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The Lorenz and Einstein theories are here revisited from the perspective of our present pragmatic know-

ledge of the universe.  The field of gravitation emerges in a chain of Lorenz transformations, while linking the 
micro cosmos of the particles to the macro cosmos of the Universe.  In this context, the precession of the Mer-
cury orbit is reconfirmed as a consequence of the field itself. 

The acceleration in the gravitational field is attributed to a flow velocity which covers up a subluminal 
deficit left by the world-lines in the Lorenz transformations in the direction towards singularities in the gravita-
tional centers. 

The nuclear force emerges as a local variety of gravitation in the micro-scales of the particles within the 
macro-scale of the Universe.  In this context a revised Planck length returns a proper mass in the dimension of 
the nucleon quarks.  From this follows also that force balance is achieved in the local fields of the electron. 
These examples indicate that the universe is functioning in a holographic way. 

In the overall picture it seems to be the Arrow of Time which governs the development of the Universe, 
resulting in a general inflation in time, space and mass, as well as gravitation, while the mass-increase is offset 
by negative potential energy in the gravitational fields, thus allowing for a still ongoing avalanche creation of 
the Universe without any requirement for external energy. 

 

1. Relativity in World-lines 

Einstein tried initially to describe gravitation with his Special 
Theory of Relativity, but replaced soon that effort with the con-
cept of a “minimal path” in a curving space-time, rather than 
describing gravitation by acceleration in terms of an increasing 
velocity.  This led him to his General Theory of Relativity. 

In the framework of General Theory of Relativity, many 
different solutions to gravitation have been proposed, based on 
different “metrics” for different purposes.  The cause and effect 
of gravitation on the cosmological level has long been an out-
standing question, the answer to which is one subject of this 
presentation. 

Einstein was one of the early proponents of the concept of 
world-lines to describe particle patterns in the time-dimension, 
since used with various interpretations.  In short, a world-line is 
defined as a time-like curve that maps the path of a particle in the 
time-dimension. This branch of relativistic physics is more re-
cently described in [2].  

In special relativity, or Minkowski space, the speed of light is 
constant and the world-lines of particles at constant speed rela-
tive to each other are straight lines.  Special Relativity is a theory 
of the relativity of physical concepts in the frameworks of objects 
with a relative linear velocity in respect of each other. This theory 
is illustrated in Figure 1, where the Lorenz transformation is cap-
tured there by the geometry marked OBCD. 

If two particles are at rest in respect of each other, their 
world-lines are parallel.  If the particles have a velocity relative to 
each other, their world-lines will be at an angle to each other.  If 
one of the particles is changing its velocity in respect of the other, 
its world-line will rotate until the acceleration is completed. 

Two world-lines can represent the same object before and af-
ter it is accelerated.  This is proven by integration of the kinetic 
energy when the angle   in Fig. 1 changes from 0 to   while 
the relative velocity changes from 0  to v . 

 

Fig. 1.  World-lines 

Geometrically, the time required for the acceleration is geo-
metrically 0 0R OD c t    in the system of the stationary observ-

er.  The corresponding geometrical time in the accelerating sys-
tem is i iR OC c t   .  The two lines 0ct  and ict  are the world-

lines of the object before and after acceleration. 
From the triangle OCD in Figure 1, the following geometric 

relations are valid: 
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The same result is valid for the triangle OBC: 
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Hence, in both time-systems, the velocity v  is the same function 
of  , therefore generally 

 sinv c   (1.3) 

Einstein's relativistic factor, originating from the Lorenz trans-
formation, with sinv c   results in 
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2 2 21 1 / cosv c 


   . (1.4) 

These relations are all continuous functions and can be used 
as such for evaluation of a step in velocity congruent with a step 
in the angle . 

1.1. Kinetic Energy in Special Relativity 

The kinetic energy gained by a mass by acceleration, is calcu-
lated with the use of the rotating world-line under the assump-
tion of Einstein that the force by which a mass is resisting any 
change of its momentum is the time-derivate of its momentum. 

The momentum of a particle is P Mv .  Using the geometric-
al nomenclature introduced above, the momentum becomes 

 0 0 0sin cosP M v M c M c tg       , (1.5) 

from which 

  2
0 cosdP M c d  . (1.6) 

With this, the kinetic energy given to a mass by inertial accelera-
tion becomes: 
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Newton’s non-relativistic solution is retrieved approximately 
when v « c : 

 
2
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0 ( 1)
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M v

E M c     (1.8) 

1.2. Kinetic energy in the Gravitational Field 

When a test-particle is falling freely from “far distance” in a 
field of gravitation, no external energy is supplied, why the two 
effects of “falling in the field” and “increasing velocity” cancel 
out and its total mass relative to “non-falling” observers along 
the field during the fall is constantly the same: 

  0 0/M M M     (1.9) 

Hence, the total energy of a test-particle is the same all along 
the “fall”, gradually changing over from a constant rest-mass 
outside the field to finally all relativistic energy when reaching 
the velocity c at the interception of an event horizon at a 
Schwarzschild radius. 

If the local rest-mass energy of a test particle is added to the 
kinetic energy, its total energy becomes: 

 2 20
0K

M
E c M c


 

  
 

, (1.10) 

In trigonometric terms 

 2 2
0 0cosKE M c M c  . (1.11) 

This is equivalent with: 

  2
0 1 cosKE M c    (1.12) 

The geometry of Fig. 2 gives the following relation between 

SR BD  and 0R : 

 2
0 sin SR R   (1.13) 

Substituting BD with SR  from Figure 2, and using the conjugate 

rule, the kinetic energy becomes: 
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At the Schwarzschild radius, the kinetic energy becomes: 

 2
0KE M c , (1.15) 

With the value of 22S GR GM c , where G is Newton's con-

stant and GM  is the gravitating mass, the kinetic energy is: 

 0
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
 (1.16) 

At larger distances from the center, i.e. R0 = R » RS  the kinetic 
energy becomes: 

 0 G
K

M M
E G

R
 , (1.17) 

This is Newton's law for kinetic energy in the field of gravitation. 

1.3. Gravitation in Special Relativity 

In order to calibrate the gravitational field, a "test-particle" 
will be subject to study while it “falls” in the field from far dis-
tance.  The test-particle will be assumed to have a rest-mass, 
which is so much smaller than the gravitating mass that it will 
not be notably dislocate the center of gravity. 

The migration from the Lorenz transformation in Figure 1 to 
gravitation in the special theory of relativity is done in Figure 2, 
which includes the additional condition that the distance BD 
shall be equal to the Schwarzschild radius ( SR ) of the gravitating 

mass. 
From the geometry follows also that the velocity along CD in 

the figure is equal to sinv c  .  This gives: 

 2 2

0 0

2
sin S GR GM

v c c
R R

   , (1.18) 

Here 0R OD  is the distance from the center of gravitation to 

an object at a fixed peripheral distance from the center.  In a "fall 
from infinite distance" in the field of gravitation, v is the escape 
speed, which will further on be complemented by a flew-velocity 
directed towards the center of gravitation. 

 

Fig. 2.  From world-lines to Special Relativity 

This relation leads back to a requirement on the 0ct -world-

line to be quantized in steps of the Schwarzschild radius of the 
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gravitating mass, which can be with a fine structure in terms of 
the smallest autonomic particle participant in the gravitating 
mass.  The angle between the world-lines will accordingly de-
pend on the distance from the center of gravitation, which is 

 0,SR R   , (1.19) 

Following which 

 0sin / 1 /SR R    (1.20) 

The world-lines must therefore rotate in respect of each other 
in a “free fall”, from zero radians at a far distance from the gravi-
tational center to   / 2 radians at the theoretical center of 
gravitation where iR  is equal to zero and 0R  is the Schwarz-

schild radius.  This condition is illustrated in Figure 3. 
The quantizing requirement that will map the gravitational 

field is that OD is equal to a natural number of Schwarzschild 
radii.  With reference to Figure 3, the quantum condition can be 
written as: 

 0 SR R   (1.21) 

  is a natural number.  In regard of the geometry follows now 

that 2
0sin / 1 /SR R   , which gives the trigonometric rela-

tions: 
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 (1.22) 

The sequence of Lorenz transformations with the quantum 
requirements from above will set up the quantized gravitational 
field, as illustrated in Figure 3. The first transformation in the 
chain, at the theoretical center of gravitation, has the number 

1  .  All the following transformation cycles have sequential 
numbers   that are "natural" numbers, i.e. 1, 2, 3 etc.  

At the inner cycle, 1  , the distance iR  is a singular point, 

0R  is equal to SR  and the angle between the world lines is 

1 / 2   .  In the following cycles, the angles between the 

world lines have sin 1 /  .  Therefore, the world-line of a 

test-particle in the flow towards the center will be subject to a 
rotation from the angle  and the position D  to the angle 1   

and the position 1D   while the point B moves to 1D   in Fig-

ure 3. 
The length of the 0,R  - world-line is 0, SR R  .  We have 

 sin 1   and 1 ( 1)tg    . (1.23) 

Therefore the following handshake is valid between consecu-
tive cycles in the outward direction: 

 1sin tg     (1.24) 

The following pattern was therefore consequently applied in 
the construction of Figure 3: 

 1 2
1,2

sin SR
tg

S
   ,  2 3

2,3
sin SR

tg
S

   , (1.25) 

 3 4
3,4

sin SR
tg

S
   ,  4 5

4,5
sin SR

tg
S

   , etc. (1.26) 

The first cycle, at the gravitational center has 1sin 1   and 

accordingly 1 2  . The handshake defines the transformation 

from one cycle , to the next, 1  . With this, all the cycles are 
defined by natural numbers up to the expanding event horizon 
of the Universe. 

The 1B D   circle elements are binding paths between the 

Lorenz loops, which illustrate a rotation of the field, which is 
further analyzed and confirmed by the observation of the preces-
sion of the planet Mercury's orbit around the sun. 

 

Fig. 3.  The sequence of Lorenz transformations in the gravita-
tional field. 

2. The Orbital Precession 

At distances sufficiently far from the gravitational center, 
where R0 » RS, the angle   is sufficiently small to be approx-
imated by sin .  At such distances from the center, the horizon-
tal angular precession can with good approximation be given by: 

 
3

3
1

sin1
sin sin 1

2 2


 
         (2.1) 

This calculation corresponds to the inherent rotation of the 
angle in the field at the distance 0,R   from the center in respect 

of the northern hemisphere.  To this comes  the simultaneous 
rotation in respect of the southern hemisphere.  The result is a 
rotation of the field itself, which in the two hemispheres together 

is 32 sin   radians during the time 0 0 /t R c  .  The pre-

cession of the orbit due to the rotation of the gravitational field 
itself results then in: 
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 (2.2) 
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Geometrically from Figure 3, on a sufficient long distance 

from the center, when 0 SR R , the relation 3
0sin S R    is 

found to be approximately valid.  On this condition, the angular 
velocity of the precession can be developed into the same as 
above. 

From this follows that the precession of the orbit is pertinent 
to the gravitational field and depends on the distance from the 
gravitational center and the mass of the gravitating object, which 
is included in SR .  The here described rotation of the gravitation-

al field can be expected to be generally valid either it concerns 
the rotation of the planets around a star or stars rotating around 
a galactic center.  For example, the distance 0 0,R R   can be the 

distance from the center of the sun to a planet 

2.1. The Mercury Orbit Precession 

The angular velocity of the gravitational field around the Sun 
is calculated below for a comparison with the precession of the 
planet Mercury's orbit.  For the calculations we note that 

 141 rad s 100 years 6.5047667328 10 arcsec    (2.3) 

The geometric medium of the Mercury orbital radii is 
10 1010 4.6 7.0 5.67(45) 10  m    .  This distance is substituted 

for the distance 0R  above. 

The angular perturbation velocity in the field at the geome-
trical average distance from the Sun to the Mercury orbit is: 

 
3 28 3

14
10 10

3 10 2.9505 10
6.268 10  rad/s

5.6745 10 5.6745 10
   

       
, (2.4) 

from which the rotation of the field at that distance from the cen-
ter over 100 years becomes 

 14 146.5048 10 6.268 10 41 arcsec       . (2.5) 

The closeness of the result to the observations is as good as 
could be expected, considering that the  calculation is made 
approximately, using the geometric average of the distances at 
perihelion and aphelion.  The here calculated excess angular 
velocity is still in a good agreement with the astronomically ob-
served angular precession of the planet Mercury, as well as with 
the 42 arcsec, calculated on the base of General Relativity. 

3. Matter at the Time-Front of the Universe 

The distance to the expanding time-front of the universe can 
be understood in two complementary ways.  On one side, it can 
be regarded as a sphere, which is expanding in all the directions 
of space and time from the point of view of every observer point 
in the universe.  On the other side, the time-horizon can be re-
garded as the frontier of historical time, ending at the present 
time of every observation point.  The radius of the universal 
time-globe can therefore be defined as the distance to the “event 
horizon” of the large universe around us, as well as the arrow of 
time from the creation until present time. 

While the conglomerate of all the particles represents all the 
mass of the universe, their own theoretical Schwarzschild radii 
will sum up to the radius of the event horizon of the universe, 
which is also the radius to the expanding time-sphere of the un-
iverse. 

The proposal that the frontier of the expanding time-sphere of 
the universe is equivalent with the event horizon of the universe, 
defined as its Schwarzschild radius, is supported by the follow-
ing evidence. The mass of the observable universe can be approx-
imately estimated from astronomical observations which indicate 

a content of about 1110 galaxies, each composed of average 1110  
stars with the average mass a bit larger than our sun's mass of 

302 10 kg, plus some so far less explored mass and energy possi-
bilities and margin for field energies and radiation, which sums 

up to 52 5410 -10 kg.  A reasonable assumption for the total mass 

in the universe is therefore in the order of ~ 5310 kg. 

The Schwarzschild radius corresponding to a mass of ~ 5310  
kg is: 

 26
, 2

2
1.5 10  mU

S U
GM

R
c

    (3.1) 

The radius corresponds to the result of an expansion of time 
with the velocity c during about 15.109 light years.  This is 
compatible with the Hubble radius, although on the high end of 
the current estimates.  It is within reason to be the age of the 
universe considering that our solar system with the Earth is 
already about 4.5  billion years old and the most distant galaxy 
observed so far with the Hubble telescope is estimated to be 
more than 13 billion light years away.  It must have been 
preceded by some time for its formation, why 15-16 billion years 
is a very defendable age of the universe. 

This reasoning implies that the radius of the event horizon of 
the universe is equal to the sum of the theoretical Schwarzschild 
radii of all of its mass components. 

With 22S PR GM c , the disc- or sphere-interface to the uni-

versal time sphere can be defined as: 

 2
2 ( ) 4U U S P UP

U P P

R R M R G
A

M M M c

  
    . (3.2) 

PAM  is the particle's share of the surface of the event horizon 

of the universe. According to the following investigation, A will 
not change during the evolution of the universe, ref. chapter 4.2.  
Different from c and A, it is Newton's “constant”, which has to be 
a parameter depending on of the size and age of the universe: 

 
2

4 4U U

Ac Ac
G

R T 
   (3.3) 

Here UT  is the age of the universe, which can be represented 

by the Hubble time.  An approximate value of A can therefore be 
calculated from an equally approximate value of a Hubble age of 
the universe of about 15 billion light years and the current value 
of G. This gives: 

 2
2

4
1.5 m kgHGR

A
c


   (3.4) 

In the following, A is calibrated in a number of examples in 
the macro-cosmos as well as the micro-worlds of the particles. 

With the above definition of G, the Schwarzschild radius of 
an object with mass M is: 
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    

 
 (3.5) 

Hence, 

 2 S UAM R R  (3.6) 

This is also the surface of a polar cap on the extending transfer of 
the universe. In a local particle system, this equation can also be 
reformulated to become the time-interface of a spherical configu-
ration: 

 22 4 4P P P S UAM R R R      (3.7) 

The relation between the surfaces attributed to the particles 
and the surface of the universe becomes simply the following, 
summed over all particle mass quanta in the universe: 
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 (3.8) 

The above equation gives for the mass of the universe of 

~ 5310  Kg the radius: 

 262 1.5 10  mU UR AM     (3.9) 

On the micro-scale of the particles, the same value of A seems 
also to be valid.  For example, for a nucleon, say a proton, with 

the above given value for A of 1.5 2m /kg the radius to the mass-

time interface becomes: 

 
27

proton 14
proton

1.5 1.672 10
2 10  m

2 2

AM
R

 


 

    (3.10) 

This is a realistic radius for a proton interface at interaction 
with other particles.  Apparently, the scaling works for the 
micro-worlds of the particles as well as for the universe itself. 

Comparing with Figure 3, it should be noted that the square 
of the line DC at the level of the time-radius to the event horizon 

of the universe is 2
U U SS R R , while a sphere with this radius has 

the same surface as the particle interface with the event horizon 
of the universe. 

  On the local particle level the so defined sphere is here 
named the Lorenz Sphere. It connects the micro-scales of the par-
ticles with the large scale universe. 

4. Mass-Flow in the Time Dimension 

4.1. The Flow Density in a World-Tube 

As well as the world-line represents the part of a particle 
through the dimension of time, the transfer of a mass-object in 
the time dimension can be regarded as a flow of matter-density 
through its expanded world-line, or its world-tube serving as a 
“time-tunnel”.  The flow-density function can be defined from 
the initial requirement that the mass of the object shall be res-
tored after a certain distance in time, say ( )R t c t   , not includ-

ing the cosmic expansion of matter.  The cross section of the tube, 
or the mass-time interface, is set to that of a particle polar cap, 

Cap AM  , equal to  (3.6).  For ordinary objects this is a very flat 

surface, which comment would even be valid for the mass of a 
whole galaxy. 

Restoring the mass after a linear time travel in the word-tube 
of length ( )R t  gives that 

 ( )M AM R t     (4.1) 

Here   is the average mass-flow density in the tube, which den-
sity is: 

  1 AR t    (4.2) 

The density approaches infinity when ( ) 0R t  , which defines 

a singularity in the time dimension  when the tube length ap-
proaches zero, which is at “present time”. 

For example, the energy of a photon can be expressed in 
mass-units: 

 photon
hc

E


  (4.3) 

The cross-section of the photon's world-tube is therefore: 

 2
tube photon /

h
A E c A

c
     (4.4) 

Multiplying the cross-section with the wavelength   results in a 
quantum volume, uniquely the same for all photons in their own 
systems: 

 tube
Ah

V
c

  (4.5) 

The average density (in mass-units per volume) of this quan-
tum volume in the photon-system is: 

 
1h cM

V Ah c A





    (4.6) 

This is equal to the density of above.  Different configurations of 
this quantum volume seem to mimic different masses of known 
elementary particles.  This is described in [4, 6, 7]. 

Because the wavelength   of a photon is Lorenz-contracted to 
zero length in the direction of its movement in the system of an 
observer, the photon density can be argued to become infinite in 
the perception of the observer system and can therefore also be 
regarded as a singularity in “present time”, as well as was the 
case for the initially discussed matter flow in a world-tube. 

4.2. The Mass of a Gravitating World-Sphere 

Figure 8 shows a cut through the diameter of a model of an 
expanding sphere in the time-dimension.  At the distance r  from 

the center of the sphere, the surface 24 r  multiplied with dr  
serves as a differential world-tube with the density modified to 

 1 Ar   (4.7) 

The density function has a singular point in the center, where 
  .  This singularity attracts a mass-energy flow through the 
periphery, while maintaining the density distribution inside.  
With this the mass of the sphere increases, as well as the volume 
and the radius from the center to the periphery. 
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Fig. 4.  A diametrical cut through a sphere, marking the 
density between radii r and r dr . 

Integrating from the central singularity to a radius R the mass 
of the sphere becomes: 

 2 2 2

0 0

1
4 4 2

R R

sphereM r dr r dr R A
Ar

        (4.8) 

This gives 22sphereAM R  for the sphere, while the surface 

is 24 2 sphereR AM  .  This reflects back to the initial discussion in 

chapter 3 on the distribution of surface to the particle mass quan-
ta of the universe.  This example is in particular valid for the un-
iverse itself, as well as the Lorenz sphere (3.7), as a local space for 
a particle. 

From the equation above, the mass of an expanding particle is 
2 S UAM R R .  For a spherical universe or a Lorenz sphere the 

geometry gives 22AM R . 

If the expansion of the radius goes with a velocity c, and the 
age of the sphere is T = R/c, the expansion rate of the mass of the 
sphere is: 

 
2

U

dM
M

dt T
  (4.9) 

With reference to Eq. (3.7), all particles shall share the time-
sphere of the universe in proportion to their masses.  In absolute 
terms, this sharing is done by the constant A multiplied with the 
individual particle mass, which defines the particle's share of 
interface with the universal time.   Consequently, each particle 
mass will expand in proportion to the expansion of the mass of 
the universe.  In conclusion, the mass-dimension of the universe 
expands generally with the rate as shown in Eq. (4.9).  

This relation goes “hand-in-hand” with the general expansion 
of distances discovered by Edwin Hubble, who announced al-
ready in 1929 that almost all galaxies appeared to be moving 
away from us.  His discovery leads to the discovery of a general 
expansion of the length dimension in the universe, which can be 
expressed as follows: 

 
1

U

dR
R

dt T
  (4.10) 

5. The Flow Model for Gravitation 

5.1. The World-Lines of the Flow 

The world-lines in the Lorenz-transformation, illustrated by 

ict and 0ct  in Figures 2 and 3 are both defined as lines in the 

dimension of time.  According to the Minkowski space-time 
geometry, they should be perpendicular to the dimensions of 
space, which is also a characteristic of Figure 2, because the lines 
CD' and CB', which are space lines, are drawn perpendicular to 
the two world-lines in the figure, to respect the separation 
between the dimensions of space and time. But the logic of doing 
this is not consequent, because one of the world-lines, here 0ct , is 

for the purpose of gravitation normally assumed to be coinciding 
with the dimension of space, more precisely with the distance 
from a “non-falling” periphery to the center of gravitation. 

In a relativistic perspective, the roles of the lines would be ex-
changed when judged by a an observer co-moving with the flow 
towards the center, which would change the ict -line to be his 

0ct -line along the distance to the center, while the fixed 0ct -line 

would be Lorenz contracted  in his system to become his ict -line.  

Therefore, the physical roles of the flow and the stationary space 
are of an interactive nature, both participating as distances in 
space and time. 

For simplicity in the continued reasoning, the center of the 
gravitation in a field is here treated as a one particle center with 
one inherent singularity, while the geometry of the field is that is 
the sequence of Lorenz transformations illustrated in Figure 3.  
The 0ct -line is therefore defined as a sequence of equal packets 

of length, whereas 0 SR R . 

The angle between the world-lines will open up more, the 
closer they are to the center. The accelerating object is the space 
between the peripheries DD' and BB' in Figure 5.  The geometry 
of the chain of successive Lorenz transformations is shown in 
Figure 3, where also the effect of the increasing angle between 
the world-lines is incorporated.  Due to the rotation of the 0ct -

world-line with the space in the field, the length-quanta SR will 

just click into each other in a seamless sequence of Lorenz trans-
formations, all to the center. 

 

Fig. 5.  Energy flows from and to a particle singularity 

5.2. Processing the Flow through Lorenz Transformations 

In the process of each Lorenz transformation, with reference 
to Figure 3, a flow of negative energy is streaming outwards 
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through the periphery at the distance OB  from the center of gra-
vitation, while a counter-flow of positive energy is streaming 
inwards through the periphery at the distance OD from the cen-
ter.  The density function is that of the expanding sphere in Fig-
ure 4, i.e. a function of the distance from each singularity in the 
gravitating mass.  The flow-densities are therefore: 1 /B BAR   

at periphery B and 0 01 / AR   at periphery D.  This results in 

the following mass-equivalent energy residue in the direction of 
the gravitating mass, GM : 

 

 

 

2 2
0 0

2 2
0

0

4 4

1 1
4

4

B B

B
B

S G

M R c R c

c R R
AR AR

c
R M

A

   





  

 
   

 



 (5.1) 

This difference flow is the same at all distances from the cen-
ter.  Because of the linearity in the gravitating mass, the flow can 
be added from all the participating particles to embrace the total 
gravitating mass. 

With reference to Figure 3, this flow is transported within the 
periphery interval ' 'DD BB  by a sub-luminal flow, here 
named fv , which bridges the deficit of space and time between 

the world-lines.  In each Lorenz cycle, this deficit sums up to one 
Schwarzschild radius of the gravitating mass along the 0ct -line, 

as shown here in Figure 6. 

 
Fig. 6.  The resulting gravitational flow in a Lorentz cycle of the field. 
 
The displacement of the space from a periphery at 'DD  to a 

periphery at 'CC  is equivalent with a transport of the therein 
residing mass-equivalent energy of the flow: 

 02
' 0 0

4
4 f

DD f
R v

R v
A


 


     (5.2) 

The simultaneous parallel displacement from a periphery at 
'CC  to 'BB  gives the complement: 

 2
'

4
4 i f

CC i i f
R v

R v
A


 


     (5.3) 

Summing up these two flows gives the total mass-equivalent 
energy flow: 

    ' ' 0
4

DD CC f iM v R R
A


         (5.4) 

This means that the space displaces with the flow along the 

0ct -line from the periphery at DD' to the periphery at CC', simul-

taneously with the displacement of the space with the flow along 
the ict -line from the periphery at CC' to the periphery at BB', 

resulting in the flow originating from the periphery at DD' to 
arrive to the periphery at BB' simultaneously with that originat-
ing from CC'. 

This compacted flow shall be equal to that of (5.1) above, 
which gives the equation: 

    0
4 4

S G f i
c

R M v R R
A A
 

    (5.5) 

This results in the local flow velocity: 

 
 

0

S G
f

i

R M
c

R R
  


 (5.6) 

This can be further developed with (1.13); 2
0 sin SR R  to: 

  
2

0/ sin
1 cos

1 cos 1 cos
S

f
R R

v c c c
 

 
       

 
 (5.7) 

This solution for the difference flow velocity corresponds to 
the timely difference between the peripheries at DD' and CC' 
which is: 

  0 0 1 cosiR c t c t c t           (5.8) 

This difference shall be overcome in the time 0t , which is 

the timely distance to the center of gravitation, while the bridg-
ing velocity becomes identical with fv : 

  
0

1 cos
R

c
t


  


 (5.9) 

This clarifies the role of fv  as the parametric flow velocity 

within the Lorenz cycles, which is directed towards the center of 
gravitation. 

With the flow velocity  1 cosfv c     and (1.12), the kinet-

ic energy can be written: 

 0K fE M cv  (5.10) 

In each cycle the Schwarzschild radius can be expressed as: 

  0S f iR v t t     , (5.11) 

This results in the acceleration of the flow: 

 
 

2

0 0 0

f S
f

i

v Rc
a

t R R R


   

 
 (5.12) 

This can also be expressed trigonometrically as: 

 
   

2 2

0 0 0
1 cosS

f
i

Rc c
a

R R R R
    


 (5.13) 

This acceleration gives the parametric acceleration expressed in 
Newton's constant G and the gravitating mass GM : 

 
 

2

0 0 0

2f G
f

i

v GMc
a

t R R R


   

 
 (5.14) 
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At a distance much larger than the Schwarzschild radius, 
where 0 iR R R  » SR , the acceleration becomes Newton's acce-

leration in the field: 

 
  2

0 0

2 G G
f

i

GM GM
a

R R R R
   


 (5.15) 

At the distance of the Schwarzschild radius from the center, the 
acceleration becomes: 

 
 

2

2
0 0

2 2G G
f

i SS

GM GM c
a

R R R RR
     


 (5.16) 

This is a suitable acceleration for the event horizon of a “black 
hole”, because it can serve as the centripetal acceleration required 
to keep a relativistic flow in a circular orbit at the Schwarzschild 
radius from the center. It agrees also with the kinetic energy from 
earlier), which confirms that the negative energy potential in the 

gravitational field of the universe corresponds to - 2mc  for each 
particle mass due to its attachment to the event horizon of the 
universe. 

5.3. The Value of the Gravitational Flow 

The gravitational flow towards a gravitating mass par-
ticle, GM , is assumed to origin from the singularities inherent to 

each gravitating particle, as described in the preceding Chapter 
3.2 on the flow-model as well as in the preceding chapters 4.4 
and 4.5 on the world-tube and the world-sphere.  From Eq. (5.1), 
the flow towards a particle singularity, transferred invariantly 
trough all the Lorenz transformations is: 

 2
4 2 84

( ) G G
S G

c GM Mc
R M G

A A Acc

 
       (5.17) 

To this comes Newton's G as a function of the age of The Un-
iverse: 

 
4 U

Ac
G

T
  (5.18) 

Together, these two equations give the flow absorbed by the gra-
vitating mass as: 

 0
8 2

( ) 2
4

G
G G

U U

M Ac
M M H M

Ac T T



      (5.19) 

This reflects a general inflation of mass on the cosmic time-scale. 
The age of the universe, here given as UT , is assumed to be 

approximately 16 billion years.  With this age, all matter is ab-
sorbing mass-equivalent energy per Kg at the present rate of: 

 18
0

2
2 3,4 10

U

dM
M H M

dt T
     kg/s (5.20) 

On the level of our planet Earth, this is concurrent with an ab-
sorption rate of 20 million kg/s, which should be enough to ex-
plain all observed disturbances of different kinds, such as volcan-
ic activities, tsunamis, etc. 

The result looks even more important when mass is ex-

changed to energy with the exchange rate 2c , which gives the 
absorption rate of ~ 0.3 W/kg. 

On the positive side, if it was possible to divert only a small 
fraction of the energy flow absorbed by the Earth via facilities 
that could use the accessible energy before it is absorbed by the 

Earth, all human energy requirements would be satisfied for all 
foreseeable future. 

6. Mass and Forces at the Frontier of Time 

Although the focus of this document is on gravitation, the 
fundamental importance of mass for gravitation cannot be ig-
nored. The here developed theory for gravitation embraces also 
the origin of mass. The theoretical identification of important 
particle masses and the nuclear force serves therefore as a verifi-
cation of the here presented theory of gravitation. 

A good background to this chapter on particle mass at the 
frontier of time is to the presentation on the Speed of light by 
Narendra Katar [22], where many essential questions are made 
and answered. 

In the holographic micro universes of the particles, the nuc-
lear and gravitational forces are unified at a modified Planck 
length. As a result a feasible Planck mass has been found, which 
appears to be of key importance for the nucleon group and the 
electron. The transformation from gravitation to the nuclear force 
in the particle space explains also how the electrical charge is 
harnessed by its own mass. In the Lorenz transformations, basic 
quantum rules are found, which provide keys to the fine struc-
ture constant and a relation between the masses of the electron 
and the proton. 

6.1. The Planck Mass Revisited 

In the string theory, the Planck length has been the starting 
point, or rather length, in the efforts to find resonances, which 
can represent the spectra of elementary particles. This theory can, 
about others, be read more about in the comprehensible book, 
The Fabric of the Cosmos [10], in the literature list. 

The Planck length is assumed to emerge when the wave-
length of an electromagnetic quantum is equal to the Schwarz-
schild radius of a particle with the energy of the same quantum. 
This is expressed by the following equation system: 

 
22Pl

Pl

R GM c
M h cR

 



 (6.1) 

This gives the classical Planck length: 

 3 352 5.722 10  mPlR Gh c     (6.2) 

Would this length be used as the wavelength of an electro-
magnetic quantum, the resulting mass would be in the order of 

 83.86 10  kgPl
Pl

h
M

cR
    (6.3) 

This mass is about 2010 times larger than the mass of a typical 
nuclear particle - very far from any observed particles. This has 
led the String Theory to follow a path where the Planck length is 
assumed to be a "super string", and the cross-sections of particle 
world-tubes are "branes" with a number of hidden dimensions. 

However, there is another solution for the Planck length and 
mass, as follows. 

6.2. The Modified Planck Length - A Link to the Nucleon 
Masses  

In this solution, Newton's "constant" is substituted by Eq. 
(3.3), here repeated: 
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 2 4 UG Ac R ,  

Following this equation, Newton’s constant is not a constant 
in the cosmological time-perspective. As well as G is expected to 
depend of the timely radius of the universe, we may assume that 
it will also adapt to the micro-size of a particle space, say as a 
fraction of a hologram of the universe. Therefore, we replace the 
radius of the universe, UR , with the so far not yet evaluated dis-

tance XR , which stands for the modified Planck length, and 

leaves to Nature to solve the equation for the length dimension in 
the micro particle system. This gives the equation: 

 

1
22

3
2 4 X

X
Ac R h

R
c

  
   
 

 (6.4) 

The result is: 

 
22 X

X

R h
A cR


  (6.5) 

Applying Eq. (3.7) to this results in 

 22X X
X

h
AM R A

cR
   (6.6) 

This gives the radius: 

 143 0.8 10  mX
A

R
c

  


 (6.7) 

and the mass becomes: 

 
2

283 1
2 2.7 10  kgX

X

h
M

cR A c
        

 


 (6.8) 

The value of the constant A was approximated 

to 21.5 m kgA   in Eq. (3.4). The mass XM  falls therewith in the 

mainstream of the elementary particle masses. Its nearest hit is 

approximately one sixth of a nucleon mass, which is 282.8 10   
kg.  Because of its photon-like origin, it may be considered as a 
vector-component in a rest-mass quantum system. 

The concept of a rest-mass may initially require oscillations in 
three dimensions.  This would require the ensemble of six wave-
components, one each for the ± X, ±Y, and ±Z directions. With A 

calibrated to  ≈1.42 2m kg , which assumes the age of the un-

iverse to be rather 16 than 15 billion years, the assembly of six 
times XM becomes a typical nucleon mass: 

 
2

273 1
6 6 2 1.67 10  kgY XM M

A c
        

 


 (6.9) 

It can be hypothesized that the nucleon masses are created 
out of mass described as YM  above, before the final masses of 

the nucleons find their quantum structures. The initial Planck 
mass, YM ,  may therefore be the source to feed nucleon's with 

mass on their way to become organized in quantum conditions, 
with some minor modifications to their masses as result. The 
quantum relations can be derived from the initial structure of the 
successive Lorenz-transformations which seem to be important 
for the nucleons and their quantum quark structures. On these 
bases, the Compton wavelength of the electron and the fine 

structure constant can be derived.  This is further defined in a 
more extensive document still to be published 

According to Eq. (5.16), the gravitational acceleration at the 
Schwarzschild radius towards the centre of gravity of a gravitat-
ing mass GM  is: 

 
2

2
2 G

f
SS

GM c
a

RR
     (6.10) 

In a local particle system, Eq. (3.7) can be applied, which 

gives 2
U S PR R R . The integrated force applicable to the modified 

Planck mass becomes: 
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This results in the following pressure on the surface 
24P PT R : 
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4 10  Pa

2
P

P

R c c
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

       (6.12) 

Presumably, the breaking of the quantum conditions for a 
particle will lead to its destruction and decay in radiation and 
other quantum structures.  Therefore, the distance over which 
the force will act is likely to be very short. 

The magnitude of the force, its linear increase with the radius 
and short range of action are all indications of the nuclear force. 

6.3. The Electron Mass 

With the same reasoning as of above, the mass of the electron 
can be defined at the equilibrium of the pressures from the elec-
trical charge (expanding) and the mass (nuclear-contracting) re-
sulting in: 

 
2 2 2

0
2

2
0

4
Cl

P

e c R c
AR

 


   (6.13) 

This gives the relation: 

 2 2 2
0 8 P clA e R R   (6.14) 

With the use of Eq. (3.7) with the classical radius in the place 
of the distance to the time-frontier of the universe in the electron 
system, we get 

 2
Cl S PR R R  (6.15) 

Setting 2Cl PR R and / 2S PR R   the mass becomes 

tuned in the spirit of Maxwell to that of the electron: 

 
 22
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0.91093 10 kg
4e

e
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A




    (6.16) 

The factor   fine-tunes the electron mass for the electromag-
netic permeability in the electron's own electromagnetic field and 
mass environment.  For example, if 1   in the electron system, 
the estimate of A= 1.3874 gives the correct electronic mass. With 

the combination instead of 1.00852   and 21.41103 m kgA  , 

the electron mass is still the same as of above, while the revised 
Planck mass XM  from Eq. (6.8) becomes more exactly 1/6 of the 
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neutron mass.  This leads to 21.40 m kgA  as a good approxi-

mation, while Newton's G in Eq. (3.3) gives the age of the un-
iverse to be ≈ 16 billion years. 

References [4, 6, 7] contain various topological models for 
particle masses and resonances. 

The further geometric interpretations of the above equations 
are open for future research.  An interesting trace is the relation 
between the Compton wave of the electron and the Fine Struc-
ture Constant, in agreement with [1] which are connected by 
quantum numbers from the Lorenz transformations near the 
particle singularity, still to be published in the foreseen follow-up 
edition of this paper. 

7. Conclusion 

The evolution of the universe seems to be guided by the ar-
row of time, leading to its ever expanding event horizon.  In re-
trospect, it looks so simple that even a small particle will know 
how to move and act in space.  Still, we are only increasing our 
frontier to the unknown by enlarging our knowledge?  Even if 
this is the end of my report, I hope that others will make use of it 
in their efforts to research and understand our universe. 
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