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Abstract

Following to the two former papef¥he Gyro-Gravitational Spin Vector Torque DynamiisMain Belt Asteroids in
relationship with their Tilt and their Orbital Intlation” and “Cyclic Tilt Spin Vector Variations of Main Belt
Asteroids due to the Solar Gyro-Gravitatignivherein we theoretically studied the tilt motioasd variations of
spinning asteroids, we continue the analysis withstudy of the orbit anomalies of satellites. €haations for the fly-
by of satellites near the Earth, or near planetgimeral are deduced.

Keywords Fly-by — satellite — planet — gravitation — gigtion — prograde — retrograde — orbit.
Method Analytical.

1. Basic equations of the former papers.

In the former pap€iThe Gyro-Gravitational Spin Vector Torque DynamafsMain Belt Asteroids in relationship with
their Tilt and their Orbital Inclination’; a physical deduction is found for the motion dnel variations of the tilt of
asteroids. This deduction is based upon the Maxtrlogy for Gravitation.

As explained, the gravito-magnetic field of the thandeed influences the path of satellites becatfisbeir velocity,
by the following equation, which is the analoguedrdz force for gravity:

FOm(g+vxQ) (1.2)

Hereing is the gravity field vector of the Eartf its gravito-magnetic field vector (also callggrotatior), andm and

Vv the mass and the velocity vector of the satelfit®.explained the gravito-magnetic field vectofaand out of the
Earth’s data (see eq.(3.8.a) in that paper and 2j felow).
The equations are totally valid for a spinning Baittat is surrounded by orbiting satellites. ThetliEa angular

velocity is @, its moment of inertia ik

. Gl 3r (@)
Q= w- 1.2.a
2r3cz( r? (.22
. 2 2
wherein for a sphere: | = gm R (1.2.b)

The value of the gyrotation can be found at eaelelin the
universe, and is decreasing with the third power thod
distancer . The factoraweI represents the scalar vector-
product, and this value is zero at the equatosizil

If we want to understand the accelerations of thielltes
due to the second field, gyrotation, we need towkribe

Fig. 1.1 : A spinning sphere with radiuR and

rotation velocityw is generating a rotary gravitati N

field (or “gyrotation” field) 2 at a distance from vector productV X Q in the vector equation (1.1) with the

the sphere's centre. help of the vector equation (1.2). Therefore, wedhsome
definitions of orbit angles, see fig.1.2.

© Oct. 2011 1 07/10/2011



Thierry De Mees

Fig. 1.2 :Definition of the anglesy andi . The orbital
plane is defined by the orbital inclinatidin relation to the

X axis. The location of the asteroid inside the toibi
defined by the anglex . The equipotential line of the
gyrotationg through the asteroid has been shown as well.

In order to find the vector produatx Q , we need to know the angl# in terms of the inclination and the position
anglea, since the scalar vector-product of (1.2 a) fined by wr 0.

Therefore we notice that (see fig.1.2): rsiny=r, =r cosx sin (1.3.a)

And sinceSiny = c0SG, we get : cosB = cosr sim (1.3.b) (1.3.c)
GmR 3 ]

Hence, (QX,Qy,QZ) :W{(O,O,a)) —F(rX I, I’Z)(Cd’ co®r sm)} (1.3.d)

wherein (rx,ry,rz) =r (cosx cois ,sir ,cas $i) (1.3.€)

The equations (1.3) constitute the detailed vefoionula of the equation (1.2). Remark thiat ahgyth-

2. Accelerations due to the Earth’s or planet’s spi.

In this paper, we will make abstraction of the Kigdés elliptic exact orbit shape, but the readan implement that by

defining an anglex, that defines the location of the orbit’s pericentéhen, by applying the angla, in the equation
(1.3.e), the correct variability of the radius dam expressed. By using the classical velocity eguositfor elliptical

orbits, defined by the angle® anda , the reader can find any primary velocity of dubit.
The analytical equations below are valid &gy= 0. This means that the orbit’s pericenter calasiwith the position of
a=0. They allow us to get graphical representatiointhe satellite accelerations due to the Eaghrstation field.

Rotation of coordinate system to the ellipticaln@a

With (1.1), we find the accelerationsX Q due to gyrotation.

In order to see more easily what really happenk witatellite, let us make a transform in the plahthe satellite’s
orbit. More precisely a rotation of the system other orbit inclination. The coordinate systeX’ Y' Z’ is given by a
clockwise rotation over the angle

(X",Y', Z) =( Xcosi+ Zsini,Y - X sini+ Z cog (2.1)

By doing this, we have put the satellite orbithe X’ Y’ plane, and we can easily find the correspondingtgsion
(QX,Qy,QZ):(QXcosHQZsiri Q,7Q, sin+Q, cod 2.2)
Equation (2.2) is written in full in Appendix A.
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Below, we will define the equations that coverptltal orbits and then we find the gyrotational éecations, which
are explicitly written down in the Appendix B.

3. Elliptical equations.

In order to adapt the equations for an elliptithpave apply the following Keplerian equations:

\AY’ ’ o a(1—£2)

= and V= GM(E,—EJ (3.1) (3.2)
1+£cosa a

r

wherein a is the ellipse’s major radius and is the eccentricity given by

£=1-(a/b)’ =¢da

Herein,b is the ellipse’s minor radius,the coordinate of the focus (the planet) if the
center is taken in the middle of the ellipse, a@ad the shortest distance between the
ellipse and the planet’s center.

Remark that we have defined the anglas the angle between the major axis and the

Fig. 3.1 :Definition of the satellite’s position.
anglea for elliptic orbits.

Furthermore, the satellite’s position can be wniths:

r=(r,.r,r,)=¢ cosar,’ sir ,0 (3.3)
The tangent to an ellipse in the coordinate sy{iéhY’,Z’) is given by its slope
b’X _ b’cosa
tano = - =- (3.4)

a’y  dsina
Which results in the following initial orbit veld@s:

\7':(VX"Vy"VZ'):(VCOSa',\'/Sin;’Qz \/ : _\/azzsmi _ - . _\/kicom :
(a Slna) +(b COSD’) \/(a Slm) +(b2 COH)

(3.5)

4. Further equations.

The satellite’s gyrotational acceleratiofs< Q in the(X’,Y’,Z’) system due to the Earth’s rotation are then gbyen
(a2 a)=(wa - va,va - ve' Vo' vp')=( Vo' @', R 5 Q) ,

Option 1 : Rotation of coordinate system to polaoinates versus the planet.
AT
What interests us are the values of the tangemtidlthe radial accelerations versus
di g aly the planet, and finally the accelerations thatpmmendicular to the orbital plane. To
see these accelerations, let us make a transfotheiplane of the satellite’s orbit.
ar More precisely a rotation of the system over thgl@n. The coordinate systeX’
., Y"Z" is given by a counter-clockwise rotation over dmglea :

C/ a p X' Fig. 3.2. rotation of the coordinate system.

(X"’Y"’ Zﬂ) :( X’CO&?"" Y siny ,Y' cog — X sia 13 (4_2)
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Or, for the accelerations:
(axay@) =( a, cosx+ a, siy ,a, cog- a s A
Wherein we find the radial and the tangential azredions (see fig.3.2):

(o3 ') =2 2. 4] 0

The equations are written in full in Appendix C.

Option 2 : Rotation of coordinate system to polaomlinates versus the orbital path.

Another interest thing are the values of the tatigeand the radial accelerations to the
orbital path, and finally the accelerations that perpendicular to the orbital plane. To
see these accelerations, let us make a transfotine iplane of the satellite’s orbit. More
precisely a rotation of the system over the arm® (since d is negative). The
coordinate syster?(* Y Zis given by a counter-clockwise rotation over éinglea :

X' Fig. 3.3. rotation of the coordinate system.

(X.Y,Z)=(-Xsindg+ Y cod - Y si- X cod 2 4.4

Or, for the accelerations:
(ax*,ay*,a;):(—ax' sind+ a, co®y - a sid- g cod @)
Wherein we find the radial and the tangential azredions (see fig.3.2):
(ax*’ay*’a;):(a*r’é’az’) (45)

The equations are written in full in Appendix D.

5. Graphical solutions.
The figures 5.1 and 5.2 show the values of thelat#ons that satellites undergo by the equatos)( written in full
by the equation (D.3.a). The tangential accelenajo along the satellite’s path is zero, as confirrogdhe equations

in the Appendix D.

In fig. 5.1 we show the radial gyrotational accatem a; , which points to the Earth’'s center, for the ealwofi
between 0 antl, anda between 0 andT2
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Fig.5.1: The radial gyrotational accelerat'mﬁ of satellites about the Earth, in relation to ohleital
inclinationi and the orbital positioa of the satellite. We too&/b = 2. The red line are the zero
values fora andi. The values of betweer0 andTt, anda betweerD and2T1t

The values ofa, are zero for an orbital inclinatioh equal toTv2. The highest absolute values are found for an
inclinationi of T¥4 and 374, for a equal to 0. Fool equal toft there is an attenuation due to the orbit’s ecaeitytr

For circular orbits, the valug attequals that ofo = O (in absolute values).

In fig. 2.2 we show the gyrotational accelerat@n, which is perpendicular to the satellite’s orbipdane, for the
values ofi between 0 ant, anda between 0 andT2 The scales of the orbital inclination and theitatlposition of the
satellite are taken the same for both graphs. Heneell, there is an attenuationoat Tt
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Fig.2.2: The gyrotational acceleratiaﬁ , perpendicular to the orbital plane, of satdlisdout the Earth, in
relation to the orbital inclinatiohand the orbital positioal of the satellite. We too&/b = 2 The red line are
the zero values fant andi. The values of betweerQ andTt, anda betweer0 and27t
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The highest values &, are obtained when the orbital inclination isTé2 , when the orbit is perpendicular to the
Earth’s equator. The orbital positions, where tlighést absolute values are obtained, are everyo$tapand is zero at
the orbital nodes where the satellite passes thér'Eaquator (att = T7V2). The absolute amplitude @t= Ttis here
about as large as the onedat 0.

6. Discussion and conclusions.

We have calculated the satellite accelerationgtaltiee Earth’s rotation. It is found that the valwda, (perpendicular

to the orbital path) are zero for an orbital ination i equal toTV2. The highest absolute values are found for an
inclinationi of 194 and 374, for a equal to 0. Foot equal toft there is an attenuation due to the orbit’s ecaetytr

For circular orbits, the valug atTtequals that ofo = 0 (in absolute values).

There is no gyrotational acceleration along thelkt's path, sinces, is found to be zero. A vector product indeed
cannot be oriented the same as one of the procrtat'sonents.

The strongest values for the accelerat'tqﬁ (which is perpendicular to the orbital plane) afstained for the
inclinationsi that are perpendicular to the planet’s equatqi@he, atrv2. The orbital positionst where the highest
values are obtained, are every steptadithough attenuated at= 1tfor ellipses, and is zero at the orbital node®(at
T02), where the satellite passes the Earth’s equaiter maximal values @, are significantly larger than thoseaf.

7. References and bibliography.

1. Anderson, John D.; James K. Campbell, Michael MaNieto, 2007, The energy transfer process in péage
flybys, New Astronomy 12 (5): 383—-397, arXiv:astro-ph/0a®B0

2. Anderson, et. al. , 2008, Anomalous Orbital-Ene@fianges Observed during Spacecraft Flybys of ERHigs.
Rev. Lett

3. Barucci, M. A, D. Bockelee-Morvan, A. Brahic, Sla€emidi, J. Lecacheux, and F. Roques, 1986. Agtespin
axes: Two additional pole determinations and themakimplications Astron. Astrophys. 163,261-268.

4. De Mees, T., 2005, Analytic Description of CosmireRomena Using the Heaviside FidRhysics Essays, Vol.
18, Nr 3.

5. De Mees, T., 2007 — upd. 2011, Analytic The Gyran@ational Spin Vector Torque Dynamics of Main Bel
Asteroids in relationship with their Tilt and thérbital Inclination,General Science Journal.

6. De Mees, T., 2007 — upd. 2011, Cyclic Tilt Spin ¥ecvariations of Main Belt Asteroids due to thel@dGyro-
Gravitation,General Science Journal.
Einstein, A., 1916, Uber die spezielle und dieeiigine Relativitatstheorie.
Erikson, A. 1999, The spin vector distribution chimbelt asteroidBull. Am. Astron. Soc. 31,1112.
Erikson, A. 2000. The present distribution of asigispin vectors and its relevance to the origid ewolution of
main belt asteroid®LR-Forschungsbericht 2000—37. DLR,KdIn.

10. Feynman, Leighton, Sands, 1963, Feynman Lecturéhgsicsvol 2.

11. Heaviside, O., A gravitational and electromagn@mna@logy,Part |, The Electrician, 31, 281-282 (1893)

12. Jefimenko, O., 1991, Causality, Electromagnetiaitidon, and Gravitatiorklectret Scientific, 2000.

13. Laskar, J., and P. Robutel, 1993, The chaotic aliliepf the planetsNature 361, 608-612.

14. Skoglov, E. 1999, Spin vector evolution for innelas system asteroidBlanet. Space Sci. 47,11-22.

© Oct. 2011 6 07/10/2011



Thierry De Mees

15. Skoglév, E., P.Magnusson, and M. Dahlgren, 199@lion of the obliquities for ten asteroid®lanet. Space
Sci. 44,1177-1183.

16. Skoglév, E., 2001, The Influence of the Orbital ENmn of Main Belt Asteroidslcarus 160.

17. D. Vokrouhlicky, D. Nesvorny, 2006, W.F. Bottke,cstar spin dynamics of inner main-belt asterpiltsirus
184.

18. Zappala, V., and Z. Knevzevil984. Rotation axes of asteroids: Results forljdats,Icarus 59,435-455

Appendix A : Gyrotational field equations written in full.

The values of the velocity are given in (2.1) and the values of the gyrotafibare given in (A.2) below, based upon
the equations (1.3.d) and (1.3.e).

GmR y . : .\
Q.,Q ,Q |=————(0,0w)—- 3w , )
. (2.9,9,) =52 [(0,0.0) cogr sin cag cbs ,sin ,aps igih
(2.9,.0 ):m[wcosa siri(- 3cos cos-, 3sin( -1 3aws iéi)ﬂ]
o RN T8
(QX,Qy,QZ)=%)(—BCo§a sinP+ 3sin@ sin ,2cas s{n-1 3cos ig;)l
10r°c
(A1)
Appendix B : Gyrotational acceleration equations witten in full (Cartesian).
Written in full, the accelerations due to the E&r{jplanet’s) rotation, exerted on a satellite are:
,__GmRw | GM| 2(1+¢£ comr) _ Bcos a sin2i
10r’c® | a (1-¢%) \/(azsina)z +(b? (:osxcr)2
,__GmRw | GM| 2(1+¢ cosr) _ dsina cosr sin2
10rc® | a (1-¢%) \/(azsina)z +(b? cosu)2
. GmRw | GM| 2(1+&cosr)  |cosa siri( @’ sila+ B? cos( 3cos- s'i))
10rc® | a (1-¢) \/(azsina)z +(b? cos:cr)2

(B.1.a) (B.1.b) (B.1.c)
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Appendix C : Gyrotational acceleration equations witten in full (polar versus the planet).

Written in full, the accelerations due to the Ear{planet’s) rotation, exerted to a satellite are:

v GmR?w\/ GM( 2(1+¢ cor) ](azsinchb2 cosa) cow sink

10r%c® | a (1-¢?) \/(azsina)z +(b? cosn)2
v _ :_GmR?a)\/ GM( 2(1+ £ cosr) ](az—bz)sina cosa sin2
10rc® | a (1_52) \/(azsina)z +(b2 cos{)/)2
.. GmRw | GM[ 2(1+ecomr) _|(3a’sin’a+b? cowr( 3cos - sii)) cas il
a =a, =- 3 2 > -1 > >
Sre a (1_5 ) \/(azsina) +(b2 cosa)

(B.1.a) (B.1.b) (B.1.c)

Appendix D : Gyrotational acceleration equations witten in full (polar versus the orbit).

From (3.4) follows:

. —b? cosa a’sina
sind = COSO =

\/(az sina)2 +(b? (:oscr)2 \/(az sina)2 +(b? coscr)2 (D.1) (D-2)

Written in full, the accelerations due to the Ear{planet’s) rotation, exerted to a satellite are:

._.+_ _GmRw | GM| 2(1+¢ coxr) _

& =3 =5 \/ - [ (1_52) —1}cosa sin2

3, =3=0

.__1_ GmRw |GM| 2(1+&cowr) (3a”sin?a +b? cosr ( 3cos - sii)) cas i
T \/ 2 { (1-¢?) J \/(azsina)2+(b2 cosaf)2

(D.3.2) (D.3.b) (D.3.c)
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