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Mechanical Analogies for the
Lorenz Gauge, Particles and

Antiparticles

Valery P. Dmitriyev*

An exact analogy of electromagnetic fields and particles can be found in me-
chanics of a turbulent ideal fluid with voids. The system is supposed to form a
fine dispersion of voids in the fluid. This microscopically discontinuous me-
dium is treated as a continuum. The turbulence is described in terms of the
Reynolds stresses. Perturbations of the homogeneous isotropic turbulence are
considered. For the high-energy low-pressure turbulence they are usually small.
This entails the linearization of the Reynolds equations. The latter appear to be
isomorphic to Maxwell’s electromagnetic equations. The Lorenz gauge ex-
presses the slight effective compressibility of the medium. A particle can be
viewed as a cavity in the medium. A respective antiparticle is modeled with an
agglomerate of the medium’s material. Microscopically, these correspond to
some nonlinear vortex formations in the “vortex sponge,” which are of the cy-
clone and anticyclone type.

PACS 12.60.-i – Models of particles and fields beyond the standard model.
PACS 47.27.Jv – High-Reynolds-number turbulence.
PACS 47.55.Dz – Drops and bubbles

1 Introduction

We are in search of a mechanical medium capable to reproduce or imitate the world of particles and physical
fields. Earlier, a mechanical model of particles and fields has been proposed, which is based on the approxi-
mation of an incompressible substratum. Average turbulence in an ideal fluid was considered. In the ground
state, the turbulence was taken to be homogeneous and isotropic. Perturbations of the background turbulence
model the physical fields [1]. Voids in the turbulent fluid give rise to the structures, which can be taken as the
model of the particles [2]. The condition of the substratum incompressibility manifests itself in the classical
electromagnetism as the Coulomb gauge.

Now, we give some refinement of the above model. It is suggested that the substratum is represented by a
volume distribution of the empty space in the ideal fluid. Microscopically, this is conveniently viewed as the
vortex sponge – the plenum of hollow vortex tubes, which pierce the ideal fluid in all directions [3]. Then, the
particles should be modeled by some nonlinear vortex structures e.g. by a loop on a vortex filament [4]. Fur-
ther, such a rather complicated system will be described in a continuous approximation. We will take the
substratum as a turbulent fluid continuum with the variable volume density ( , )ς tx . The particles will be

modeled by discontinuities of the medium. The substratum compressibility manifests itself as the Lorenz
gauge. The possibility for the medium density to have both positive and negative deviations from the back-
ground value enables us to model the symmetry in the particle-antiparticle pairs.
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2 Turbulent substratum

We consider a fluid, which moves disorderly. In developed turbulence, the fluid velocity ( ),tu x  and pressure

( , )π tx can be treated as random variables. Following well known in hydrodynamics Reynolds scheme, we

decompose them into the average and pulsation components, respectively:
′= +u u u , π π π ′= + . (2.1)

The turbulence can be characterized on the average by the set of consecutive moments iu , π〈 〉 , ′ ′〈 〉
i k

u u  and

so on. The second moments ′ ′〈 〉
i k

u u  have the meaning of the average turbulence energy density

1/ 2ς ′ ′〈 〉
i i

u u .

In the ground state and also at infinity the turbulence is supposed to be homogeneous and isotropic:
0

0
constς ς= = , 0 0〈 〉 =u , 0 constπ〈 〉 = , 0 2δ′ ′〈 〉 =

i k ik
u u c , (2.2)

where const=c . We consider the case of the low-pressure high-energy turbulence
0 2

0
π ς<< c , (2.3)

and
0π ≥ .

This system will be taken as a substratum for modeling the physical fields and particles [2].

2. Reynolds equations

The motion of an inviscid fluid is considered. The fluid density ( , )ς tx  is supposed not to fluctuate

ς ς= . (3.1)

Putting (2.1), (3.1) in the Euler equation
1 0π
ς

∂ + ∂ + ∂ =
t i k k i i
u u u , (3.2)

averaging and taking account of 0,′ =u 0π ′ = , we find for turbulence averages:

1 0∂ ∂ ∂ π
ς

′ ′+ + ∂ + =i k i k k it k i
u u u u u . (3.3)

Here and further on /∂ ∂ ∂=
t

t , /∂ ∂ ∂=
k k

x , , 1,2,3=i k  and summation over recurrent index is implied

throughout. Next, we suppose that the fluctuation component ′u  relates to a solenoidal velocity field of the
vortex turbulence i.e.

0′∂ =
k k
u .

Using the latter in (3.3) gives
1 0∂ ∂ ∂ ∂ π
ς

′ ′+ + + =i k i i kt k k i
u u u u u . (3.4)

Equation (3.4) represents the first link in the chain of dynamical equations for consecutive moments of
turbulent pulsations. Next equation is obtained multiplying (3.2) by ′

l
u , symmetrizing, substituting in it (2.1),

(3.1) and averaging:
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′ ′ ′ ′ ′∂ + + + ∂ + + ∂ + +

′ ′ ′ ′ ′∂ + + + ∂ + + ∂ + =

t i i j j j i i ik

t k k j j j k k ki

u u u u u u u

u u u u u u u
(3.5)

An infinite chain of Reynolds equations provides us with a complete description of the averaged turbulence.
Integrating (3.4) for the case of the isotropic turbulence in an incompressible medium, one may get:

1 1 δ′ ′ ′ ′=i k ik
u u u u ,

02
1 10 0

ς π ς π′ ′ + = +u u c . (3.6)

This is a kind of Bernoulli equation and actually an equation of state of the ideal isotropic turbulence. It implies
rather a broad range of variation for the turbulence energy density 1/ 2 ′ ′i iu u  and pressure, involving coexis-

tence of different turbulence phases.

4 Perturbations of the turbulence

We are interested in deviations of the turbulence from the background (2.2):
0δ 〈 〉 = 〈 〉− 〈 〉u u u , 0δ π π π〈 〉 = 〈 〉 − 〈 〉 , 0δ ′ ′ ′ ′ ′ ′〈 〉 = 〈 〉 − 〈 〉u u u u u u

i k i k i k

and
0δ ς ς ς= − .

When
0δ π π≤ ,

we have in the low-pressure substratum (2.3):

2
0

δ π ς<< c , 2δ ′ ′ <<u u ci k , δ <<u c , (4.1)

where (3.6) has been used for the evaluation. As will be shown below, this also entails

0
δ ς ς<< . (4.2)

With the small perturbations of the turbulence, the Reynolds equations can be linearized [1]. Denoting

0
/π ς=p , (4.3)

we have for (3.4) and (3.5), respectively
0δ δ δ′ ′∂ 〈 〉 + ∂ 〈 〉 + ∂ 〈 〉 =

t i k i k i
u u u p , (4.4)

( )2 0δ δ δ′ ′∂ 〈 〉 + ∂ 〈 〉+∂ 〈 〉 + =i k k it i k ik
u u c u u h , (4.5)

where
 
 
 

′ ′ ′ ′ ′ ′ ′= ∂ + ∂ +∂i k k i i j kik jh u p u p u u u .

Here c  takes the sense of the speed for the wave of turbulence perturbation.

5. Maxwell’s equations

Differentiating (4.5) with respect to k
x , we get the vector equation
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2 0δ δ′ ′∂ ∂ − ∇×∇× + =kt k
u cu u g , (5.1)

where
22 δ= ∂ + ∂ ∇⋅

i k ik i
g h c u

and the identity ( ) 2∇ ∇⋅ =∇×∇×+∇  was taken advantage of. The terms of (5.1) are of the same order of

magnitude as those in (4.4).
With the definitions [1]

κ δ= 〈 〉
i i

A c u , (5.2)

ϕ κδ= 〈 〉p , (5.3)

κ∂ δ ′ ′= 〈 〉
i k i k

E u u ,

4
κ
π

=
i i
j g ,

where κ  is an arbitrary constant, (4.4) and (5.1) take the appearance of Maxwell's equations, respectively,
1 0ϕ∂ + +∇ =

∂c t
A E ,

( )1 4 0π∂ −∇× ∇× + =
∂c t c
E A j ,

It is instructive to express the plane electromagnetic wave in terms of δ ′ ′〈 〉
i k

u u . We get for a continuous

incompressible substratum:

0=
ik

h , 0δ =p ,

( )2 1 12
,δ ω= −u l F t k x

( )
2

1 2
1 2 1 1

2δ ω
ω

′ ′ = −c k lu u F t k x .

So, in this process the density of the turbulence energy 1/ 2 ′ ′〈 〉
i i

u u  remains unperturbed:

1 1 0δ ′ ′ =u u .

6 The Lorenz gauge

The so-called gauge transformation is concerned with a kinematical part of the theory. It is originated from the
mass balance in the medium. Putting (2.1), (3.1) in the continuity equation

( ) 0ς ς∂ +∇⋅ =
t

u

and averaging, adds to the Reynolds equations:

0ς ς 
 
 

∂ +∇⋅ =t u . (6.1)

We have for small variations of the pressure
2δ π δ ς= b ,

where b  is the speed of a density wave in the medium. The supposition is that the wave of turbulence pertur-
bation propagates as a compound density-turbulence perturbation wave i.e.
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=b c .

Therefore, it can be taken
2δ π δ ς= c . (6.2)

(From the thermodynamical point of view, in this system 2 =c kT . So, formally (6.2) takes the sense of the
ideal gas equation.) With (6.2) the inequality (4.2) appears to be the consequence of the first inequality in (4.1)

Then, linearizing the averaged continuity equation (6.1), we get

0
0δ ς ς δ∂ + ∇⋅ =t u .

Substituting to this (6.2) gives in terms of the specific pressure (4.3)
2 0δ δ∂ + ∇⋅ =t

p c u .

With the definitions (5.2), (5.3) the latter takes the appearance of the Lorenz gauge:
1 0ϕ∂ +∇⋅ =

∂c t
A .

So, validity of the Lorenz gauge may indicate that the electrostatic field is accompanied by the slight variation
of the substratum density. On this account, the scattering of a neutral particle by the electrostatic field should be
expected.

The density-perturbation wave of the turbulence medium can serve as a model of the photon.

7.  Cavitons

We are interested in stationary perturbations of the turbulence. Let us consider the case of an incompressible
medium: 0∂ =ii

u . Assuming that in the continuous medium 0=
ik

h  and taking in (4.5) =k i , we get:

0δ ′ ′∂ 〈 〉 =
t i i

u u .

So, for linear perturbations of the turbulence in a continuous incompressible medium the energy profile is
conserved. However, in general the medium is discontinuous.

<ζ>
<ζ>0

0

<ζ>
<ζ>0

0

Fig. 1 - The hollow-bubble model of the neutron       Fig. 2 - The antineutron
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Let we have an empty bubble in an incompressible fluid. The medium is taken to be noncorpuscular. So, it
will not fill the bubble with a vapor in order to attain the equilibrium. Instead, the turbulence is perturbed
reaching at the wall of the bubble

02
1 1′ ′ = +

R
u u c p ,

where 
0 0

0
/π ς=p . This perturbation is found from (3.6), taking in it the equilibrium pressure

0π =
R

.

Thus, the cavity is stabilized forming a caviton. A caviton occurs as a centre, or source of the stationary
perturbation field. As was shown [2], the latter has the form of the Coulomb field. In view of the boundary
conditions, we have outside the core of the stable cavity:

0

1 1δ ′ ′ =
′−

p R
u u

x x
, (7.1)

where ′x  is the center and R  the radius of the cavity (Fig.1, top). This is the model of the proton and the
electrostatic field generated by it.

The energy of the turbulence perturbation is given by
3

1/ 2δ ςδ ′ ′= ∫ i iU u u d x , (7.2)

where 3
1 2 3

=d x dx dx dx . It is infinite for the Coulomb field.

The neutron is modeled by a non-equilibrium cavity in the fluid (Fig.3). In experiments we have

n p ν+ −→ + + %e .

So, the positive perturbation energy due to the proton must be counterbalanced by the negative perturbation
energy due to the electron. On this account, we take for the electron an islet of the quiescent fluid. It generates
the perturbation field

2

1 1δ ′ ′ = −
′−

ec ru u
x x

, (7.3)

where e
r  is the radius of the core (Fig.6, top). The condition of mutual compensation of the two infinite quan-

tities – (7.2) with (7.1) and (7.2) with (7.3) – gives
02 =ec r p R .
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So, in the high-energy low-pressure substratum (2.3)
<<

e
r R .

The sum of the two infinite quantities under consideration does not vanish, but gives a finite quantity. It relates
to the energy of the neutrino.

8.  Particles and antiparticles

In this section, the caviton models of the particles are extended to the case of a compressible substratum. For
our purposes, it is sufficient to consider here only the hollow-bubble models of the particles and respective
models of the antiparticles, or vice versa.

The model of the proton is shown in Fig.1. The model of the antiproton (Fig.2) is easily obtained by mir-
roring the graphs of Fig.1 about the respective asymptotes. So, the antiproton is modeled by the inclusion of a
drop of the lowered-energy fluid. The qualitative correctness of these models can be verified using it in order to
interpret the reaction of annihilation:

particle antiparticle photons (neutrinos antineutrinos)+ → + + . (8.1)

<ζ >

<ζ >0

0

<ζ >

<ζ >0

0

Fig. 3 - The hollow-bubble model of the proton     Fig. 4 - The antiproton
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1u

'
1>

0

<p>0

c2

<ζ >

<ζ >0

0

<p>

<u'
1u

'
1>

0

<p>0

c2

Fig. 5 - The localized positron Fig. 6 - The localized electron
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The energy density of the perturbation, generated by a particle, is exactly opposite to that of the respective
antiparticle. We have for the proton

03
0

4 3
3 2
πδ ς+ = + +U M R p

and for the antiproton
03

0
4 3
3 2
πδ ς− = − −U M R p .

After the annihilation
0δ δ δ+ −= + =U U U .

The electromagnetic energy is given by

( )
2 2 3

8
κε δ
π

′ ′= ∂∫ k ku d xu .

We have
0ε ε+ −= > .

After annihilation
2ε ε ε ε+ − += + = .

This finite quantity corresponds to photons.
Until this moment, the model was identical to that in the incompressible substratum [2]. Next, we discuss

the features, which are added to it by the compressibility. For the substratum density we have
δ ς δ ς

+ −
= −

(see Fig.1,bottom and Fig.2, bottom). After annihilation:
3 0δ ς =∫ d x .

If we take for the particle’s mass
0 3ς ς 

 
 

= −∫m f d x ,

where δ ς δ ς   
   
   
− = −f f , then

0+ −+ =m m .

The neutrinos + antineutrinos, which can be formed in the reaction (8.1), are supposed to compensate each
other by the same scheme.

The hollow-bubble model of the neutron and the model of the antineutron are shown in Fig.3 and Fig.4,
respectively.

The model of the localized electron is shown in Fig.6, the respective model of the positron is shown in
Fig.5. You see that here perturbations of turbulence are far beyond (4.1). So, a delocalization until

0δ ≤p p was considered [2]. Following this line, in Fig.8 a 1/ N -th splinter of the electron is shown,

where 
02 /=N c p . The respective splinter of the positron is shown in Fig.7. Notice that the radius e

r  of the

splinter’s core equals to that of the whole electron, whereas the perturbation fields are N  times lower.
Qualitatively, the positron (Fig.7) has the same features as that of the proton (Fig.1), and the electron

(Fig.8) – the same as the antiproton (Fig.2). However, the hollow-bubble model gives a sharp jump of the
density at the boundary of the nucleon’s core. This may serve as an indication of the complex inner structure of
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the nucleon. No jump of density in the electron indicates “the absence” of the internal structure. Analogously,
Fig.3 and Fig.4 express the features of the neutrino and antineutrino as well.

We do not know what is the maximal value of the density. If it is about 
0

2 ς , then the isle of the quies-

cent fluid, which represents a localized electron, may just be the medium free of an admixture of the empty
space.

9. Order through chaos – a microscopic view

We can not derive the self-organization in the turbulent medium. Nor can we prove its stability. The system is
too complicated to handle it ab initio. Still, it can be approached with some additional supposition. First, the
turbulence was supposed to have a vortex microscopic structure. Then, a nonlinear Schroedinger equation can
be applied [4]. The model was shown numerically [5] to be attracted to a soliton solution.

A heuristic microscopic model of the turbulent ideal fluid with voids has been first proposed by John Ber-
noulli Jr. more than two centuries ago. It is known historically as the vortex sponge. We have two basic vortex
configurations: the straight vortex tube and the closed vortex tube (vortex ring). Hence, the two basic kinds of
the vortex sponge can be imagined: the random heap of the vortex tubes [3] and the packing of the vortex rings
[6]. The vortices are supposed to be hollow inside. So, to redistribute the empty space in the fluid may mean
just to rearrange the tubes. Here, we take for the vortex sponge the heap of randomly oriented straight vortex
tubes [3]. Then, a particle may correspond to a closed vortex formation involving in itself the empty space. For
instance, when a fluid ball moves in the fluid it generates the velocity field of a vortex ring. When a bubble
moves in the fluid it must generate the velocity field which is opposite to the latter. Such can be the vortex
structure of the neutrino and antineutrino and also that of the moving neutron or antineutron. A loop on the
vortex tube may represent the neutron at rest [4]. A torsional (helical or kink) wave on a vortex filament mod-
els the electromagnetic wave. We may also have axisymmetric (area-varying) waves propagating along a

<ζ >

<ζ >0

0

x x

<ζ >

<ζ >0

0

<p>

<u'
1u

'
1>

0

<p>0

c2

Fig. 7 - The 1/N-th splinter of the positron Fig. 8 - The 1/N-th splinter of the electron

= 02 /N c p . Here = 6N .
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vortex tube [7]. This can be taken for the model of the gravitational wave. Macroscopically, it should be de-
scribed as the flow of the transient point dilatation.

Clearly, discreteness of the particles and charges are determined by the discreteness of the vortex sponge.
In the average, it is defined by L  – the mean length of the vortex filaments per a unit of volume. The vortex
sponge possesses the elastic properties that we just appreciate as electromagnetism. In this context, the above
reported model should be look at only as a mesoscopic description of the microscopic structure.

This description can be adjusted to some new microscopic features without changing the general picture.
For instance, if in reality the vortex structures, which are responsible for the neutron and proton, include in
their cores some portions of the fluid, this can be accounted for in the mesoscopic model taking for minimal
density and pressure the values which are different from zero: ς ς≥

m , ≥
m

p p . So, concerning their cores,

the particle models presented in Figures 1-4 may be considered as an exaggeration of the real situation.

10. Conclusion

We have shown that in mechanical models of electromagnetism the Coulomb gauge corresponds to an incom-
pressible substratum. Validity of the Lorenz gauge points out to that the substratum can be effectively com-
pressible. The latter should be due to volume dispersion of the empty space in the microscopically incom-
pressible fluid. The possibility for the substratum density to have both negative and positive deviations from a
background level makes conditions for generating in the substratum cyclone-anticyclone pairs. That models the
birth of the particle-antiparticle pairs in “vacuum.”
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