻ and ሺܱ,  ሻ, and the direction of the path is the same when݋
looked at from the stationary frame whether it was S or s. In each frame, when 
considered stationary, the pulse propagates along a direction determined by a unit 
vector Ԧ݁, with  
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 ሺ7.1ሻ                                        Ԧ݁ ൌ ஻ைሬሬሬሬሬሬԦ

ฮ஻ைሬሬሬሬሬሬԦฮ
 ሺ݅݊ ܵሻ ؠ ሬሬሬሬԦ݋ܾ

ฮܾ݋ሬሬሬሬԦฮ
 ሺ݅݊ ݏሻ 

If S is chosen the stationary frame, then the geometric length ฮܱܤሬሬሬሬሬԦฮ ൌ ܴ 
of the trip ሺܾ ܽܤ ݐ ՜  ሻ in S is employed to induce corresponding length݋ ݀݊ܽ ܱ
ݎ ൌ ฮܾ݋ሬሬሬሬԦฮ and duration ݐ ൌ ݎ ܿ⁄   in s such that r and t have the status of geometric 



 

length and time in s, when s is the stationary frame, in the same way R and T have 
in S. 
 By the Galilean law of velocity addition, the velocity of the pulse in S is 
the vector sum of its velocity in s and the velocity ݑሬԦ of its emitter. However the 
pulse emanating from ሺܾ ܽܤ ݐሻ and arriving at O should had been ejected in a 
direction Ԧ݁௅ in S such that the resultant velocity c Ԧ݁௅ ൅  ଓԦ is along the unit vectorݑ
Ԧ݁. The duration ݐ ൌ  taken by the pulse to arrive at O is given by the quotient ܿ/ݎ
of its displacement vector ܱܤሬሬሬሬሬԦ ൌ െ ሬܴԦ ൌ ܴ Ԧ݁ and its velocity c Ԧ݁௅ ൅   .ଓԦ in S, i.eݑ
ሺ7.2ሻ                                       ܴ Ԧ݁ ൌ ሺܿ Ԧ݁௅ ൅ ଓԦሻݑ ݎ ܿ⁄ ൌ ሺ Ԧ݁௅ ൅  ,ݎଓԦሻߚ
where ߚ ൌ ݑ ܿ.⁄ Thus the geometric length of the trip in S, which is R, has given 
rise to the optical length ݎ ൌ  of the trip in S. The length r can be looked on as ݐܿ
the geometric length of the trip in s because b is stationary in s, and r therefore 
must induce for a source B an optical distance ܴ ൌ ܿܶ in s which should be 
identical to its geometric distance R in S. Since B is moving in s at velocity ሺെݑሬԦሻ, 
the velocity in s of the pulse that emanates from the virtual source B is the sum of 
its velocity in S and the velocity ሺെݑሬԦሻ of its emitter. The pulse emanating from B 
should have then been ejected in a direction Ԧ݁ெ in s such that the resultant 
velocity c Ԧ݁ெ െ ܶ ଓԦ is along Ԧ݁. The durationݑ ൌ ܴ/ܿ taken by the pulse to arrive at 
o is given by the quotient of the displacement ܾ݋ሬሬሬሬԦ ൌ െݎԦ ൌ ݎ Ԧ݁ of the pulse as seen 
in s and its velocity c Ԧ݁ெ െ   .ଓԦ in s, i.eݑ
ሺ7.3ሻ                              ݎ Ԧ݁ ൌ ሺܿ Ԧ݁ெ െ ଓԦሻݑ ܴ ܿ⁄ ൌ ሺ Ԧ݁ெ െ  .ଓԦሻܴߚ

Whether b or B was the source, we start only with one quantity, R if S is 
the stationary frame or r if s is the stationary frame (but not both), which is 
already geometrically measured whereas the other quantity is induced in the other 
frame by the relations (7.2) and (7.3). It follows therefore that it is sufficient to 
know the ratio ݎ ܴ⁄ ൌ Γሺߚ,  ሻ to determine both quantities, regardless of whichߠ
had been measured geometrically, or equivalently, which frame was considered 
stationary. 
 Dividing the equations (7.2) and (7.3) side to side we obtain 

ሺ7.4ሻ                                                   
ܴ
ݎ ൌ

Ԧ݁௅ ൅ ଓԦߚ
Ԧ݁ெ െ ଓԦߚ

ݎ
ܴ  . 

Or  

ሺ7.5ሻ                                        Γሺߚ, ሻଶߠ ൌ ሺ
ݎ
ܴሻଶ ൌ

Ԧ݁ெ െ ଓԦߚ
Ԧ݁௅ ൅  .ଓԦߚ

By equations (7.2) and (7.3) the vectors appearing in the numerator and 
dominator on the right hand-side of the last equation are both along Ԧ݁. Setting  
ሺ7.6ሻ                                       Ԧ݁௅ ൅ ଓԦߚ ൌ ݇ Ԧ݁,     Ԧ݁ெ െ ଓԦߚ ൌ ݇′ Ԧ݁ , 
we get 
ሺ7.7ሻ                                       Ԧ݁௅ ൌ ݇ Ԧ݁ െ ଓԦ,     Ԧ݁ெߚ ൌ ݇′ Ԧ݁ ൅  .ଓԦߚ
Taking the norms of both sides in each equation (7.7) we get 

1 ൌ ݇ଶ ൅ ଶߚ െ .ሺଓԦ݇ߚ2 Ԧ݁ሻ ൌ ݇ଶ ൅ ݇ ߠݏ݋ܿߚ2 ൅  ,ଶߚ
1 ൌ ݇ ′ଶ ൅ ଶߚ ൅ ݇ߚ2 ′ሺଓԦ. Ԧ݁ሻ ൌ ݇ ′ଶ െ ݇ ߠݏ݋ܿߚ2 ′ ൅  .ଶߚ

Solving for k and ݇ ′ we obtain 
݇ ൌ െߠݏ݋ܿߚ ൅ ඥ1 െ  ,ߠଶ݊݅ݏଶߚ
݇ ′ ൌ ߠݏ݋ܿߚ ൅ ඥ1 െ  .ߠଶ݊݅ݏଶߚ

Dividing the latter equations side to side gives 



 

                              Γሺߚ, ሻଶߠ ൌ ቀ
ݎ
ܴቁ

ଶ
ൌ

݇ ′

݇ ൌ
ߠݏ݋ܿߚ ൅ ඥ1 െ ߠ2݊݅ݏ2ߚ

െߠݏ݋ܿߚ ൅ ඥ1 െ ߠ2݊݅ݏ2ߚ
 

ൌ
ሺߠݏ݋ܿߚ ൅ ඥ1 െ ሻଶߠଶ݊݅ݏଶߚ

1 െ ଶߚ , 

which yields the scaling factor Γሺߚ,  ሻ given byߠ

ሺ7.8ሻ                              Γሺߚ, ሻߠ ൌ
ݎ
ܴ ൌ

ߠݏ݋ܿߚ ൅ ඥ1 െ ߠ2݊݅ݏ2ߚ

ඥ1 െ 2ߚ
. 

It is easily seen that   
ሺ7.9aሻ                                       Γሺ0, ሻߠ ൌ Γሺߚ, ߨ 2⁄ ሻ ൌ 1,   
ሺ7.9ܾሻ                            Γିଵሺߚ, ሻߠ ൌ Γሺെߚ, ሻߠ ൌ Γሺߚ, ߨ െ  .ሻߠ
Moreover, for ߚ fixed and positive, Γሺߚ,  ሻ is a monotonically decreasing functionߠ
with ߠ א ሾ0,    ሿ, andߨ

ሺ7.9cሻ                     Γሺߚ, 0ሻ ൌ ඨ
1 ൅ ߚ
1 െ ߚ ൐ Γሺߚ, ሻߠ ൐ ඨ

1 െ ߚ
1 ൅ ߚ ൌ Γሺߚ, ሻ      0ߨ ൏ ߠ ൏  ߨ

The scaling transformations are therefore 
ሺ7.10aሻ                  r ൌ Γሺߚ, ,ሻܴߠ ݐ ൌ Γሺߚ, ,ሻܶߠ ׎ ൌ ,′׎ ߠ ൌ ߠ ′. 
These can be written in terms of the angle ߠ ൌ ,ሬԦݑ൫ע ሬܴԦ൯ between the velocity of 
the source b in S and the radius vector as follows: 
 ሺ7.10ܾሻ                                  ݎԦ ൌ Γሺߚ, ሻߠ ሬܴԦ, ݐ ൌ Γሺߚ,  .ሻܶߠ
Another explicit forms that hold for arbitrary relative orientations of axes of S and 
s are the following:  
(7.10c) ௥Ԧ

ோሬԦ
ൌ ௧

்
ൌ Γሺߚ,  ,ሻߠ

 

(7.10d)  ݎ Ԧ݁ ൌ
ఉሬሬԦ.ோሬԦାටܴ2െ൫ߚሬሬԦൈሬܴሬԦ൯

2

ට1െ2ߚ
eሬԦ, 

supplemented by ܴ ൌ ܿܶ and ݎ ൌ   .ݐܿ
8. The Active View in Interpreting the Scaling Transformations 

The active view corresponds to the frame S taken from start as the timed 
frame and thus identifiable with the universal space with its global timing is valid 
in every other inertial frame. Any non S-observer yields to the fact that his frame 
is moving in the universal space S. Consider the light trip 

ሺܾሺݎ, ,ߠ ,ሺܴܤ ݐܽ ሻ׎ ,ߠ ሻሻ׎ ՜ ሺܱ ܽ݊݀ ݋ሻ 
in which b is a true source of light.  The transformations (7.10) can be understood 
in the timed inertial frame S in either of the following ways: 
(i)It determines in the timed frame S the ratio between the characters (length and 
duration) of the true light trip ሺܾ ܽܤ ݐ ՜ ܱሻ and the corresponding characters of 
the light trip ሺܤ ՜ ܱሻ, whether B was a true or a virtual source.  
(ii) It determines the optical or proper distance r from O of the moving body b in 
terms of the geometric (which is also optical) distance R of a conjugate body B 
that is stationary in S.  
(iii) It determines the distance r between the moving body b when at B and an 
observer ܱ א ܵ  in terms of its geometric distance ฮܱܤሬሬሬሬሬԦฮ ൌ ܴ. If b heads towards 
O, then the duration it takes to arrive at O is ݎ ⁄ݑ .  



 

In all above interpretations, the geometric distance ฮܱܤሬሬሬሬሬԦฮ ൌ ܴ is already 
known, whereas the values r and t are what S measures for the length and duration 
of the true light trip ሺܾ ܽܤ ݐ ՜ ܱሻ, or equivalently, for the distance ฮܾܱሬሬሬሬሬԦฮ ൌ ݎ ൌ
 If the theory is correct, these measured values must be related to the known .ݐܿ
geometric data R and T by the transformations  
ݎ                         (8.1) ൌ Γሺݑ, ݐ    ,ሻܴߠ ൌ Γሺݑ, ሻܶߠ ൌ Γሺݑ,   .ܿ/ሻܴߠ
  If ଴ܶ ൌ 0 is read on the clock B at the instant of emission, then the time 
read on the clock O at the instant of light reception is   
ݐ                                           (8.2) ൌ Γሺݑ, ሻߠ ܴ ܿ⁄ ൌ ݎ ܿ⁄ .  
The quantity t [r] which is actually measured for the duration [length] of the light 
trip ሺܾ ܽܤ ݐ ՜ ܱሻ is called its optical or proper duration [length]. The quantity 
ܴ ܿ⁄ ൌ ܶ appearing in (8.2) represents the duration that light takes from B to O 
were B a true source. The S system of clocks alone is sufficient of course to 
specify the characters of the trip ሺܾ ܽܤ ݐ ՜ ܱሻ  since the readings of the clocks B 
and O of the events of light’s emission and reception respectively determine these 
characters. Moreover, as evidenced by (8.2), only the geometric distance R 
between B and O is sufficient to determine the duration of the trip ሺܾ ܽܤ ݐ ՜
ܱሻ, provided the velocity of the source b in S is already given. Thus the relations 
(7.10) give rise to transformations within the same frame S, between the 
geometric length ܴ ൌ ܿܶ (or geometric distance R) and the optical length ݎ ൌ  ݐܿ
(or proper distance r). The directional coordinates ሺ׎,  ሻ of the true and virtualߠ
trips are obviously the same. When the pulse arrives at O the source b occupies a 
point ܾԢ א ܵ with ܾܤԢሬሬሬሬሬሬԦ ൌ ߜ The angle .ݐሬԦݑ ൌ ע ቀ ሬܴԦ, ܱܾԢሬሬሬሬሬሬԦቁ is calculated from (7.7(i)); it 
is given by  sin ߜ ൌ ߚ sin  .ߠ

Alternatively, the transformations (7.10) hold within a timed inertial frame 
s, with B is a true source while b can be a true or a virtual source. Here, R is the 
optical (or proper) distance from o of a true source B, which is moving at velocity 
െݑଓԦ in s, and r is its geometric distance from o. In this case the expression of the 
optical length in terms of the geometric length is obtained just by interchanging r 
and R in (7.10) (or (8.1)) and replacing ߚ by –  to obtain ,ߚ
ሺ8.3ܽሻ                                   ሬܴԦ ൌ Γሺെߚ, Ԧݎሻߠ ൌ Ԧݎ Γሺߚ, ⁄ሻߠ , 
which is identical to the forms (7.10). 

The interpretation of the scaling transformations when the light trip is 
specified in one reference frame is called the active view. In the active view therefore, 
the specification of the characters of light's trip ሺܾ ܽܤ ݐ ՜  ሻ is realizedܱ ݀݊ܽ ݋
through two trips of which one trip is certainly true while the other can be true or 
virtual. When only one true source is present then the optical quantities belong to the 
true trip whereas the geometric quantities characterize the virtual one. Only one 
frame in the active view is necessary for full determination of the optical characters 
of a light’s trip, and the latter coincide with its geometric characters if the source is at 
rest in that frame. Moreover, no ambiguity arises regarding units, because the same 
units in one frame, namely in S, are used when considering the characters of the trips 
ሺܤ ՜ ܱሻ and ሺܾ ՜ ܱሻ.  
The Case of Two Trips: We consider here the case in which b and B are both 
true sources. We have here in addition to the previous true light’s trip ሺܾ ܽܤ ݐ ՜
ܱሻ another true trip ሺ݄݊݁ݓ ܤ ܾ ՜ ܱሻ. It is clear that it makes no difference to the 
transformations between R [T] and r [t] in S if B was also a true source. We recall 
of course that the frame S can be considered permanently stationary. The current 



 

case digresses from the case of a single trip in that, there are two pulses arriving at 
O at two different instants, T and t. Both trips follow the same path in S, namely 
the straight segment connecting (B when occupied by b) and O, but with  
ሺ8.4ሻ                                             ݐ െ ܶ ൌ ሺΓሺݑ, ሻߠ െ 1ሻܶ 
time difference in arrival at O.  
9. Lifetime of Meta Stable Particles 
 The ߤ െ meson particles are generated at an altitude of ܺ ൌ 60݇݉ and 
move at velocity v close to that of light. Even if these particles have the velocity 
of light, it can travels during its short lifetime ሺ߬ ൎ 2. 10ି଺ݏ ሻ only the distance 
݀ ൎ ܿ߬ ൌ 0.6݇݉, which is just 0.01 of the distance from the earth surface. 
According to active view (iii) the distance of an ߤ െmeson particle generated at 
an altitude X and approaching the earth surface shrinks to a value  

ݔ ൌ Γሺߚ, ሻܺߨ ൌ ඨ
1 െ ߚ
1 ൅ ߚ ܺ. 

In order to reach the earth surface the particle should possess a velocity v such 
that 

ඨ
1 െ ߚ
1 ൅ ߚ ܺ ൏ ߬ݒ ൎ ܿ߬ ൎ 0.6. 

Setting X=60 and solving for ߚ yields ߚ ൐ 0.9998, which is  a tangibly probable 
range in the speed distribution of such particles. Because of the approximation we 
have made the result obtained is a rough estimate for the range of ߚ.   
10. The Active View Through Geometric and Proper (or Optical) Units 

We may think of the transformations (7.10)  as setting up in S a unit of  
proper (or optical) length ܵܮ݌ሺݑ, ܤ ݐܽ ሻ associated with a trip ሺܾߠ ՜ ܱሻ in terms 
of the unit of geometric length LS, whereas the numerical values of the geometric 
and proper (or optical) lengths are the same in S. This means that, if the 
geometric distance ฮܱܤሬሬሬሬሬԦฮ is ݈݊݁݊. ܤ ݐܽ then the length of the light’s trip ሺܾ ,ܵܮ ՜
ܱሻ is ݈݊݁݊. ,ݑሺܵܮ݌ ,ݑሺܵܮ݌ ሻ. The unit of optical lengthߠ  ሻ of the light’s tripߠ
ሺܾ ܽܤ ݐ ՜ ܱሻ which is determined in terms of LS depends on the velocity of the 
source and its orientation relative to ܱܤሬሬሬሬሬԦ ؠ ሬܴԦ. The latter assertions remain 
unchanged regardless of the nature of the source B, true or virtual. Let’s call the 
length ฮܱܤሬሬሬሬሬԦฮ ൌ ܴ of the trip ሺܤ ՜ ܱሻ in S whether true or virtual, the geometric 
length of every light trip ሺܾ ܽܤ ݐ ՜ ܱሻ, and denote the units of geometric length 
(time) in S by LS (TS), and the associated units of optical length (duration) by 
,ݑሺܵܮ݌ ,ݑሺܵܶ݌) ሻߠ  ሻሻ. We have already asserted that the geometric and opticalߠ
lengths (durations) of the trip have the same numerical value nlen (ntim).  
Consider now a light’s trip ሺܾ ܽܤ ݐ ՜ ܱሻ of unit geometric length in S, i.e. 
ฮܱܤሬሬሬሬሬԦฮ ൌ ܴ  Setting  .ܮܵ ൌ ݎ and ܮܵ ൌ ,ݑሺܮܵ݌   ሻ  in (7.10) yieldsߠ

ሺ10.1ሻ                                
,ݑሺܵܮ݌ ሻߠ

ܵܮ ൌ
,ݑሺܵܶ݌ ሻߠ

ܶܵ ൌ
Γሺݑ, ሻߠ

1 . 
Now, there corresponds to the trip ሺܾ ܽܤ ݐԢ ՜ ܱሻ with geometric length  ܴԢ ൌ
݈݊݁݊ . ᇱݎ  the optical length ,ܵܮ ൌ Γሺݑ,  ሻܴԢ which is expressible in the form weߠ
have asserted:  
ሺ10.2ሻ         ݎᇱ ൌ Γሺݑ, .ሻሺ݈݊݁݊ߠ ሻܵܮ ൌ ݈݊݁݊. ൫ܵܮ.Γሺݑ, ሻ൯ߠ ൌ ݈݊݁݊. ,ݑሺܵܮ݌  ሻߠ
The geometric and optical lengths of the trip  are equal if and only if Γሺݑ, ሻߠ ൌ 1, 
which amounts to either ݑ ൌ 0, or ߠ ൌ ߨ 2⁄ .  



 

On recalling that the proper distance of a moving body b when at B from an 
observer O corresponds to its optical distance from O, we stress that the above 
discussion amounts to inducing a proper distance ฮܾ݋ሬሬሬሬԦฮ ൌ  in terms of the ݎ
geometric distance ฮܱܤሬሬሬሬሬԦฮ ൌ ܴ.  

If the geometric unit of length in S is taken the wavelength  0ߣ of the 
stationary emission of a given spectral line, and if ฮܱܤሬሬሬሬሬԦฮ ൌ ܴ accommodates nlen 
wavelengths then the proper length ฮܾ݋ሬሬሬሬԦฮ ൌ  accommodates also nlen of the optical unit ݎ
of length ܵܮ݌ ൌ Γሺݑ,   .଴ߣሻߠ
11. Viewing the Light Trip in the Universal Space -The Passive View  
 The way in which we derived the scaling transformations allows for the 
identification of the universal space with either frame S or s while the other frame 
is moving.  The relations (7.10) express the relations between what is measured in 
S (in s) when chosen the stationary frame to what is measured in s (in S) when 
chosen stationary; it is valid whether b or (exclusive) B was the true source. If b 
was the true source of light, then R (r) is it geometric (proper or optical) distance 
from O in S. And since the source is stationary in s, r is also its geometric distance 
from o in s. If B is the true source then r (R) is its geometric (proper or optical) 
distance from o in s, and R is also its geometric distance  from O in S. In any case, 
the proper or optical length (duration) of the light’s trip, which coincides with the 
geometric length (duration) in the frame in which the source is stationary, is the 
same in both frames.  This guarantees that time flaws equably in both frames and 
sets up accordingly a proper distance between the source and the observer in the 
frame in which it is moving. We may thus look on (b at B) as one point in the 
universal space with one optical, or proper distance, from (O and o), and 
interpret (7.10) as defining units of geometric length and time in one frame from 
the counter units in the other; whereas the optical characters of a true trip are 
absolute in the universal space. The absolute characters of the trip, which concern 
its length and duration, must be the same in both frames.  
 
                                                                           െݐݑଓԦ    ሺܤ,                      ሻ  ࢛࢚ଙԦ࢈
:ࡿ                  ሬ࢘Ԧ ൌ ሬܴԦ     ࢚ࡸሬԦࢋࢉ ൌ             ሬԦࢋࢀࢉ
  
          

    ሬԦ     Ԧ݁ெࢋ       ࡸሬԦࢋ                                                            
:ݏ                                               Ԧݎ ൌ ݐܿ Ԧ݁, ሬܴԦ ൌ ܿ Ԧ݁ெܶ      

      
                                                                                
                                                                                    
                                   

  
                                 ࢛ଙԦ࢚    ሺܱ, ሻ݋        െ ଓԦܶݑ                               X 
                                                                  

We denote the unit of geometric length (time) in S and s by LS (TS) and ls (ts) 
respectively. Setting ܴ ൌ ,ܵܮ ݎ ൌ ܶ and ݏ݈ ൌ ܶܵ, ݐ ൌ  in (7.10), we obtain ݏݐ

ሺ11.1ሻ                                             
ݏ݈
ܵܮ ൌ

ݏݐ
ܶܵ ൌ

Γሺݑ, ሻߠ
1 , 

with ݑሬԦ ൌ  ଓԦ is the velocity of s relative to S. The latter relation indicates that theݑ
unit of length (time) in s and S must comply with the ratio  1: 1 Γሺݑ, ⁄ሻߠ . Units of 



 

length (time) in the frames s and S that obey the ratio Γሺݑ, :ሻߠ 1 will be referred to 
as universal units.  

Since the optical length of a given light trip is absolute in the universal 
space, we must have 
(11.2a)                                            ܴ௖. ܵܮ ൌ .௖ݎ  ,ݏ݈
(11.2b)                                          ௖ܶ . ܵܮ ൌ .௖ݐ  ,ݏݐ
where ܴ௖ and ௖ܶ  ௖ሻ are the length and duration of the trip as read in S (s)ݐ ௖ andݎ) 
respectively.  From (11.1) and (11.2) we have 

ሺ11.3ሻ                                                  
ܴ௖

௖ݎ
ൌ ௖ܶ

௖ݐ
ൌ

Γሺݑ, ሻߠ
1 . 

According to the last relations the observed characters in S are simply the S 
equivalents (means using S optical units) of the corresponding observed 
characters in s, and vice versa. It is noted that the relations (11.1) and (11.3) are 
valid whether b or B was the source of light, and whether S or s was considered 
stationary.  

We consider now how the transformations (11.3) can be employed, and 
what available data are there.  

Suppose that ܾ א  .is the source of light ݏ
If s is chosen the stationary (or timed) frame then the geometric unit of 

length ls is already given and the optical length of the light trip is identical to its 
geometric length in s, and hence ݎ௖ ൌ ܿݐ ௚ (andݎ ൌ  ሻ is an available data. The݃ݐ
relations (11.3) determine the characters of the light trip as observed by an 
observer O moving at velocity െݑሬԦ using his unit of geometric length ܵܮሺݑ, ሻߠ ൌ
ݏ݈ Γሺݑ, ⁄,ሻߠ  which is direction dependent; it is given by ܴܿ ൌ ,ݑΓሺ݃ݎ  .ሻߠ

Suppose that b is a source of monochromatic light of a characteristic 
wavelength 0ߣ as measured in s, and that the path ሺܾ ܽܤ ݐሻ ՜ ሺ݋ ܽ݊݀ ܱሻ, which is 
of length ݎ௚ ݅݊ ݏ ܽ݊݀ ܴ௖ in S measures  n wavelengths. If ߣ is the wavelength as 
measured in S, then by (11.3), ݊ߣ ൌ ܴܿ ൌ Γሺݑ, ݃ݎሻߠ ൌ Γሺݑ, ߣ ଴, orߣሻ݊ߠ ൌ Γሺݑ,   ,଴ߣሻߠ
which is the Doppler effect.  

If S is the timed inertial frame then LS is given, and the situation 
encountered can be looked on as a body b moving in S. Now, by the active view 
on one hand, the optical distance (to be denoted here by ܴ௖ሻ in S is Γሺݑ,  ሻ timesߠ
the geometric distance. i.e., ܴ௖ ൌ ܴ௚Γሺݑ, ܴܿ ,ሻ. On the other handߠ ൌ ,ݑΓሺܿݎ  ሻ, byߠ
(11.3). Comparing the last two relations we have 
ሺ11.4ሻ                                                           ܿݎ ൌ ܴ݃ 
which is an available data. It is to be noted that ݎ௖ is measured in s through measuring 
the light trip length by the unit  ݈ݏሺݑ, ሻߠ ൌ .ܵܮ Γሺݑ,  ሻ, whereas ܴ௚is the distance asߠ
measured in S had the source been stationary in S using of course his unit of length 
LS. In other words s reads for b what S reads for the conjugate source B but each 
using his own units.  
12. The Doppler Effect 

Let s be an inertial frame that is moving relative to S at velocity ݑሬԦ ൌ ݑଓԦ ሺݑ ൐
0ሻ, and consider a stationary source of light b in s that radiates monochromatic light 
of a characteristic wavelength ߣ଴. ݋ where ls is the unit of length in s.  Let ݏ݈ א  be ݏ
another point in s, and suppose that the path ܾ݋ accommodates  n wavelengths. i.e. 
|݋ܾ| ൌ ݎ ൌ ݊. .଴ߣ ܤ Imagine that the source starts radiating when at  .ݏ݈ א ܵ and that 
ܱ א ܵ is contiguous to ݋ א |ܱܤ| when light arrives at o. The path’s length ݏ ൌ ܴ 
accommodates then n wavelengths ߣ.  .where LS is the unit of length in S  ,ܵܮ



 

According to the passive view the length of the trip ሺܾ ܽܤ ݐ ՜  ,ሻ is absolute݋ ݀݊ܽ ܱ
and  ݊ߣ଴. ݏ݈ ൌ .ߣ݊  which yields ,ܵܮ

ሺ12.1ሻ                                                 
ߣ
଴ߣ

ൌ
ݏ݈
ܵܮ ൌ Γሺݑ,  ,ሻߠ

by (11.1). The wavelength as observed in S is therefore  
ሺ12.2ሻ                                                    ߣ ൌ ,ݑ଴Γሺߣ  .ሻߠ
By (7.9c),   

ሺ12.3ሻ               ߣ ൏ ߨ ݎ݋݂ ଴ߣ ൒ ߠ ൐
1
ߣ         ,ߨ2 ൐  ݎ݋݂ 0ߣ

1
ߨ2 ൐ ߠ ൒ 0,  

ߣ                               ൌ ߠ ݎ݋݂ ଴ߣ ൌ
1
  . ߨ2

These correspond to the body approaching the observer in the first case, receding 
from the observer in the second, and moving at right angle to the position vector 
of the body in the third case.   

We compare here the quantitative Doppler’s effect as determined by the 
scaling theory 
 ሺ12.4ሻ                                      ߣ ൌ ߠݏ݋ܿߚ൫ߛ ൅ ඥ1 െ  ,଴ߣ൯ߠଶ݊݅ݏଶߚ
with the relativistic formula [1] 
ሺ12.5ሻ                                                ߣா ൌ ሺ1ߛ ൅  ,଴ߣሻߠݏ݋ܿߚ
where ߛ ൌ 1 ඥ1 െ ⁄ଶߚ , and the relativistic predicted wavelength has been denoted 
by ߣா to distinguish it from the wavelength ߣ predicted by the scaling theory. It is 
clear that the predictions of the two theories coincides for longitudinal motion. 
Indeed  

ሺ12.6ܽሻ                ߣሺߠ ൌ ሻߨ ൌ Γሺߚ, ଴ߣሻߨ ൌ ඨ
1 െ ߚ
1 ൅ ߚ ଴ߣ ൌ ߠாሺߣ ൌ  ,ሻߨ

ሺ12.6ܾሻ                 ߣሺߠ ൌ 0ሻ ൌ Γሺߚ, 0ሻߣ଴ ൌ ඨ
1 ൅ ߚ
1 െ ߚ ଴ߣ ൌ ߠாሺߣ ൌ 0ሻ. 

The predictions of the two theories become qualitatively distinct for  ߠ ൌ  In this .2/ߨ
case the relativistic formula (12.5) predicts a red shift given by  

ሺ12.7ሻ                                            ߣ ൌ ଴ߣߛ ൌ
଴ߣ

ඥ1 െ ଶߚ
, 

whereas the relation (12.4) reduces to   
ߣ                                      (12.8) ൌ Γሺߚ, ଴ߣ2ሻ/ߨ ൌ   ,଴ߣ
which contrary to the relativistic prediction, shows that there is no traverse Doppler's 
effect.  

In spite of the absence of traverse Doppler’s effect in the scaling theory, the 
prediction of the theory are in excellent agreement with the results of the Ives-Stilwell 
experiment [5,6]. To specify the goal of the experiment, we denote the wavelengths 
associated with approaching and receding sources by ߣ௔ and ߣ௥ respectively. The 
Ives-Stilwell experiment was designed to measure the shift [5,6,7]  
ሺ12.9ሻ                                          ∆ߣ ൌ భ

మሺߣ௔+ߣ௥ሻ െ  .଴ߣ
In the relativistic theory  
ሺ12.10ሻ                      ߣா௥ ൌ ሺ1ߛ ൅ ா௔ߣ    ,଴ߣሻߠݏ݋ܿߚ ൌ ሺ1ߛ െ    ,଴ߣሻߠݏ݋ܿߚ
and the shift in wave length is  

ሺ12.11ሻ                                         ∆ߣா ൌ ሺߛ െ 1ሻߣ଴ ൎ
1
2  .଴ߣଶߚ

In the scaling theory   



 

௥ߣ                                (12.12) ൌ ߠݏ݋ܿߚሺߛ ൅ ඥ1 െ  ,( ߠଶ݊݅ݏଶߚ
௔ߣ                                (12.13) ൌ ߠݏ݋ܿߚሺെߛ ൅ ඥ1 െ  ,(ߠଶ݊݅ݏଶߚ
and the wavelength shift is  

ሺ12.14ሻ        ∆ߣ ൌ ቀߛඥ1 െ ߠଶ݊݅ݏଶߚ െ 1ቁ ଴ߣ ൎ
1
2 ଴ߣߠଶݏ݋ଶܿߚ ൌ ሺ∆ߣாሻܿݏ݋ଶߠ. 

The last relation shows that the scaling theory predicts in general a smaller shift than 
the relativistic one, and the two prediction coincide for ߠ ൌ 0 or  ߠ ൌ -In Ives .ߨ
Stilwell's experiment a small concave mirror is set at an angle ߠ ൌ  with the ionsל7
velocity to reflect the emitted radiation backwards.  As (12.14) shows, the relativistic 
prediction should be scaled by a factor ܿݏ݋ଶ7ל ൎ 0.985 producing accordingly a 
smaller shift, and the predicted shifts by the scaling theory can be closer to the 
experimental observations only when the observed shifts are less than the relativistic 
predictions.  

The following table displays some of the predictions of the special theory of 
relativity and the scaling theory together with the observed shift in Ives and Stilwell 
experiment, all measured in angstrom. 

The relativistic prediction             observed shift            The Scaling predictions  
ாߣ∆             ൌ భ

మߣ଴ߚଶ                        ሺݏ݁ݒܫ െ ߣ∆         ሻ݈݈݁ݓ݈݅ݐܵ ൌ భ
మߣ଴ߚଶܿݏ݋ଶߠ 

_______________________________________________________________ 
                0.0202                                   0.0185                             0.0198        
                0.0243                                   0.0225                             0.0239 
                0.0280                                   0.0270                             0.0275 
                0.0360                                   0.0345                             0.0354 

                      0.0478                                   0.0470                             0.0470 
                      0.0670                                   0.0670                             0.0660  
                      0.0686                                   0.0675                             0.0675 
                      0.0869                                   0.0900                             0.0856 
13. Galileozation of Optical Measurements   

Let S be a timed inertial frame in which a source of light b is moving at a 
velocity ݑሬԦ ൌ ݑଓԦ ሺݑ ൐ 0ሻ. The inertial frame S is stationary relative to the fixed 
stars and it is endowed with a global time. Every other inertial frame ܵԢ will then 
be moving relative to the fixed stars with velocity that is equal to its translational 
velocity with respect to S. Time in ܵԢ is induced from time S by contiguity.  

 
  S                        ሺܤ, ܾሻ           ݐݑ?           ܾԢ     

                                           
                                            ?ݐܿ               ܶܿ                                                                  
                                                                                                     
                           Fig.(13.1)              
 
 
                                        O                                                                   
  
 

Assume that at an instant of time ݐ ൌ 0 corresponding to b at ܤ א ܵ the 
source b emits a pulse of light that arrives at the observer ܱ א ܵ after a period t. 
The pulse follows the path ሺܤ א ܵ ՜ ܱ א ܵሻ whose true (or proper) time length is 
given by  
ሺ13.1ሻ                                                      ݐ ൌ Γሺߚ,  ,ሻܶߠ



 

where T is the geometric time length of the path ܱܤሬሬሬሬሬԦ with geometric length  
݈݃ሺܤ, ܱሻ ൌ ܴ ൌ ܿܶ. When light arrives at O the source occupies a new position 
ܾᇱ א ܵ. The question is that: when light arrives at O, can we envisage ܾԢ א ܵ at  
geometric distances ݐݑ and ܿݐ from B and O respectively? In other words, is it ct 
and ut the present, or “now”, geometric distances of the source from O and B 
respectively? If the answer is no, then is it possible to find a relation between ut 
and ct on one hand and their respective counter geometric lengths ݀ᇱ ൌ
݈݃ሺܤ, ܾᇱሻ and ݎᇱ ൌ ݈݃ሺܱ, ܾᇱሻ respectively? The posed question can have an 
affirmative answer if and only if the rules of Euclidean trigonometry apply to the 
triangle ܾܤԢܱ with sides 
ሺ13.2ܽሻ                                    ܱܤሬሬሬሬሬሬሬԦ ൌ ܿܶ Ԧ݁,   ܾܤᇱሬሬሬሬሬሬሬԦ ൌ ଓԦ,   ܾᇱܱሬሬሬሬሬሬԦݐݑ ൌ ݐܿ Ԧ݁௅, 
 
                                        
 
                   S          ሺܤ, ܾሻ     ݐݑଓԦ  ?       ܾԢ    
ߨ      െ  ߠ
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 Fig.(13.2)        
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or equivalently to the vector sum 
ሺ13.2ܾሻ                                                    ܿܶ Ԧ݁ ൌ ଓԦݐݑ ൅ ݐܿ Ԧ݁௅, 
and yet the resulting relation between t and T are the same as that prescribed by 
the scaling transformations. By the law of cosines in Euclidean trigonometry we 
have 

ሺܿݐሻଶ ൌ ሺܿܶሻଶ ൅ ሺݐݑሻଶ ൅  ,ߠݏ݋ܿݐܶܿݑ2
or 

ሺ1 െ ଶݐଶሻߚ െ .ߠݏ݋ܿܶߚ2 ݐ െ ܶଶ ൌ 0, 
which yields 

ሺ13.3ሻ                                     ݐ ൌ
ߠݏ݋ܿߚ ൅ ඥ1 െ ߠଶ݊݅ݏଶߚ

1 െ ଶߚ ܶ. 

The latter equation can be written in the form  

ሺ13.4ሻ                                         ݐ ൌ ,ߚሺܩ ߨ െ ሻܶߠ ൌ
Γሺߚ, ሻߠ

ඥ1 െ ଶߚ
ܶ,      

where 

ሺ13.5ሻ                                            ܩሺߚ, ߨ െ ݐሻߠ ൌ
Γሺߚ, ሻߠ

ඥ1 െ ଶߚ
, 

is the Galilean factor.  
The relation (13.3) show that the scaling transformations (13.1) cannot be 

satisfied by the sides’ lengths of the triangle ܾܤԢܱ as given by (13.2), and our 
question accordingly has a negative answer. However, the scaling transformations 
(13.1) can be written in either of two equivalent forms that can be reconciled with 
(13.4): 



 

(13.6i)                                   ݐ ൌ ,ߚሺܩ ሻ൫ඥ1ߠ െ  ,ଶܶ൯ߚ
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(13.6ii)                                  ܿݐᇱ ؠ ௖௧

ඥଵିఉమ ൌ ,ߚሺܩ  .ሻܿܶߠ
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In both forms we have the vector sum relation (or Galilean transformation)   

ሬሬሬሬሬԦܱܤ ൌ ሬሬሬሬሬሬԦ′ܾܤ ൅  ܾ′ܱሬሬሬሬሬሬԦ 
holds, but with the geometric length of its left hand-side, namely cT, is contracted 
by ିߛଵ ൌ ඥ1 െ  ଶ in the first form, and the length of each vector on the rightߚ
hand-side, namely ut and ct, is expanded by ߛ in the second form. The first form 
indicates that to envisage, when light reaches O, the source b at ܾԢ א ܵ with 
distances ut and ct from B and O respectively, the initial distance cT of the source 
from O should b contracted by ߛെ1. Alternatively, the distances ct and ut should 
be expanded by ߛ, if the second form is to be applied. It is important to note that, 
in both views, only geometric distances are liable either to contraction (in the first 
view) or expansion (in the second view), while the true time t remains intact. 
 The Galieozation process discussed above will be used in a subsequent 
work to explain the pioneer anomaly, at least partially.  
14. Observing the Ray’s Direction From two Frames - 
      Aberration Angle  

Let ܯ be an inertial frame which is moving relative to the stationary frame 
S at a constant velocity ݒԦ ൌ ,ଓԦݒ ሺݒ ൐ 0ሻ. The light’s trip ሺܾ א ܤ ݐܽ ݏ א ܵ ՜ ܱ א
ܵሻ takes place along the segment BO. The direction of the light trip ሺܾ א ܤ ݐܽ ݏ  א
ܵሻ ՜ ሺܱ א ܵ ܽ݊݀ ݉ א  ሻ in M, where m is an M observer that is contiguous to Oܯ
when light is received is determined by two M-points through which light passes 
in its course to (m when at O). One of these points can be taken m itself, where 
the other p, which can be imagined a small ring through which the light passes, is 
any M-point that lies on the light path BO when light passes through, say  ܲ א ܵ. 
I.e. ݌ א ܲ is contiguous to ܯ א ܵ, when light passes through p. 



 

When light arrives at (m and O), the point ݌ א  through which light ܯ
passes, occupies a position ݌Ԣ א ܵ at  distances vt and ct from P and O (and hence 
m). From the geometry of fig.(14.1), in which ߜ ؠ ,൫ܱܲሬሬሬሬሬԦס   ᇱሬሬሬሬሬሬሬԦ൯, we obtain݌ܱ

 
                                    (B,b)   ݑሬԦ 
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ሺ14.1ሻ                              
หܲ݌ᇱሬሬሬሬሬሬԦห
sin ߜ ൌ

ห݌ᇱܱሬሬሬሬሬሬሬԦห
ߠ݊݅ݏ           ݅. ݁.        

ݐݒ
sin ߜ ൌ

ݐܿ
 ,ߠ݊݅ݏ

which yields the “aberration” angle δ in S and M by  
ሺ14.2ሻ                                                  ߜ݊݅ݏ ൌ

ݒ
ܿ  ߠ݊݅ݏ

In down to earth language, if p is the objective lens of a telescope in M 
(fig.(14.2)), then its ocular  occupies when light enter p a position ݋ᇱ such that 
ሬሬሬሬሬሬԦܱ′݋ ൌ ሬሬሬሬሬሬԦ′݌ܲ ൌ    .ᇱ݌ܱ coincides with ݌Ԣ݋ ,and when light is received ,ݐݒ
 
                                                                                   ሺܲ,      Ԣ݌            ሻ݌
 
 
                                                       A telescope 
                                                                       in s   
                                         Fig. (14.2) 
 
 
 
,ᇱ                 ሺܱ݋                                         ሻ݋
                               Fig.(14.2) light propagation in M through a telescope.                                       

 
Thus the direction of the ray is observed in M to be tilted from a fixed 

direction ܱܲሬሬሬሬሬԦ ؠ  given by (14.2), where ߜ ሬሬሬሬሬԦ in the universal space S by an angleܤܱ
ߠ ؠ ,൫ܱܺס ሬሬሬሬሬԦ൯ܤܱ א ሾ0, ሿ is the angle between the vector velocity vrߨ of p (or M) 
and the fixed direction (or radius vector of P) ܱܲሬሬሬሬሬԦ. The angle ߜ is called the 
aberration angle. The velocity of M in S, the fixed direction ܱܤሬሬሬሬሬԦ in S, and the tilted 
direction ܱܲሬሬሬሬሬԦ all lie in a plane called the aberration plane. It is important to note 
that the velocity ݑଓԦ of the source b has no effect at all on the aberration angle, and 
the velocity appearing in (14.2) is the relative velocity between S and M. In the 
case discussed in the pervious section the velocity of the source is the same as the 
velocity of the frame s which is commoving with it.  
15. The Illusive Lorentz Transformations 

We have shown in the last section that the light which follows in reality 
the path ሺܤ ՜  ሻ in the timed frame S is indeed seen in the moving frame݋ ݀݊ܽ ܱ



 

s to follow the path ሺܾᇱ א ܵ ՜  ሻ, which is also agreed on in S. To adoptܱ ݀݊ܽ ݋
the s view, in s and in S, we have, as prescribed in (13.6i), to contract R in (13.2b) 
by ିߛଵ to obtain ඥ1 െ ܴ ଶߚ Ԧ݁ ൌ ൫ݎ Ԧ݁௅ ൅  Ԧ݅൯, orݐݒ
ሺ15.1ሻ                                                   ሬܴԦ ൌ Ԧݎሺߛ ൅  , Ԧ݅ሻݐݒ
where we have set ሬܴሬԦ ؠ ܴԦ݁ ܽ݊݀ ݎԦ ؠ  This look like one of the Lorentz .ܮԦ݁ݎ
transformations, but it is radically different in meaning, since r is related to t by 
ݎ ൌ  In fact we may formally obtain Lorentz transformations if we choose B  .ݐܿ
and ܾԢ (Fig.(13.2)) the origins of systems of coordinates S and s and supplement 
(15.1) with its dual relation  
ሺ15.2ሻ                                           ܶ Ԧ݁ ൌ ܮԦ݁ݐ൫ߛ ൅ Ԧ݅ݎݒ ܿ2⁄ ൯. 
It is easily verified that  
ሺ15.3ሻ                                         ܴଶ െ ܿଶܶଶ ൌ ଶݎ െ ܿଶݐଶ. 
But again both sides are equal to zero. For the special case in which the observers 
(O and o) are on the line of motion of the source b we get the Lorentz 
transformations:  
ሺ15.4ሻ   ܺ ൌ ݔሺߛ ൅ ,ሻݐݒ ܻ ൌ ݕ ൌ 0, ܼ ൌ ݖ ൌ 0, ܶ ൌ ݐሺߛ ൅ ݔݒ ܿଶ⁄ ሻ. 

The generalized Lorentz transformations, and its special case (15.4), differ 
radically in its meaning from the common interpretation of Lorentz 
transformations. Indeed 
-There is only one time, namely the true time t, which is read by in the timed 
frame S and prevails also in s, while the geometric time length T is no more than a 
different measure of the geometric distance in S.  
- Because ܴ ൌ ݎ ݀݊ܽ ܶܿ ൌ  the two claimed dual relations are in fact one ݐܿ
relation, which is the corresponding scaling transformations. Indeed, the second 
relation results from the first through multiplying by c and setting ݐݒ ൌ ݎݒ ܿ⁄ . It 
follows that both sides in (15.3) vanish.  Setting ݎ ൌ  in the (15.1) we calculate ݐܿ
ݐ ൌ Γሺߚ, ሻߠ ܴ ܿ.⁄   
- ሬܴԦ ܽ݊݀ ݎԦ here are the position vectors of conjugate S and s observers O and o in 
ሺܵ, with origin ܤሻ and ሺݏ, with origin ܾᇱሻ when hit by the light pulse. O and o are 
of course any conjugate S and s observers. In conjugate coordinate systems (S,O) 
and (s,o) which are contiguous when hit by light, we have to replace ሬܴԦ and ݎԦ in 
(15.1) and (15.2) by their negatives to obtain  

ሬܴሬԦ ൌ Ԧݎሺߛ െ Ԧ݅ሻ,     ܶԦ݁ݐݒ ൌ ܮԦ݁ݐ൫ߛ െ Ԧ݅ݎݒ ܿ2⁄ ൯. 
Here ሬܴሬԦ ܽ݊݀ ݎԦ are the position vectors in S (and in s) of B and b respectively. The 
latter relations reduce of course to one relation, which is the corresponding 
scaling transformations.  
-There is only one and the same pulse which takes a duration t in the timed frame 
S, and accordingly in s, to arrive at (O and o), and there is no ground to suppose 
two durations T in S and t in s as it is assumed when deriving the Lorentz 
transformations [3]. In fact if B is a true source of light conjugate to the source b 
then light will not arrive at O from both sources at the same time. In any case the 
Lorentz invariant (15.3) is by our arguments identically zero, and the 
identification of the physical space by Minkowski space as it adopted in relativity 
theory is a big unfounded claim. 
16. Combination of the Velocity of Light 
      with the Velocity of its Emitter 
The Galilean Factor 



 

We have found in section 13 that the rules of the Euclidean trigonometry 
applied to the triangle ܱܾܤ′ , with sides yields  

ሺ16.1ሻ                                  ݎԢ ؠ
ݎ

ඥ1 െ ଶߚ
ൌ ,ߚሺܩ ߨ െ ሻܴߠ ൌ

Γሺߚ, ሻߠ

ඥ1 െ ଶߚ
ܴ,  

with  ݎ ൌ ܴ ,ݐܿ ൌ ܿܶ .  The Galilean factor  

ሺ16.2ሻ                                            ܩሺߚ, ሻߠ ൌ
Γሺߚ, ߨ െ ሻߠ

ඥ1 െ ଶߚ
 

has the properties  
 ሺ݅ሻ                                                  ܩሺ0, ሻߠ ൌ 1,  

 ሺ݅݅ሻ    ܩሺߚ, 0ሻ ൌ
1

1 ൅ ߚ  , ,ߚሺܩ ሻߨ ൌ
1

1 െ ߚ , ܩ ቀߚ, ଵ
ଶߨቁ ൌ

1
ඥ1 െ ଶߚ

 

 ሺ݅݅݅ሻ      ܩሺെߚ, ሻߠ ൌ ,ߚሺܩ ߨ െ ሻߠ ൌ
ߠݏ݋ܿߚ ൅ ඥ1 െ ߠଶ݊݅ݏଶߚ

1 െ ଶߚ ൌ
Γሺߚ, ሻߠ

ඥ1 െ ଶߚ
 

ሺ݅ݒሻ                                            ܩሺߚ, ,ߚሺെܩሻߠ ሻߠ ൌ
1

1 െ  ଶߚ

ሺ݅ݒሻ                                         ܩሺߚ, ,ߚሺܩሻߠ ߨ െ ሻߠ ൌ
1

1 െ ଶߚ ൌ ሺܩሺߚ,  2ሻሻଶ/ߨ

 ሺ݅݅ݒሻ                                               ିܩଵሺߚ, ሻߠ ൌ ሺ1 െ ,ߚሺെܩଶሻߚ  ሻߠ
Velocity Addition: Let’s return to the relation (7.2 )    
ሺ16.3ሻ                                                ܿܶ Ԧ݁ ൌ ሺܿ Ԧ݁௅ ൅  ,ݐଓԦሻݒ
which expresses the Galilean law of velocity addition applied provisionally in S to 
the velocity of a pulse and its emitter. This formulae do not conform to the rules 
of Euclidean geometry unless R is contracted by the factor ିߛଵ. On carrying out 
this scaling we obtain the formula 

ሺ16.4ሻ                                          ܶ Ԧ݁ ൌ ሺ Ԧ݁௅ ൅ ଓԦሻߚ
ݐ

ඥ1 െ ଶߚ
, 

Substituting for t from ݐ ൌ Γሺߚ,   ሻܶ  yieldsߠ

ሺ16.5ሻ                    Ԧ݁ ൌ ሺ Ԧ݁௅ ൅ ଓԦሻߚ
Γሺߚ, ሻߠ

ඥ1 െ ଶ ൌߚ ,ߚሺെܩ ሻሺߠ Ԧ݁௅ ൅   ଓԦሻߚ

Taking the cross product of both sides by Ԧ݁ yields   
ሺ16.6ሻ                                                    Ԧ݁ ൈ Ԧ݁௅ ൌ െ Ԧ݁ ൈ  ,ଓԦߚ
which gives 
ሺ16.7ሻ                                                      sin ߜ ൌ ߚ sin  ,ߠ
where ߜ ൌ ሺס Ԧ݁௅, Ԧ݁ሻ ൌ ሺס Ԧ݁, Ԧ݁ெሻ. The relation (16.5) determines the law of 
combination of the velocity of light signal, which is c, with the velocity  of its 
emitter. The resulting velocity is c, and the direction of the resulting pulse is tilted 
from that of the original one by the aberration angle ߜ. The resulting velocity 
ܿ Ԧ݁ is along a vector Ԧ݁  inbetween the vectors ݒଓԦ and Ԧ݁௅  and makes an angle ߜ 
with the latter. The relation (16.5) can be written in a more convenient form 
ሺ16.8ሻ                                 ܿ Ԧ݁ܮ ൌ ሺ1 െ ,ߚሺܩଶሻߚ ሻܿߠ Ԧ݁ െ  ,ଓԦݒ

Some special cases of addition of the velocities of a light signal and its 
emitter are listed here. In all cases the resulting velocity is c of course. We assume 
in all cases that ݒ ൐ 0. 
-The value  ߠ ൌ  which corresponds to the same direction for the emitter’s and ,ߨ
the pulse’s velocities, gives  
ሺ16.11ܽሻ                ܿ Ԧ݁ܮ ൌ ሺ1 െ ,ߚሺܩଶሻߚ ሻܿߨ Ԧ݁ െ ଓԦݒ ൌ ሺ1 ൅ ሻܿଓԦߚ െ ଓԦݒ ൌ ܿଓԦ, 
ሺ16.11ܾሻ                                                             ߜ ൌ 0. 



 

-The value  ߠ ൌ 0 corresponds to opposite directions for the velocities of the 
emitter and the pulse. It gives   
ሺ16.12ܽሻ             ܿ Ԧ݁ܮ ൌ ሺ1 െ ,ߚሺܩଶሻߚ 0ሻܿ Ԧ݁ െ ଓԦݒ ൌ ሺ1 െ ሻܿሺെଓԦሻߚ െ ଓԦݒ ൌ െܿଓԦ, 
ሺ16.12ܾሻ                                                            ߜ ൌ 0. 
-The value  ߠ ൌ  which corresponds to perpendicular directions of the , 2/ߨ
emitter and the pulse, gives  
ሺ16.13ܽሻ                 ܿ Ԧ݁ܮ ൌ ሺ1 െ ,ߚሺܩଶሻߚ ሻܿ 2/ߨ Ԧ݁ െ ଓԦݒ ൌ ඥ1 െ ଶܿߚ Ԧ݁ െ  ,ଓԦݒ
ሺ16.13ܾሻ                                           ߜ ൌ  .ߚଵି݊݅ݏ
The relation (16.13a) affirms also that  

 ܿ ൌ |ܿԦ݁ܮ| ൌ ቚඥ1 െ ଶܿߚ Ԧ݁ െ  .ଓԦቚݒ
17. Stellar Aberration 

Due to the earth's orbital motion around the sun the apparent position of a 
star changes throughout the year. The change in the direction of the starlight 
because of the earth orbital motion constitutes the phenomenon of stellar 
aberration which was discovered by Bradley [10] in 1727. Bradley explained 
stellar aberration using the corpuscular model of light [9,10]. However, it was 
necessary to explain this phenomenon on the basis of the wave theory of light at a 
time the latter stood supreme. Indeed, one can account for aberration effect in 
terms of waves traveling through the ether, provided the ether remains completely 
undisturbed by the earth's motion [9,11].  The relativistic explanations presented 
in most textbooks seem lacking consistency and comprehensiveness. Perhaps, the 
odd feature [12,9] of the relativistic model of aberration is to consider the relative 
velocity between a terrestrial observer and a star always equal to the orbital 
velocity of the earth around the sun. It seems inconsistent [9,12] to accept that the 
relative velocity between a distant celestial object and a terrestrial observer should 
be high in order to account for the red shift effect, and should be just the earth's 
orbital velocity, when it comes to aberration. Indeed, the star velocity, or more 
rigorously the relative velocity between a star and the earth does not show at all in 
the observed effect of aberration. In this work we shall discuss aberration on the 
bases of the scaling theory and show that it is free of the inconsistency we have 
just pointed to.  
Stellar Aberration 
 Consider a "distant" star b, in the sense that the radius of the earth's orbit 
is negligible in comparison with the distance of the star from the sun. In this 
context, the phrase "the vicinity of the sun at some instant 0T " will mean the 
region of space containing the sun and the earth and whose dimensions remain 
negligible in comparison with the distance of the star b from the sun throughout a 
long period of time (centuries). In the stationary inertial frame ܵ ؠ ܻܼܰܺ with 
origin at the sun "N", the motion of b will have no observable effect on its 
location in S during a relatively long period of time (centuries), and in particular, 
on the latitude angle ߆, between ܾܰሬሬሬሬሬԦ and the ecliptic, which remains almost 
unchanged. In vicinity of the sun the rays sent out from b and received by all S 
observers in this region are practically parallel, and the star appears to all these 
observers at the same latitude ߆. Let ܯ ؠ -be a frame of reference co ݖݕݔܧ
moving with the Earth in its orbital motion, and whose axes remain parallel to the 
axes of the inertial frame S. i.e. geocentric frame. 

All S-observers see the rays from the star b throughout the year coming 
along the negative direction of the vector Ԧ݁  which is the unit vector of ܾܰሬሬሬሬሬԦ. A 



 

telescope op on the earth surface, with the ocular o and objective lens p sees the 
star only if it was oriented along a direction  ݌݋ሬሬሬሬԦ which is tilted from the fixed 
direction ܾܰሬሬሬሬሬԦ in S by an angle  
ሺ17.1ሻ                                                  ݊݅ݏ ߜ ൌ

ݒ
ܿ  ߠ ݊݅ݏ

with vr  is the instantaneous orbital velocity of the Earth around the Sun and ߠ is 
the angle between this vector and the vector ܾܰሬሬሬሬሬԦ צ ܱܲሬሬሬሬሬԦ (Figs. (14.2)). In other 
words ߠ is the angle in the aberration plane between the fixed direction ܾܰሬሬሬሬሬԦ in S 
and the instantaneous vector velocity of the earth. 
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                              Fig. (17.1)                                                                               
                                                                                                Ԧ݁                         
                                                                   Ԧ݁       Θ                                            
                    ଴               Xܧ                       ܰ                                                            
                                                                                   ߮ 
                                                                               E 
                                                                   Ԧ݁௧                  ߠ ൌ ሺע Ԧ݁, Ԧ݁௧ሻ 
                                                                 
                                         Y 

The vector velocity ݒԦ ൌ ݒ Ԧ݁௧ of the earth around the sun, with Ԧ݁௧ is the unit 
tangent vector to the Earth's orbit, rotates approximately uniformly with an 
angular velocity ߱ ൌ  in S. From this follows that the aberration plane ݎܽ݁ݕ/ߨ2
containing this rotating vector, the fixed vector ܾܰሬሬሬሬሬԦ//ܾܧሬሬሬሬሬԦ, and the tilted direction 
߱ ሬሬሬሬԦ rotates in S with angular velocity݌݋ ൌ  We choose the axes of S so .ݎܽ݁ݕ/ߨ2
that the Z axis is perpendicular to the ecliptic and the XZ plane comprises the star 
b. The zero of timing in S (and M) is chosen to correspond to the closest position 
 ଴ of the Earth to the star, i.e. when Earth is on the X-axis, and thus its velocity isܧ
perpendicular to the XZ plane. In the frame S, and within the approximations 
imposed by the meaning of "distant star", the unit vector Ԧ݁ of the negative 
direction of the incoming ray and the tangent vector Ԧ݁௧ of the earth orbit are 
ሺ17.2ܽሻ                                              Ԧ݁ ൌ ሺܿ߆ݏ݋, 0,  ሻ߆݊݅ݏ
(17.2b)        Ԧ݁௧ ൌ ቀcos ቀగ

ଶ
൅ ቁݐ߱ , sin ቀగ

ଶ
൅ ቁݐ߱ , 0ቁ ൌ ሺെݐ߱݊݅ݏ, ,ݐ߱ݏ݋ܿ 0ሻ 

respectively, and hence  the cosine of the angle ߠ ؠ ሺס Ԧ݁, Ԧ݁௧ሻ between the earth's 
vector velocity and the negative direction of the incoming ray is 
ሺ17.3ሻ                                      ܿߠݏ݋ ൌ Ԧ݁. Ԧ݁௧ ൌ െܿ߆ݏ݋ sin߱ݐ. 
From (17.1) we have 

ሺ17.4ሻ            ݊݅ݏଶߜ ൌ ቀ
ݒ
ܿቁ

ଶ
ሺ1 െ ሻݐsinଶ߱ ߆ଶݏ݋ܿ  ൌ ቀ

ݒ
ܿቁ

ଶ
ሺ1 െ  ,sinଶ߮ሻ ߆ଶݏ݋ܿ 

with ߮ ൌ  ሬሬሬሬሬሬԦ connectingܧܰ is the polar angle in the ecliptic of the radius vector ݐ߱
the sun N and the earth E, i.e., ߮ ൌ ,଴ሬሬሬሬሬሬሬሬԦܧሺܰס  ሬሬሬሬሬሬԦሻ. For a given star the altitudeܧܰ
angle ߆ is fixed, and the relation (17.4) determines the aberration angle ߜ in terms 
the polar angle ߮ of the earth's position at its orbit in the ecliptic, or equivalently, 
at any instant throughout the years. Identifying ݊݅ݏ  we find from (17.4) ,ߜ by ߜ
the angle between two vision lines of a star separated be six months period:   



 

ߜ2                             (17.5) ൌ 2 ௩
௖

ሺ1 െ   sinଶ߮ሻଵ/ଶ ߆ଶݏ݋ܿ 
The aberration angle attains its maximal values ߜ௠௔௫, determined by  
ሺ17.6ሻ                                                   ߜ௠௔௫

ଶ ൌ ሺ
ݒ
ܿሻଶ 

for sinଶ߮ ൌ 0, which corresponds to ߮ ൌ ߮ ݎ݋ 0 ൌ  ,and its minimal values ,ߨ
given by,   
௠௜௡ߜ                                            (17.7)

ଶ ൌ ሺ௩
௖
ሻଶ݊݅ݏଶΘ 

for ߮ ൌ భ
మ ݎ݋ ߨ ߮ ൌ య

మߨ. Recalling that the telescope in s is tilted by ߜ towards the 
earth's orbital velocity vector, we deduce that the observed altitude of the star in 
(fig.(17.1)) is greatest for ߮ ൌ భ

మ ߨ and least for ߮ ൌ య
మߨ. The altitude of the star at 

߮ ൌ 0 or ߮ ൌ   .remains unchanged because the telescope is tilted horizontally ߨ
 If the star b is in the ecliptic then the relation (17.4) reduces to 
ሺ17.8ሻ                                            ߜ ݊݅ݏ ൌ

ݒ
ܿ cos ݐ߱ ൌ  

ݒ
ܿ cos ߮, 

and the aberration occurs in the ecliptic attaining its maximal value (17.6) at 
߮ ൌ 0, ߜ and minimal value ,ߨ ൌ 0 at ߮ ൌ ଵ

ଶ
,ߨ ଷ

ଶ
 .ߨ

Observing Aberration from an Earth's Satellite 
Suppose that a satellite is orbiting the earth in a low circular orbit that lies 

in the ecliptics. During the orbital period of the satellite, say less than two hours, 
the frame ܯ ؠ  is almost (which does not rotate relative to distant stars) ݖݕݔܧ
stationary, and the position of a distant star b appears fixed. This defines an 
approximately fixed direction ܾܧሬሬሬሬሬԦ in M along which the star b is seen for two 
hours. Now, an argument identical to that presented when studying stellar 
aberration can be carried out here, with the earth replacing the sun and the 
satellite replacing the earth, leading to an aberration angle in the satellite frame 
and in M given by 

݊݅ݏ ௦௔௧ߜ ൌ
௦௔௧ݒ

ܿ  ߠ ݊݅ݏ
where ݒ௦௔௧is the orbital velocity of the satellite relative to ܯ ؠ  is theߠ and ݖݕݔܧ
angle between the negative direction of the incoming ray and the instantaneous 
vector velocity of the satellite. After half a period ሺ൏  ሻ the velocity of theݎݑ݋݄ 1
satellite in s reverses direction, and with it the aberration angle, resulting in an 
angle  

2 ௦௔௧ߜ ൎ 2
௦௔௧ݒ

ܿ  ߠ ݊݅ݏ
between the lines of sight to the star at two observations from the satellite  
separated by half a period.  For ݒ௦௔௧ ൎ ߠ  and ݏ/7.5݇݉ ൌ ഏ

మ,   

2 ௦௔௧ߜ ൌ
1
4 . ߜ2 ൎ

1
4 ሺ41.25"ሻ ൎ 10.31ԢԢ 
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