Defining Drift Current

DRIFT = c x v

Francis Viren Fernandes

July 28, 2011

Electric current is a measure of motion of atoms and 186-ether. An impact force of current squared causes copper atoms in a wire to drift at Maxwell's drift velocity. There is another drift of 186-ether particles caused by the force of current squared. Current is not the flow of electrons. The measure of charge is that of atoms and 186-ether. Electrons are just one example of a measure of charge.

Consider a current of 5.0 amps thru a copper wire of cross section area $5.0 \times 10^{-7} \text{ m}^2$.

Drift Velocity Formula: I = n A v e

Current, I = 5.0 amps

Number of copper atoms per meter cubed of copper wire, $n = 8.5 \times 10^{28}$

Cross section area of the copper wire, $A = 5.0 \times 10^{-7} \text{ m}^2$

Elementary charge, $e = 1.60217653 \times 10^{-19} C$

Drift velocity, v = 7.34295219 x 10⁻⁴ m/s

Dividing the length of 2 x 10^{6} m by 8.5 x 10^{28} particles we arrive at R = $2.352941132 \times 10^{-23}$ m.

Clearly E/B changes from c to v because electric field E is constant while the magnetic field B measures different for $r = 9.6064088 \times 10^{-12} m$ and $R = 2.352941132 \times 10^{-23} m$ at $t = 3.20435306 \times 10^{-20}$. B₁ = I/r and B₂ = I/R and c = r/t and v = R/t where E = I/t and I=5amps.

 $\Phi = I x \pi x r x 10^{-7} x 137.036 = h / 2e under I = 5 amp stress$

 $r = 9.6064088 \times 10^{-12} m$ This length represents a wave length – spiral motion of a photon

 $q^2 = m * x 9.6064088 \times 10^{-12} m$

The source of the magnetic flux quantum Φ is the changed mass m * and radius r of copper.

Resistance, R = I / m

$$m* = \frac{I}{R} = \frac{5}{1.871157469 \times 10^{27}} = 2.672142823 \times 10^{-27} kg$$

Under, 5 amp stress the mass of copper is changed from 1.05520602 x 10^{-25} kg to m *

The atomic mass of copper is 63.546g. Divide by Avogadro's number for one atom mass of copper which is $m_1 = 1.05520602 \times 10^{-25}$ kg.

Momentum = mv = Ft

 $1.859222909 \times 10^{-9} \text{ kg x v} = 25 \times 3.20435306 \times 10^{-20} \text{ s}$

v = 4.3087263 x 10⁻¹⁰ m/s

One coulomb of ether in kg = $1.859222909 \times 10^{-9}$ kg x $6.24150948 \times 10^{18}$ = $1.160435741 \times 10^{10}$ kg

Current is the momentum of one coulomb of ether,

Ether Current I = 5 amps = $1.160435741 \times 10^{10}$ kg x $4.3087263 \times 10^{-10}$ m/s per one coulomb

Energy of ether drift, E = F r where $r = 9.6064088 \times 10^{-12} m$ and $F = I^2$

 $E = 25 \times 9.6064088 \times 10^{-12} = 2.4016022 \times 10^{-10} J$

 $E = m (cv) = 1.859222909 \times 10^{-9} (2.99792458 \times 10^8 \times 4.3087263 \times 10^{-10}) = 2.4016022 \times 10^{-10} J$

Copper Current I = 5 amps = $2.672142823 \times 10^{-27} \times 6.24150948 \times 10^{18} \times 2.99792458 \times 10^{8}$ per one Coulomb

The drift velocity of changed mass 2.672142823 x 10^{-27} kg of copper atoms **v** = 7.34295219 x 10^{-4} m/s

 $E = m (cv) = 2.672142823 \times 10^{-27} \times (2.99792458 \times 10^8 \times 7.34295219 \times 10^{-4}) = 5.88235283 \times 10^{-22} J$

E = FR = 25 x 2.352941132 x10⁻²³ = 5.88235283 x 10⁻²² J

Remarks

The drift of ether and atoms of the conductor can be calculated by E = m (cv)

The mass of copper atoms changed under eVe stress from 1.05520602 x 10^{-25} kg to m *

Maxwell thought that drift velocity was that of electrons. This has now been shown to be a false assumption.