
The Integer Quantum Hall Effect  (IQHE) step resistance 
plateaus, in a two degree (2DEG) electron gas, discovered 
in 19801 and the Fractional Quantum Hall Effect (FQHE) 
discovered in 19822, required low currents, low temperatures 
and high magnetic fields. In 19883,4, it was discovered (even at 
room temperature and no magnetic field) that quantum step 
conduction would also occur, with a one degree (1DEG) electron 
gas in separating point contacts or in necking extrusions. 
In the intervening years, the open questions were: What is 
the cause of energy dissipation in the 2( / )h e quantum step 
resistance plateau values, and why are the quantum resistances 
insensitive to geometry? The answers have now been found5, 
using (a previously unknown) electron to electron binding 
energy, resistance dissipation energy. The Planck constant (h) 
is derived from the electron binding energy physics, and thus 
obtains the 2( / )h e  von Klitzing constant 25812.8074KR = Ω  
ab initio. The von Klitzing pair and Cooper pair physics occurs 
only in the first pair as they bind onto the electron  waveguide 
EWG channel, making the quantum resistance insensitive 
to channel length. Only the von Klitzing resistance constant 
( 25812.8074 )KR Ohm=  is available to make up the quantum 
step plateaus, thus, the various resistances of the step plateaus 
are the result of parallel and series combinations of ( )KR . 
These new results also are applicable to the familiar Josephson 
junction Cooper pair effects. 

The International Council for Science, Committee on Data 
for Science and Technology (CODATA) accepted von Klitzing 
resistance standard is 25812.807449KR Ohm= , or exactly 

2( / ),h e where (h) is the Planck constant and (e) is the fundamental 
charge. The IQHE plateau resistances are relatively insensitive to 
geometry and are very robust, allowing the related fundamental 
physical constants to be standardized. Experimentally, the IQHE 
step resistance plateaus have the values of; 2/HR h ie=  where the 
coefficient  i = 1, 2, 3, 4…. and the FQHE has coefficient values 
(among others) of   i = 2/3, 3/5, 2/5, 1/3,…. (Fig. 1).

Experimentally, the 1DEG quantum wire conduction consists 
of Cooper pair to Cooper pair double channels giving a two in the 
numerator and making conductance, 2(2) /CR i e h= ⋅  in reciprocal 
Ohm,  with the coefficient values of,  i = 1, 2, 3, 4,…(see Fig. 

2). Some quantum wire conditions6,7, however, can produce an 
anomalous plateau at  i = 0.5. This anomaly is from conduction 
of a single channel von Klitzing  pair formation, 2/KR h ie= ,  i = 
1. The anomaly is labeled a 0.5 plateau, however, when using the 
reciprocal Ohm units, of Cooper pair conductance 2

0( 2 / )G e h= .
Heretofore, theory has not been able to show the exact physical 

cause for the Planck constant (h) in the step resistance 2/KR h e=  
persistent value. New avenues, for such a theory development, are 
described in “The New Quantum Vector Particle Physics”5 (QVPP).  
The QVPP5 presents an electron electromagnetic structure, that 
derives a (previously unknown) internal electron flux quantum 
( / )e h eφ α= ⋅  where  ( )α  is the fine structure constant.

The QVPP5 also reveals that the strong force is electromagnetic, 
on account of the superior (near field) magnetic moment forces, 
between binding particles. The electron has the largest magnetic 
moment of any sub-atomic particle. These new understandings 
now show that the electromagnetic strong force can bind electron 
to electron, as in Eq. (1). A graph of the von Klitzing and Cooper 
pairing forces are shown in a computer generated graphics in Fig. 
3. The Fig. 3 graph uses electron characteristics of charge (e) and 
magnetic moment ( )eµ to deduce the electron to electron binding 
energy source, for the quantum step resistance plateaus. In  Fig. 3, 
the von Klitzing electron pair, pole to pole, binding energy release, 
of 165.9674 10−⋅ J occurs at 133.866 10−⋅ m  pair separation. Also 
shown in Fig. 3, the Cooper electron pair, dipole to dipole, binding 
energy release, of 168.4393 10−⋅ J  occurs at 132.733 10−⋅ m  
separation.

In Fig. 4a, b, c, the possible electron pairings are shown 
schematically, with the spin axis direction arrows and the magnetic 
moment North (N) and South (S) poles labeled. In Fig. 4a, the 
von Klitzing pairing is magnetically forced to be spin polarized, 
but in Fig. 4b, 4c, the Cooper pairing is magnetically forced to be 
spin degenerate. The magnetic attracting force varies inversely 
as the forth power, of the magnetic pole separation distance (d) 
as in 4

0( / )e eF dµ µ µ µ π= ⋅ ⋅ ⋅ . Consequently, in the near field, 
the magnetic attracting force can greatly exceed the (enormous) 
repelling electric force, between electrons, because the electric 
force (only) varies inversely as the square of the separation 
distance (d) as shown in 2 2

0( / 4 )eF e dπ ε= ⋅ ⋅ . Where 0( )ε is 
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the permittivity, 0( )µ the permeability and ( )eµ is the electron 
magnetic moment. Thus, the electron binds to the electron, by using 
the superior magnetic moment attracting force, and in the process 
creating a mass defect binding energy photon. A photon has, by 
definition, exactly equal electric E=V/m and magnetic H=A/m field 
strengths, where (V) is Volt, (A) is Ampere and (m) is meter. When 
the electric and magnetic (EM) energy forces ( , )eF Fµ suddenly 
become exactly equal, as pairing electrons approach each other at 
(d), the EM equality condition creates the photon that quantifies the 
binding energy mass defect.

The room temperature (typical) quantum step conductance is 
demonstrated (Fig. 2), in a mechanically controlled break junction 
(MCB)8,9  or in break point junctions using a Scanning Tunneling 
Microscope (STM)8. The MCB and STM demonstrate the step 
conduction, at room temperature and zero magnetic fields, requires 
no outside forces, other than the applied line current and the 
apparatus voltage used to expand the piezoelectric actuator, for the 
micro reduction of the point contact area8,9. The electric field strength 
in a small conduction area or near a sharp point will be amplified, 
by well known physics. This electron funneling effect produces the 
required high electric fields, for forcing electron to electron binding, 
from the bulk terminal narrowing into the small cross-section 1DEG 
quantum wire. The binding energy, for the single von Klitzing pair 

of electrons (Fig. 4a), will now be calculated, from the electron 
electric and magnetic forces. The charges and magnetic moments, 
of two electrons interacting, will result in a binding energy mass 
defect, by creation of a photon, at the instant electron to electron 
electric forces 2 2

0( / 4 )eF e dπ ε= ⋅ ⋅ equal the electron to electron  
magnetic forces 4

0( / )e eF dµ µ µ µ π= ⋅ ⋅ ⋅ . The resulting von 
Klitzing electron to electron, pole to pole binding energy ( )eB
photon is suddenly produced, the instant the attracting magnetic 
moments ( , )e eµ µ have become equal to the electric ( , )e e− −
charge repulsion, in the near field, at 133.866 10 m−⋅  separation, 
Fig. 3. The calculations start by converting Newton forces to Joule 
by ( , )eF d F dµ× ×  and combining the resulting energy equations, 
at a common separation (d). The binding energy ( )eB  in Joule is 
then calculated by the resulting:

6

2 3
0 064 ( )e

e e

eB
π ε µ µ µ

=
⋅ ⋅ ⋅ ⋅ ⋅

   

16 2 25.9674987246 10 ,− −= ⋅ ⋅ ⋅ ⋅kg m s

				  
                                                                                                      (1)

where 26 2( 928.476412 10 )e A mµ −= − ⋅ ⋅ is the standard CODATA 
electron anomalous magnetic moment. The von Klitzing pole to 

Figure 1 Typical 2DEG IQHE and FQHE quantum step resistance. The IQHE and FQHE step resistances are graphed to explain that 
the resistance can only be series and parallel combinations of the quantum von Klitzing resistance  25812.807KR Ohm= . See text and 
Fig. 4, the Cooper pairs are two von Klitzing resistances in parallel, i = 1/3 is three KR  in series, etc. In a 1DEG break junction case, Fig. 
2, nature prefers the lower energy state Cooper pairs giving conductance as parallel combinations of the 1

KR − .



pole bond length at binding, between electrons, is the null distance  
(d) obtained by combining ( , )eF Fµ  resulting in:

130 0
2

4 3.8660707914721 10 .ε µ µ µ −⋅ ⋅ ⋅ ⋅
= = ⋅ ⋅e ed m

e
		

				                                          (2)

It is noted, from use of the anomalous magnetic moments  
( , )e eµ µ  that Eq. (2) 133.8660707914 10 m−⋅ is equal to 
[ ( / 2 ) (1 )]e ed λ π α= ⋅ +   where 13( / 2 3.861592678 10 )e mλ π −= ⋅  
is the electron rationalized Compton wavelength, and 
(1 ) 1.00115965218eα+ =  is the well known electron g/2 factor. 
The photon will have an energy, from the von Klitzing pole to pole 
pair formation, of  135.96749872 10 Joule−⋅ mass defect, Fig. 3. 
The electron to electron binding energy, embodied in the newly 
created photon, releases the pair mass defect (energy), thus binding 
the pair of electrons, at the (d) separation, until the missing (mass) 
energy can be replaced, much the same as nucleon to nucleon 
atomic binding energy processes5. The frequency, ( )/N A e=  of 
the new pair formation, equals the number of conduction electrons 
per second, from the low density electron conduction current (A) 
Ampere. After the active pair binding energy (photon) is released, 
the ground state bound pair then is visualized as joined, at the 
electron conduction current  frequency (N),  by another pair forming 
onto the bound EWG channel, of superconducting electrons, as in 
Fig. 4a.   The quantum conduction resistance, as a result of the 

binding energy ( )eB  photon and bond length (d), as each new 
electron pair joins the ground state electron bound channel, can 
now be calculated.

Basically, a resistance (R) is characterized by a voltage drop (V) 
proportional to current flow (A) Ampere. For a constant (R) the ratio 
of (V/A) must remain constant. These are the necessary elementary 
conditions for obtaining the quantum step resistances. The CODATA 
characteristics, for the electron, are known to within a few parts 
per billion uncertainty. The calculated electron to electron binding 
energy ( )eB , Eq. (1) and  separation (d), Eq. (2), at binding, have 
now been obtained by the QVPP5 derived equations. What must 
now be done, analytically, is to determine the physics producing 
the Planck constant (h), from the deduced band gap energy. The 
band gap energy is known to be [ ( ) / ]VEg h F d= ⋅ , where (d) is the 
band gap length, Eq. (2) and ( )vF  is the Fermi velocity. The  Fermi 
velocity ( )vF  is found to be quantized at  ( / 2 )VF c α π= ⋅ ⋅  where 
(c)  is the velocity of light, ( )α  is the fine structure constant. The 
fine structure ( )α  is, by definition, the dimensionless ratio between 
the electron electrical (or magnetic) potential energy, and the 
electron rest mass energy. The fine structure ( )α  sets the scale, and 
the rationalized velocity of light ( / 2 )c π gives the effective electron 
velocity at binding. Knowing the Fermi velocity, ( )vF  in the band 
gap energy equation [ ( ) / ]VEg h F d= ⋅ , now allows deducing the 
Planck constant (h) from the binding energy physics. The Planck 
constant has the dimensions of  Joule seconds, representing a fixed 

Figure 2 Typical 1DEG break junction step conductance. Step conductances in separating break junctions are Cooper pair reciprocal 
resistance, see Fig.4 (b). The conductance of 1 in those units gives a value of ( ) 112.9CR KΩ −=  as ( ) 1/ 2KR − or two parallel ( ) 125.8KΩ − . 
Note this is the least number of electrons as the break junction separates at about 8 Angstroms, typically. The conductance of (2) consists 
of two CR in parallel. The conductance at (3) consists of three CR  in parallel. The conductance at (4) consists of four CR  in parallel. The 
Cooper pairing resistance is produced as each Cooper pair bind to the channel. The bound Cooper pairs are robust lowest energy states 
until their mass defects can be replaced.



quantity of  the electron binding energy. We use the calculated 
electron binding energy ( )eB  and the deduced separation (d) band 
gap length, as determined earlier by Eq. (1) and Eq. (2). By setting 
(Eg) equal to ( )eB  algebra obtains ( (2 ) / )eh B d cπ α= ⋅ ⋅ ⋅ ⋅  giving 
the published Planck constant value as the expected CODATA 

34 2 1[ 6.6260693 10 ( )]h kg m s J s− −= ⋅ ⋅ ⋅ ⋅ ⋅  from ( )eB d⋅ . This 
derivation, of the Planck constant (h), from the pair binding 
energy ( )eB and bond length (d) and Fermi velocity ( )vF  rather 
than simply inserting the (h) published Planck value, immediately 
obtains the von Klitzing and Josephson constants ab initio. The 
(h) derivation, from the binding energy physics, serves to give the 
quantum step resistance mathematics a logical basis.

The standard Josephson constant (2 / )JR e h=  has the 
dimensions of Hertz per Volt. The inverse of ( )JR  is the standard 
flux constant ( )/ 2h e0Φ =  =Weber, Volt per Hertz, or Volt seconds. 
The Volt seconds, across the Cooper pair to Cooper pair binding, 
to the electron waveguide (EWG) junction (Fig. 4b) is then for 
two channels, which divides the line current and effectively 
gives the standard Weber ( )/ 2h e0Φ =  flux quantum. The Volt 
second ( )V s⋅  with the full line current, of a single von Klitzing 
electron junction Fig. 4a is, however, effectively twice the standard 
Josephson junction 0Φ  fluxon, giving simply (h/e):

  
(2 )

( )
Be dV s

e c
π

α
⋅ ⋅ ⋅

⋅ =
⋅ ⋅

    
 						            (3)	
				                                          

15 2 2 14.13566742 10 .− − −= ⋅ ⋅ ⋅ ⋅ ⋅kg m s A Weber

The voltage drop ( )KV , as the von Kiltzing electron to electron 
binding junction forms, depends on the current (A) forming the 
junction quantum step resistance. The current can be selected 
arbitrarily, since resistance only depends on a constant ratio 
( )/KV A . For demonstration, a current of 5 micro-ampere 

6(5 10 )Ampere−⋅ is chosen. The frequency, in Hertz, or reciprocal 
seconds 1( )s−   is then taken as equal to the number of electrons 
(N) per second:

 6 13 1[(5 10 ) /( )] 3.12075473 10 .− −= ⋅ = ⋅ ⋅N A e s  		        (4) 	
				                                          
The voltage drop ( )KV , across a single electron (von Klitzing) 
pole to pole binding junction is then:

2 3 10.129064037 .− −= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅KV V s N kg m s A Volt 	       (5)	
				                                         
Then, finally, at the current chosen, and voltage drop ( )KV ,  from 
the Volt seconds ( )V s⋅  and frequency of pair formation (N) Eq. 
(4),  gives the fundamental von Klitzing quantum step resistance
( )KR  constant:

2 3 2
6 25812.8074 .

(5 10 )
− −

−= = ⋅ ⋅ ⋅ ⋅ Ω
⋅

K
K

VR kg m s A Ohm
A

		
				                                          (6)

We see that this (arbitrarily chosen) current of  5 micro-Ampere, 
derives the von Klitzing fundamental resistance constant, from 
the voltage drop ( )KV , Eq. (5). Equivalently, from QVPP5 
fundamentals:

2 3 2
2

2 25812.8074 ,π
α

− −⋅ ⋅ ⋅
= = ⋅ ⋅ ⋅ ⋅ Ω

⋅ ⋅
K

Be dR kg m s A Ohm
e c

	
				                                          (7)

and, equivalently, from dimensional analysis,

2 3 2
2 25812.8074 .− −= = ⋅ ⋅ ⋅ ⋅ ΩK
hR kg m s A Ohm
e

		
				                                          (8)

We have now shown, from first principles, that the QVPP5 von 
Kiltzing electron binding energy ( )eB  mass defect and electron 
to electron band gap length (d) for the electron to electron binding, 
gives the true mechanism for creating the measured quantum step 
resistance, of ( )KR .

The Fig. 4c Cooper pair binding can now be calculated in a 
similar fashion to the von Klitzing pair, Fig. 4a, except that the 
dipole to dipole magnetic moment forces (dotted lines in Fig. 4) 
are exactly one half of the pole to pole magnetic moment forces. 
Because the strong force is the conjunction, of both electric and 
magnetic forces, the Cooper pair electrons must move closer and 
this results in a (counter intuitive) increase in binding energy, from 
the half magnetic force. See the Fig. 3 graph of forces showing 
the Cooper pair greater binding energy, from the Cooper pair 
dipole to dipole configuration. The Cooper pair binding energy is 
calculated:

 
 

6

2 3
0 032 ( )e

e e

eCB
π ε µ µ µ

=
⋅ ⋅ ⋅ ⋅ ⋅   

16 2 28.4393176297 10 .− −= ⋅ ⋅ ⋅ ⋅kg m s
			         (9)	

                                                                                                     

In the Fig. 3 graph, the Cooper pair clearly shows the effect of 
the dipole to dipole  magnetic moment half force. Notice that the 
electrons, in the dipole to dipole Cooper pair, have moved closer, 
to 132.733 10−⋅ m  separation, so that the more rapidly growing 
(but initially weaker) dipole to dipole magnetic force, trace(4)  
then becomes equal to the increased electric force, trace(1), at 
the  132.733 10−⋅ meter  separation. It is apparent in Fig. 3 that the 
dipole to dipole Cooper pair ( )eCB 168.4393 10−⋅ J is larger than 
von Klitzing pole to pole pair ( )eB  165.9674 10−⋅ J . The Cooper 
pair is thus the lowest energy state (greater mass defect) because 
the photon releases the greater 168.4393176297 10 J−⋅  mass 

Figure 3 Quantum electron pair binding. Trace (1) is the binding 
electrons ( ),e e− − electrical potential energy common to both 
von Klitzing and Cooper pairs. Trace (4) is the magnetic potential 
energy between Cooper pair electron magnetic moments. Trace 
(2) is the energy difference between Trace (1 and 4). Trace (5) is 
the magnetic potential energy between electrons of the von Klitzing 
pair. Trace (3) is the energy difference between Trace (1 and 5). 
As Trace (2) and (3) become zero, the equal electric and magnetic 
force conditions create a photon. The photon then releases the 
mass energy defect which binds the electrons until the missing 
mass energy can be replaced.



energy. The lower mass defect energy state, of the Cooper pair 
configuration, will be preferred by nature, especially in the (room 
temperature) break junction, or even in the low temperature quantum 
wire environment, thus giving the experimentally obtained step 
conductance reciprocal Ohm plateaus from 2( )2 /CR i e h=  with 
coefficients (i) = 1, 2, 3, 4,….(Fig.2). It should be noted, however,  
in atomic nuclei nature seems to prefer that nucleons share the 
same spin axis, at least initially, even though the anti-parallel spins 
binding are the lower mass energy state. For example, in an isolated 
deuterium nucleus, the deuteron proton and neutron always share 
the same spin axis, for a total spin of one5. But, the Cooper pairs 
do not exist alone, like the deuterons can, but rather are joined 
to other Cooper pairs (see Fig. 4b, c) and this binding stabilizes 
the Cooper pair,  by being attached to a channel of Cooper pairs. 
If a free Cooper pair initially forms with a common spin axis, so 
magnetic moments first add, one electron will quickly be forced 
to spin flip, into the lower energy state, thus joining other bound 
Cooper pairs in the channel. The Cooper pair separation distance 
(dd) at binding, calculates:

130 0
2

2 2.73372487319 10 .ε µ µ µ −⋅ ⋅ ⋅ ⋅
= = ⋅ ⋅e edd m

e

		
				                                        (10)

Interestingly, the quantum resistance depends on the product 
of  ( )eB d⋅  to derive the Planck constant (h). We find ( )eCB dd⋅ = 
( )eB d⋅ = 28(2.30707725173475 10 )J m−⋅ ⋅ , as a new fundamental 
constant, one that consistently obtains the Planck constant (h) directly 
from the electron binding energy band gap physics, thus assuring 
that the quantum step resistances are all based on ( )KR  . The 
Cooper pair to Cooper pair binding is equivalent to two von Klitzing 
pair bound together in parallel (see Fig. 4a, b). The conclusion is 

that step plateau resistances, at any value, other than ( )KR , are 
made up of parallel and/or series combinations of the von Klitzing 
resistance constant ( 25812.8074 )KR = Ω   (Fig. 1, 2). Figure 4c 
shows that the anti-parallel spin electron Cooper pair coupling, to a 
quantum wire, is also possible.  Again, in Fig.4c, the single Cooper 
pair quantum resistance is (also) the von Klitzing resistance ( )KR  
as a consequence of  the constant product of binding energy times 
the band gap length. 28(2.30707725173475 10 )J m−⋅ ⋅ .

We can now proceed to calculate, the Fig. 4b Cooper pair 
to Cooper pair resistance value,  in a fashion similar to Eq. (3-
8).  The dipole to dipole flux ( )V s⋅ , of the Cooper pair to Cooper 
pair binding, Fig. 4b, is the well known flux quantum ( )/ 2h e0Φ =  
from the QVPP5 previously  derived Planck constant, and resulting 
as follows:

(2 )
2 ( )

CBe ddV s
e c

π
α

⋅ ⋅ ⋅
⋅ =

⋅ ⋅ ⋅
  

15 2 2 12.06783372 10 .− − −= ⋅ ⋅ ⋅ ⋅ ⋅kg m s A Weber

			 
	                                                                                     (11)

Using N from Eq. 4, we get a Josephson voltage ( )JV  across the 
Cooper pair to Cooper pair:

2 3 10.0645320186 .− −= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅JV V s N kg m s A Volt
		

				                                        (12)

At this voltage ( )JV  from the applied but arbitrary 5 micro-Ampere 
current chosen, the Cooper pair to Cooper pair quantum resistance 
( )CR  is calculated:

 2 3 2
6 12906.403 .

(5 10 )
− −

−= = ⋅ ⋅ ⋅ ⋅ Ω
⋅

J
C

VR kg m s A Ohm
A

		
				                                        (13)

Figure 4 All possible electron pairing. 
a. As each von Klitzing pair form, they 
produce the 25812.807KR Ohms= and 
join the superconducting channel. The 
von Klitzing pair are magnetically forced 
to be spin polarized. b. Cooper pair 
binding to Cooper pair is two von Klitzing 
channels joined by the dipole to dipole 
magnetic attraction (shown as dotted 
lines). The spins are magnetically forced 
to be degenerate. c. Here is a possible 
dipole to dipole joining of Cooper pairs 
with anti-parallel (degenerate) spins, 
electron to electron. The Cooper pairing 
also produces 25812.807KR Ohms=  
because the product of binding energy 
and binding separation is the same as 
the von Klitzing pairing. (See text.)



Or, equivalently, from QVPP5 fundamentals:

2 3 2
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				                                        (14)

As was shown, in Fig. 4b, the Cooper pair to Cooper pair 
resistance value, Eq. (14), is just a paralleling of two ( )KR  von 
Klitzing pair resistances, giving ( )/ 2c KR R=  or (12906.403 ).Ω  
The standard flux quantum ( )/ 2h e0Φ =  results from a division of 
line current, in the Cooper pair to Cooper pair two current branches, 
producing a voltage drop of ( )JV = half of the von Klitzing ( )KV
voltage, across the pair.  The derivation of (h) from the binding 
energy and bond length show nature has only one possible quantum 
resistance of ( 25812.8074 )KR = Ω , from either a pole to pole or 
a dipole to dipole, electron to electron binding. This seminal fact 
leads to the conclusion that the quantum step resistances can only be 
made up of series and/or parallel combinations of ( )KR resistances 
(Fig. 1, 2). The MCB and STM experimental 1DEG, in the Cooper 
pair to Cooper pair, produces parallel combinations of the quantum 
conductance or ( ) 1/ 2C KR R −=  for the step plateaus shown in 
Fig. 2. Since ( )KR is the only resistance possible, from electron 
to electron pair binding, the 2DEG (IQHE)  quantum resistance 
steps, can only be / 2, / 3, / 4,K K KR R R etc., as a result of parallel
( )KR , Fig. 1. The 2DEG  (FQHE) (i=2/3, 3/5, 2/5, 1/3…..) then 
result from electron channels adding in series and/or parallel, for 
example, (i = 2/3) resistance plateau is ( )/ 2K KR R+ the (i =2/5) 
resistance plateau is ( )2 / 2K KR R+  and the resistance plateau (i = 
1/3) is ( )3 KR , etc., (Fig. 1).

Further, as a result of these studies, it is concluded that the 
Josephson junction is not formed by some glamorous tunneling 
process. It appears the Cooper pair each bind in turn to a Cooper 
pair, forming a bridging 1DEG channel extension, of bound 
superconducting electrons (Fig. 4b). The superconducting electron 
channel is visualized as extending and bridging (not tunneling) across 
the Josephson junction. The bridged Josephson junction gap then 
develops a direct current voltage drop, from the repeated first pair 
as it forms. The familiar Josephson voltage drop 2[( ) / 2 ]JV h A e=  
is set by the current (A) used, producing a frequency of / .N A e=  
The Josephson junction negative resistance slope, at bridging, is 
equivalent to the familiar spark gap breakdown. Arcing across a 
spark gap results in a negative resistance slope characteristic, by 
going from high voltage, low current (open circuit) to low voltage, 
high current (short circuit). The negative impedance slope is able 
to create a resonance condition, in conjunction with selected circuit 
inductance and capacitance. It is concluded that a new Cooper 
pair continually joins the parallel EWG channel, at a frequency of 
( )/N A e= , thus producing the Josephson constant (2 / )JR e h=  
Hertz per Volt, from the two von Kilitzing pair voltages in 
parallel.

High transition temperature cT superconductivity in copper 
oxides has had no complete theory in the last twenty years.10,11 
Regardless of the superconductor material type, in the final analysis, 
it must be the electron to electron robust binding that makes up 
the physics of superconducting currents. The transition to super-
conduction happens dramatically, when the electron to electron 
binding suddenly occurs, at the material transition temperature. 
The temperature transition, in the superconductor material creates 
a phase change, from free electrons to electrons bound to electrons. 
The bound electrons form a daisy chain channel, as in Fig. 4.  The 
released binding energy photon carries away mass energy and 
robustly binds electrons to electrons, with a mass defect. The 
superconducting current is then the result of a loss-less resonance, 
in the electron pair bonds.  This resonance theory seems logical, 
since a resonance is the only known loss-less mechanism in nature’s 
toolbox.  
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